TY - THES A1 - Scherer, Helmut T1 - Integration von aktiven und passiven optischen Bauelementen auf Basis photonischer Kristalle bei 1,3 und 1,5 μm Wellenlänge T1 - Integration of active and passive optical elements based on photonic crystals at 1.3 and 1.5 µm wavelength N2 - Im Rahmen der Arbeit wurden Halbleiterlaser aus photonischen Kristallen (PK) im Wellenlängenbereich von 1,3 und 1,5 µm untersucht. Insbesondere die Integration der Laser mit weiteren Bauelementen für die optische Telekommunikation stand im Vordergrund der Untersuchungen. Neben den versch. Anwendungen unterscheidet sich auch das Grundmaterial. Der kurzwellige Bereich um 1,3 µm wurde auf GaAs-basierten Material bearbeitet, die langwelligen Laser wurden auf InP-Basis bearbeitet. Photonische Kristalle bestehen aus einer periodisch angeordneten Brechungsindexvariation zwischen Luftlöchern in einer Halbleitermatrixstruktur. Die Ausbreitung elektromagnetischer Wellen wird durch das periodische Potential beeinflusst und es können z. B. Spiegel hergestellt werden. Die Reflektivität kann durch Variation der PK-Struktur angepasst werden. Weiterhin können Liniendefekte als effektive Wellenleiter benutzt werden. Es wurden mehrstufige Y-Kombinierer zur Zusammenführung der Emission mehrerer Laser auf der komplett aktiven Laserstruktur hergestellt. Die Definition der Bauteile erfolgte durch optische bzw. Elektronenstrahllithographie, die Strukturierung wurde mittels nass- und trockenchemischer Ätzverfahren sichergestellt. Weiterhin wurden Stegwellenleiter basierte Mikrolaser auf GaInNAs-Material hergestellt. Um abstimmbare Laser mit einem möglichst grossen Abstimmbereich herzustellen, wurden zwei Resonatoren mit unterschiedlicher Länge hergestellt. Zwischen beide Resonatoren wurde ein PK-Spiegel aus 2 bzw. 3 Lochreihen prozessiert. Dies ermöglicht das Abstimmen der Laser von 1307 bis 1340 nm. Im weiteren Verlauf wurden aktive und passive PK-Strukturen auf GaAs-Basis integriert. Hierzu wurden DWELL-Strukturen auf Basis von InGaAs/GaAs Quantenpunkten verwendet. Durch das Ankoppeln der Glasfaser an die Frontfacette des Lasers ist der laterale Abstand der Laserstrukturen durch die Dicke der Glasfaser auf 250 µm festgelegt. Durch die verlustarme Kopplung mehrerer Laser in einen Auskoppelwellenleiter kann die Flächenausnutzung deutlich gesteigert werden. Im Rahmen der Arbeit wurden vier Halbleiterlaser über PK Wellenleiter miteinander verbunden. Die gezeigten Laserstrukturen weisen eine Länge von unter 1,5 mm bei einer Gesamtbreite von 160 µm auf. Dies bedeutet, dass ein komplettes Modul schmaler als eine Glasfaser realisiert werden kann. Es konnte gezeigt werden, dass alle 4 Laser unabhängig von einander wellenlängenstabil ansteuerbar und abstimmbar sind. Die Seitenmodenunterdrückung im parallelen cw-Betrieb aller vier Laser liegt für den Laser mit der geringsten Seitenmodenunterdrückung immer noch bei mehr als 20 dB und der Leistungsunterschied zwischen den vier Lasern ist unter 2,5 dB. Weiterhin wurden PK-Strukturen bei einer Wellenlänge von 1,5 µm auf einem InP-Basis untersucht. Im Bereich der passiven Charakterisierung wurden W3-Wellenleiter spektral vermessen. Zu Beginn wurde das sog. Ministopband (MSB) des W3-Wellenleiters untersucht, um im Anschluss die Kopplung von zwei Wellenleitern mit Hilfe des Übersprechens im Bereich des MSB´s zu analysieren. Hierzu wurden zwei W3-Wellenleiter parallel zueinander strukturiert. Im Wellenlängenbereich des MSB erfolgt eine Übertragung vom Referenz- in den Monitorkanal. Durch die geometrischen Parameter der PK-Strukturen kann die spektrale Lage und Breite des Filters eingestellt werden. Die Filterung durch Übersprechen vom Referenz- in den Monitorkanal ist mit einer spektralen Breite von mehr als 10 nm noch relativ breitbandig. Daher wurden PK-Resonatoren hergestellt. Hierzu wurden Spiegel in die Wellenleiter prozessiert. Es wurden Filter mit einer spektralen Breite von weniger als 0,5 nm und Güten von über 9000 erreicht. Im Anschluss wurden die aktiven und passiven Bauteile auf einem Chip integriert. Die Laser erreichten eine max. Leistung von 28 mW. Die Integration zusätzlicher Funktionen hinter den Laser bedeutet eine Erhöhung der Komplexität und des Funktionsumfangs, ohne die Emissionsleistung des Lasers zu senken. Zusätzlich vereinfacht sich der Aufbau zur Charakterisierung und zum Betrieb der Laser. In den gezeigten Bauteilen wurde die durch den Laserrückspiegel transmittierte Lichtmode mittels eines Tapers in einen PK Wellenleiter geführt. Seitlich und am Ende des Wellenleiters wurde die erreichte Intensität mittels zweier getrennter Photodioden (PD) gemessen. Damit wird das Konzept der passiv untersuchten Wellenleiter zusammen mit den Lasern integriert. Bei konstanter Leistung und Wellenlänge müssen die beiden Photoströme konstant sein. Durch die sehr kompakte Bauform am Ende des Lasers mit einer zusätzlichen Länge von weniger als 100 µm ist das Bauelement sehr Verlustarm. Ändert sich die Wellenlänge ungewollt, so ändert sich das Verhältnis der Ströme in den PD. Für die Charakterisierung des Wellenlängenmonitors beträgt der Abstimmbereich 30 nm. N2 - This work presents fabricated and characterized semiconductor lasers with photonic crystal (PhC) structures in the wavelength ranges of 1.3 and 1.5 µm. Especially the integration of lasers with optical components, based on PhC-structures, relevant for future telecommunication applications have been investigated. Lasers at 1.3 µm wavelength have been fabricated on GaAs-substrates. Photonic Crystals consist of a periodic variation of the refractive index between air holes in a semiconductor matrix. The propagation of electromagnetic waves can be affected by the periodic potential and e. g. mirrors for electromagnetic waves can be fabricated. The reflectivity of PhC-structures used as mirrors for lasers can be adapted by varying the geometry. Line defects, designed into the triangular, periodic structure can be further used as effective, low loss waveguides. This work shows the integration of multi-level Y-coupler on all active material. The patterning of the elements is done by optical- or electron-beam-lithography. Etching into the semiconductor is done by using wet- and dry-etching processes. The fabrication and characterization of ridge waveguide based microlasers on GaInNAs-material together with high reflectivity PhC mirrors at the front and rear end of a ridge-waveguide was also investigated. Two resonators with different lengths were defined for the realization of widely tunable semiconductor lasers. PhC-mirrors with 2 or 3 rows of holes are fabricated between both resonators. The reflectivity is between 40 and 60%. The coupling between both resonators ensures effective lasing in cw-mode with a tuning range from 1307 to 1340 nm. The following part describes the integration of active and passive PhC-structures, based on GaAs-material. The laser emission is generated by InGaAs/GaAs-quantum dots embedded in a DWELL-structure. The semiconductor chip is coupled to an optical fiber with a lateral distance of about 250 µm (the fiber diameter). Semiconductor lasers are much smaller than that. The efficient coupling of multiple lasers into one waveguide increases the yield of the semiconductor without additional process complexity. To increase the yield of the semiconductor, four lasers are coupled into one waveguide by use of PhC Y-couplers. The lasers have a length of less than 1.5 mm and a width which is less than 160 µm. This means that one complete laser module with four independently tunable lasers, can be coupled into one optical fiber. It was possible to operate and tune all four lasers independent from each other. The SMSR of the parallel operated lasers in cw-mode is above 20 dB for the laser with the smallest SMSR and the difference in the output power between all four lasers is below 2,5 dB. In addition to the integration of active and passive components based on GaAs semiconductors further components were integrated to one functional module on InP. First, the passive components were characterized. The so called mini-stop-band (msb) of a W3-waveguide was measured. After that, two waveguides were processed parallel and the coupling from one into the other waveguide was analyzed. With use of the coupling effect a wavelength selective filter can simply be realized. The wavelength range and the position can be selected by the geometrical parameters of the PhC structures. The wavelength selectivity is too wide for a practical use in the optical telecommunication with a width of about 10 nm. Further effort was made to increase the spectral resolution of the filter by the investigation of resonators that were fabricated as mirrors in PhC-waveguides. With the approach, the resolution of the characterized resonators is better than 0,5 nm and the Q-factor which was measured being better than 9000. After that the passive components were integrated with active components. The laser structures were completely fabricated wit PhC structures. The maximum output power is up to 28 mW. After the characterization of the laser structure was completed, the described passive components were fabricated behind the rear mirror of the laser. The fabrication