TY - THES A1 - Leffler, Andreas T1 - TRPV1 ist ein polymodaler Rezeptor von nozizeptiven Spinalganglienzellen T1 - TRPV1 is a polympdal receptor in nociceptive spinal sensory neurons N2 - In der vorliegenden Arbeit wurde mittels der Whole-Cell Patch-Clamp Methode sensible Neurone von transgenen Mäusen untersucht, bei denen das Gen für TRPV1 (transient receptor potential V1) deletiert wurde. Das Ergebniss wurde mit den Daten von Wildtyp Mäusen verglichen. TRPV1 (früher VR1; vanilloid receptor 1) wird nahezu selektiv in sensiblen Neuronen exprimiert und wird im heterologen Expressionssystem durch Vanilloide, Hitze (> 43°C) und Protonen aktiviert. Durch diese Eigenschaften scheint TRPV1 für die rezeptiven Eigenschaften polymodaler Nozizeptoren von großer Bedeutung zu sein. Als ein Model des peripheren afferenten Neurons wurde die Aktivierbarkeit kultivierter Spinalganglienzellen durch Vanilloide, Protonen und Hitze elektrophysiologisch untersucht. Während etwa 35% der Wildtyp-Zellen Vanilloid-sensibel waren, fehlte in Zellen der TRPV1-knockout Maus jegliche Vanilloid-Sensibilität. Auch bei der Protonen-Sensibilität wurde eine signifikante Reduktion in TRPV1-knockout Zellen beobachtet. In Wildtyp-Zellen wurde eine hohe Protonen-Sensibilität fast ausschliesslich in Vanilloid-sensiblen Zellen beobachtet. Hitze-induzierte Einwärtsströme mit einer Aktivierungsschwelle bei 43°C wurden ausschliesslich in Vanilloid-sensiblen Zellen der Wildtyp-Maus beobachtet. Dagegen wurden Hitze-induzierte Einwärtsströme mit einer Aktivierungsschwelle über 53°C in sowohl Wildtyp- als auch in TRPV1-knockout Zellen beobachtet. Im Bezug auf die Bedetung von TRPV1, wurde die Funktionalität zwei distinkter Populationen von Spinalganglienzellen, NGF- bzw. GDNF-abhängigen Neuronen, durch eine Lebendfärbung mit IB4-FITC untersucht. Hinsichtlich Vanilloid-, Protonen-, Hitze-Sensibilitöt wurden jedoch keine Unterschiede zwischen IB4-negative und IB4-positive Neuronen beobachtet. Die vorliegende Studie zeigt damit, dass TRPV1 für Vanilliod-Sensibilität sensibler Neurone essentiell ist. Weiterhin konnte gezeigt werden, dass TRPV1 ein wichtiges Transduktionselement für sowohl die Protonen-Sensibilität als auch für die Hitze-Sensibilität in Spinalganglienzellen darstellt. Die Daten dieser zellulären Untersuchungen konnten in weiteren in vitro und in vivo Untersuchungen bestätigt werden (Caterina et al., 2000). N2 - In the present study, the whole-cell patch-clamp technique was applied to investigate sensory neurons from wildtype-mice and from mice lacking TRPV1 (transient receptor potential V1). TRPV1 (previously VR1; vanilloid receptor 1) is specifically expressed in sensory neurons and when heterologously expressed, TRPV1 is activated by vanilloids, heat (> 43°C) and protons. Thus these properties strongly suggest that TRPV1 is significantly contributing to the receptive properties of polymodal nociceptors. As model for the peripheral afferent neuron, the sensitivity of cultured dorsal root ganglia (DRG) neurons to vanilloids, protons and heat was investigated. Whereas 35% of the wildtype-cells were sensitive to vanilloids, none of the TRPV1-knockout cells generated vanilloid-evoked inward-currents. Furthermore, the proton-sensitivity of TRPV1-knockout neurons was significantly reduced. In wildtype-cells, large proton-evoked inward-currents were restricted to vanilloid-sensitive cells. Heat-evoked inward-currents with a threshold for activation around 43°C were only observed in vanilloid-sensitive neurons from wildtype mice. In contrast, heat-induced currents with a threshold for activation > 53°C were observed in both wildtype- and knockout neurons. In respect to the role of TRPV1 sensory neurons, functional properties of two distinct populations of DRG neurons were investigated. NGF- respectively GDNF-dependent neurons were separately investigated after staining of vital neurons with IB4-FITC. In the present study, the vanilloid-, proton- and heat-sensitivity of IB4-negative and IB4-positive neurons were not significantly different. The present study clearly demonstrates that TRPV1 is the only vanilliod-sensitive receptor