of additional components behind the rear mirror of the laser leads to a higher functionality of the module. The laser power which is transmitted through the rear mirror of the laser is collected by a PhC-taper-structure and guided into a PhC-waveguide. Two separate photodiodes (PD) measure the laser intensity. The already characterized passive component is integrated with lasers. A constant power of the laser at a constant wavelengths leads to a constant current relation of both PDs. The coupling relation is only defined by the geometry. The passive component is less than 100 µm long and less than 80 µm wide. Therefore the component has only low losses inside the waveguide. Changes of the laser wavelength change the relation between the two PDs. Lasers with a tuning range of 30 nm were made. KW - Halbleiterlaser KW - Lithographie KW - photonische Kristalle KW - Optoelektronik KW - Halbleiterlaser KW - Elektronenstrahllithografie KW - InP KW - GaAs KW - photonic crystal KW - optoelectronics KW - semiconductor laser KW - electron beam lithography KW - InP KW - GaAs Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-52150 ER - TY - THES A1 - Semmel, Julia Birgit T1 - Herstellung von Quantenkaskadenlaserstrukturen auf InP und Entwicklung alternativer Bauteilkonzepte für den monomodigen Betrieb T1 - Quantumcascadelaserstructures on InP and development of alternative device concepts for single-mode emission N2 - Das zentrale Thema der vorliegenden Arbeit ist die Konzeptionierung und Charakterisierung verschiedener innovativer Bauteildesigns zur Optimierung der spektralen sowie elektro-optischen Eigenschaften von Quantenkaskadenlasern. Die Quantenkaskadenlaserschichten, die diesen Konzepten zu Grunde liegen wurden im Rahmen dieser Arbeit mittels Molekularstrahlepitaxie hergestellt und optimiert. Diese Optimierung machte auch die Realisierung von Dauerstrichbetrieb möglich. Dazu werden zunächst die grundlegenden Eigenschaften von den in dieser Arbeit verwendeten III-V-Halbleitern sowie des InP-Materialsystems erläutert. Für diese Arbeit ist dabei die Kombination der beiden ternären Verbindungshalbleiter InGaAs und InAlAs in einer Halbleiterheterostruktur von zentraler Bedeutung, aus denen die aktive Zone der hier vorgestellten Quantenkaskadenlaser besteht. Basierend auf dem zweiten Kapitel wird dann im dritten Kapitel auf das Zusammenspiel der einzelnen konkurrierenden strahlenden und nicht strahlenden Streuprozesse in einer Quantenkaskadenlaserstruktur eingegangen. Dabei wird die prinzipielle Funktionsweise eines solchen komplexen Systems an Hand eines 3-Quantenfilm-Designs erläutert. Das vierte Kapitel beschäftigt sich mit der Herstellung und Grundcharakterisierung der Laserstrukturen. Dabei wird kurz das Konzept der Molekularstrahlepitaxie erklärt sowie der Aufbau der verwendeten Anlage beschrieben. Da ein Betrieb der Bauteile im Dauerstrichbetrieb deren Anwendbarkeit in vielen Bereichen verbessert, wird im fünften Kapitel an Hand eines ausgewählten Strukturdesigns der Weg bis hin zur Realisierung des Dauerstrichbetriebs beschrieben. Des Weiteren wird auf einen besonderen Prozess zur Verbesserung der Wärmeleitfähigkeit der fertigen Bauteile eingegangen. Dieser sogenannte Doppelkanal-Stegwellenleiter-Prozess zeichnet sich dadurch aus, dass der entstehende Lasersteg seitlich durch zwei nasschemisch geätzte Gräben begrenzt wird.Die letzten drei Kapitel beschäftigen sich mit verschiedenen Bauteilkonzepten zur Optimierung der spektralen sowie elektro-optischen Eigenschaften der Quantenkaskadenlaser. In Kapitel sechs werden dabei Mikrolaser mit tiefgeätzten Bragg-Spiegeln zur Realisierung von monomodigem Betrieb vorgestellt. Im folgenden Kapitel werden Laser mit aktiven gekoppelten Ringresonatoren vorgestellt. Der gekoppelte Ring funktioniert dabei als Filter nach dem Vernier-Prinzip und ermöglicht so monomodigen Betrieb. Im letzten Kapitel stehen schließlich Quantenkaskadenlaser mit trapezförmigem Verstärkungsbereich im Mittelpunkt. Ziel dieses Teils der vorliegenden Arbeit war es die Ausgangsleistung der Bauteile zu erhöhen und dabei gleichzeitig die Fernfeldeigenschaften zu verbessern. N2 - Central topic of this work is the fabrication and characterization of various quantum cascade laser structures. Different concepts for optimizing the spectral as well as the electro-optical properties of quantum cascade laser devices have been investigated. In the second chapter the basic properties of III-V-compound semiconductors and those of the InP-materialsystem are explained. The composition of the two ternary compound semiconductors InGaAs and InAlAs, of