in sensory neurons. Furthermore, TRPV1 is an important detector for both protons and heat in nociceptive sensory neurons. The data from this cellular essay were in good agreement with other in vitro and in vivo essays (Caterina et al., 2000). KW - Schmerz KW - Nozizeptor KW - Spinalganglion KW - TRP KW - VR1 KW - Pain KW - Nociceptor KW - Dorsal Root Ganglion KW - TRP KW - VR1 Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-10748 ER - TY - THES A1 - Mayer, Rafaela T1 - OxPAPC as an endogenous agonist of TRPA1 channels on nociceptors T1 - OxPAPC als endogener Agonist von TRPA1 Kanälen auf Nozizeptoren N2 - Non-steroidal antiinflammatory drugs are most commonly used for inflammatory and postoperative pain. But they lack effectiveness and specificity, leading to severe side effects, like gastric ulcers, asthma and severe bleeding. Oxidized 1-palmitoyl-2-arachinidonoyl-sn-glycero-3-phosphocholine (OxPAPC) plays an important role in inflammatory pain. PAPC is a common phosphatidylcholine of membranes, which can be oxidized by reactive oxygen species. In preliminary experiments, our group found that local injection of OxPAPC in rat paws induces hyperalgesia. In this study we examined the effect of OxPAPC on transient receptor potential A1 (TRPA1), an ion channel expressed in C-fiber neurons. Furthermore, we investigated if intracellular cysteine residues of TRPA1 were necessary for agonist-channel-interactions and if a subsequent TRPA1 activation could be prevented by OxPAPC scavengers. To answer these questions, we performed calcium imaging using HEK-293 cells stably expressing hTRPA1, or transiently expressing the triple mutant channel hTRPA1-3C and naïve DRG neurons. Cells were incubated with the ratiometric, fluorescent dye Fura-2/AM and stimulated with OxPAPC. The change of light emission after excitation with 340 and 380 nm wavelengths allowed conclusions regarding changes of intracellular calcium concentrations after TRPA1 activation. In our investigation we proved evidence that OxPAPC activates TRPA1, which caused a flow of calcium ions into the cytoplasm. The TRPA1-specific channel blocker HC-030031 eliminated this agonist-induced response. TRPA1-3C was not completely sensitive to OxPAPC. The peptide D-4F and the monoclonal antibody E06 neutralized OxPAPC-induced TRPA1 activation. In this work, the importance of OxPAPC as a key mediator of inflammatory pain and as a promising target for drug design is highlighted. Our results indicate that TRPA1 activation by OxPAPC involves cysteine-dependent mechanisms, but there are other, cysteine-independent activation mechanisms as well. Potential pharmaceuticals for the treatment of inflammatory pain are D-4F and E06, whose efficiency has recently been confirmed in the animal model by our research group. N2 - Nichtsteroidale Antiphlogistika werden bei Entzündungs- und postoperativen Schmerzen eingesetzt. Ihre mangelnde Effektivität und Spezifität kann jedoch starke Nebenwirkungen wie Magen-Darmulzera, Analgetikaasthma und Blutungen hervorgerufen. Hyperalgesie kann in Entzündungsprozessen lokal durch das oxidierte Phospholipid 1-Palmitoyl-2-Arachinidonoyl-sn-Glycero-3- Phosphocholin (OxPAPC) induziert werden, welches durch Oxidation mit reaktiven Sauerstoffspezies entsteht. Vorarbeiten unserer Arbeitsgruppe zeigten, dass OxPAPC nach intraplantarer Injektion in Rattenpfoten Hyperalgesie hervorruft. In dieser Arbeit steht die Interaktion zwischen OxPAPC und dem „transient receptor potential A 1“ Kanal (TRPA1), einem Ionenkanal von C-Faser-Neuronen, im Fokus. Es wurde untersucht, ob intrazelluläre Cysteinreste zur Aktivierung durch oxidierte Phospholipide beitragen und ob diese durch einen OxPAPC-spezifischen Antagonismus verhindert werden kann. Zur Klärung der Fragestellung verwendeten wir HEK-293 Zellen, die entweder hTRPA1 stabil oder den an drei Positionen mutierten hTRPA1-C3 transient exprimierten und native DRG Neurone. Die Änderung der intrazellulären Kalziumionenkonzentration nach Kanalmodulation mit OxPAPC wurde mittels ratiometrischer Fura-2/AM-Experimente bestimmt. Wir zeigten, dass OxPAPC zur Aktivierung von TRPA1 führt, welche sich nach Zugabe des spezifischen Antagonisten HC-030031 als reversibel erwies. Sind drei Cysteine des intrazelllulären Aminoterminus von TRPA1 mutiert, wurde ein Anstieg der intrazellulären Kalziumkonzentration durch OxPAPC verringert. Das Peptid D-4F und der monoklonale Antikörper E06 neutralisierten die Wirkung von OxPAPC auf den Kanal. Das in Entzündungsprozessen gebildete OxPAPC ist ein endogener Agonist von TRPA1 Kanälen und stellt damit eine potentielle pharmakologische Zielsubstanz für die Entwicklung von Analgetika dar. Naheliegend ist, dass die Aktivierung von TRPA1 durch OxPAPC über Cysteinbindungsstellen erfolgen kann. Jedoch sind weitere, cysteinunabhängige Mechanismen ebenfalls wahrscheinlich. D-4F und E06 sind vielversprechende neuartige Substanzen für die Behandlung von Entzündungsschmerz. Ihre analgetische Wirkung wurde bereits im Tiermodell durch unsere Arbeitsgruppe bestätigt. KW - Schmerzforschung KW - Phospholipide KW - Entzündung KW - Schmerztherapie KW - Ionenkanal KW - TRPA1 channel KW - Oxidized Phospholipids KW - Inflammatory Pain KW - Nociceptor KW - DRG Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-175890 ER - TY - THES A1 - Schulte, Annemarie T1 - \(In\) \(vitro\) reprogramming of glial cells from adult dorsal root ganglia into nociceptor-like neurons T1 - \(In\) \(vitro\) Reprogrammierung von Gliazellen aus adulten Spinalganglien in Nozizeptor-ähnliche Neurone N2 - Plexus injury often occurs after motor vehicle accidents and results in lifelong disability with severe neuropathic pain. Surgical treatment can partially restore motor functions, but sensory loss and neuropathic pain persist. Regenerative medicine concepts, such as cell replacement therapies for restoring dorsal root ganglia (DRG) function, set high expectations. However, up to now, it is unclear which DRG cell types are affected by nerve injury and can be targeted in regenerative medicine approaches. This study followed the hypothesis that satellite glial cells (SGCs) might be a suitable endogenous cell source for regenerative medicine concepts in the DRG. SGCs originate from the same neural crest-derived cell lineage as sensory neurons, making them attractive for neural repair strategies in the peripheral nervous system. Our hypothesis was investigated on three levels of experimentation. First, we asked whether adult SGCs have the potential of sensory neuron precursors and can be reprogrammed into sensory neurons in vitro. We found that adult mouse DRG harbor SGC-like cells that can still dedifferentiate into progenitor-like cells. Surprisingly, expression of the early developmental transcription factors Neurog1 and Neurog2 was sufficient to induce neuronal and glial cell phenotypes. In the presence of nerve growth factor, induced neurons developed a nociceptor-like phenotype expressing functional nociceptor markers, such as the ion channels TrpA1, TrpV1 and NaV1.9. In a second set of experiments, we used a rat model for peripheral nerve injury to look for changes in the DRG cell composition. Using an unbiased deep learning-based approach for cell analysis, we found that cellular plasticity responses after nerve injury activate SGCs in the whole DRG. However, neither injury-induced neuronal death nor gliosis was observed. Finally, we asked whether a severe nerve injury changed the cell composition in the human DRG. For this, a cohort of 13 patients with brachial plexus injury was investigated. Surprisingly, in about half of all patients, the injury-affected DRG showed no characteristic DRG tissue. The complete entity of neurons, satellite cells, and axons was lost and fully replaced by mesodermal/connective tissue. In the other half of the patients, the basic cellular entity of the DRG was well preserved. Objective deep learning-based analysis of large-scale bioimages of the “intact” DRG showed no loss of neurons and no signs of gliosis. This study suggests that concepts for regenerative medicine for restoring DRG function need at least two translational research directions: reafferentation of existing DRG units or full replacement of the entire multicellular DRG structure. For DRG replacement, SGCs of the adult DRG are an attractive endogenous cell source, as the multicellular DRG units could possibly be rebuilt by transdifferentiating neural crest-derived sensory progenitor cells into peripheral sensory neurons and glial cells using Neurog1 and Neurog2. N2 - Plexusläsionen treten häufig nach Verkehrsunfällen auf und führen zu lebenslangen Einschränkungen mit starken neuropathischen Schmerzen. Eine operative Behandlung kann die motorischen Funktionen teilweise wiederherstellen, dennoch bleiben Verlust der Sensorik und neuropathische Schmerzen bestehen. Ansätze der regenerativen Medizin, wie z. B. Zellersatztherapien zur Wiederherstellung der Funktion der Spinalganglien, wecken hohe Erwartungen. Bislang ist jedoch vollkommen unklar, welche Zelltypen der Spinalganglien von der Nervenverletzung betroffen sind und bei Ansätzen der regenerativen Medizin gezielt eingesetzt werden sollten. Hier war die Hypothese, dass Satellitengliazellen (SGCs) eine geeignete endogene Zellquelle für Ansätze der regenerativen Medizin in den Spinalganglien sein könnten. SGCs und sensorische Neurone stammen von denselben Stammzellen der Neuralleiste ab, was SGCs für neurale Reparaturstrategien im peripheren Nervensystem attraktiv macht. Unsere Hypothese wurde auf drei Ebenen experimentell untersucht. Zuerst stellten wir die Frage, ob adulte SGCs das Potenzial haben, neuronale Vorläufermerkmale anzunehmen und in vitro in sensorische Neuronen reprogrammiert werden können. Hierbei zeigte sich, dass Spinalganglien der Maus adulte SGC-ähnliche Zellen beherbergen, die sich in vorläuferähnliche Zellen dedifferenzieren können. Überraschenderweise war die Expression der frühen entwicklungsrelevanten Transkriptions-faktoren Neurog1 und Neurog2 ausreichend, um neuronale und gliale Phänotypen zu induzieren. In Anwesenheit des Neurotrophins NGF (nerve growth factor) entwickelten die induzierten Neurone einen Nozizeptor-ähnlichen Phänotyp, der funktionelle Marker für Nozizeptoren wie die Ionenkanäle TrpA1, TrpV1 und NaV1.9 exprimierte. In einer zweiten Reihe von Experimenten haben wir in einem Rattenmodell für periphere Nervenverletzungen Veränderungen in der Zellzusammensetzung von Spinalganglien untersucht. Mithilfe eines objektiven Deep Learning basierten Ansatzes zur Bildanalyse fanden wir im gesamten DRG SGCs, die auf Nervenverletzungen mit einer hohen zellulären Plastizität reagierten. Es wurde jedoch weder ein verletzungsbedingter neuronaler Verlust noch eine Gliose beobachtet. Schließlich untersuchten wir, ob eine schwere Nervenverletzung die Zellzusammensetzung in menschlichen Spinalganglien verändert. Dazu wurde eine Kohorte von 13 Patienten mit einer Verletzung des Plexus brachialis untersucht. Überraschenderweise zeigte sich in verletzten Spinalganglien bei etwa der Hälfte aller Patienten kein Spinalgangliengewebe mehr. Die gesamte Einheit aus Neuronen, Satellitengliazellen und Axonen war verloren und vollständig durch mesodermales Bindegewebe ersetzt. Bei der anderen Hälfte der Patienten war die grundlegende zelluläre Einheit des Spinalganglions gut erhalten. Eine objektive, auf Deep Learning basierende Analyse von großflächigen Mikroskopiebildern des "intakten" Spinalganglions zeigte keinen Verlust von Neuronen und keine Anzeichen von Gliose. Diese Studie legt nahe, dass zur Wiederherstellung der Funktionen des Spinalganglions mindestens zwei translationale Forschungsrichtungen der regenerativen Medizin erforderlich sind: Reafferenzierung bestehender Spinalganglion-Einheiten oder vollständiger Ersatz der gesamten multizellulären Spinalganglion-Struktur. Für den Ersatz des Spinalganglions sind SGCs des adulten Spinalganglions eine plausible endogene Zellquelle. Die multizellulären Einheiten des Spinalganglions könnten möglicherweise durch eine Neurog1- und Neurog2- induzierte Transdifferenzierung von sensorischen Vorläuferzellen der Neuralleiste in periphere sensorische Neuronen und Gliazellen wiederaufgebaut werden. KW - Spinalganglion KW - Reprogrammming KW - Satellite glial cell KW - Nociceptor KW - Dorsal root ganglion Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-303110 ER -