which the active region of the quantum cascade laser structures introduced in this work consists, is essential for this work. Based on the second chapter the third chapter deals with the interplay of the individual radiative and non-radiative scattering processes in a quantum cascade laser structure. The principle operation mode of such a complex system is explained using a 3-quantum-well-design as a model system. The fourth chapter focuses on the fabrication and basic characterization of the laser structures. The basic concept of molecular beam epitaxy is explained as well as the configuration of the used molecular beam epitaxy system. Continuous wave operation paves the way for a better applicability in most areas, where lasers in the mid-infrared wavelength regime are needed. Therefore in the fifth chapter the realization of continuous wave operation is shown using one of the grown laser structures as an example. Furthermore a special processing technique involving chemical wet etching is described, which promises an improved heat dissipation in the devices. In this double-channel process the laser ridge is laterally defined by two trenches, which after an insulating step are then filled with electroplated gold. The last three chapters concentrate on various device designs having the potential of optimizing the spectral as well as the electro-optical properties of the quantum cascade laser devices. Microlasers with deeply etched distributed Bragg reflectors in order to obtain single mode emission are introduced in chapter six. In the following chapter ridge waveguides devices with coupled active ring resonators that function as a filter following the Vernier-principle are introduced. With this approach single-mode emission is achieved. The last chapter finally focusses on quantum cascade lasers with tapered gain sections. This device concept allows for higher output powers and improved horizontal far-field properties as compared to regular ridge waveguides and in consequence an improved coupling efficiency. KW - Quantenkaskadenlaser KW - Indiumphosphid KW - Halbleiterlaser KW - Optoelektronik KW - Molekularstrahlepitaxie KW - semiconductor laser KW - quantumcascade laser KW - opto electronics KW - molecular beam epitaxy Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-53483 ER - TY - THES A1 - Seufert, Mirjam T1 - Herstellung und Charakterisierung von abstimmbaren und Hochleistungslasern auf GaSb T1 - Fabrication and Characterisation of Widely Tunable and High Power Laser based on GaSb N2 - Ziel dieser Arbeit war es, basierend auf dem AlGaIn-AsSb Materialsystem neuartige Laserbauelemente mit bisher unerreichten Kenndaten zu entwerfen, herzustellen und zu untersuchen. Der Fokus lag dabei zum Einen auf einer Steigerung der optischen Ausgangsleistung in Kombination mit einem monomodigen spektralen Emissionsverhalten. Zum anderen lag ein wesentliches Hauptaugenmerk auf der Realisierung von monomodig emittierenden Lasern mit einem weiten Wellenlaengenabstimmbereich. N2 - The goal of this work was to design, realize and characterize innovative laser devices based on the AlGaIn-AsSb material system with previously un-reached characteristic device performance. The focus was on the one hand on the enhancement of the optical output power in combination with a singlemode spectral emission behavior. On the other hand the essential task throughout this work was the realization of singlemode emitting lasers with a broad wavelength tuning range. KW - Abstimmbarer Laser KW - Hochleistungslaser KW - Galliumantimonid KW - Gallium KW - Halbleiterlaser KW - widely tunable laser KW - semiconductor laser KW - high power laser KW - gasb Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-52122 ER - TY - THES A1 - Gerschütz, Florian T1 - GaInAs/AlGaAs-Quantenpunktlaser für Telekommunikationsanwendungen mit einer Wellenlänge von 1,3 μm T1 - GaInAs/AlGaAs quantum dot lasers for telecommunication applications at a wavelength of 1.3 µm N2 - Die vorliegende Arbeit befasst sich mit verschiedenen, neuartigen Quantenpunkthalbleiterlasern für Telekommunikationsanwendungen im Wellenlängenbereich um 1,3 μm. Dabei stellen diese Bauteile jeweils die besten in der Literatur zu findenden Quantenpunktlaser bei dieser Wellenlänge dar. Die hervorragende Eignung dieser Laser für Telekommunikationsanwendungen mit signifikant verbesserten Eigenschaften gegenüber Quantenfilmlasern wird im Verlauf der Arbeit mehrfach demonstriert. Bei der Darstellung der unterschiedlichen Arten von Quantenpunktlasern und ihrer Eigenschaften wird zuerst auf deren Herstellung eingegangen, die sich teilweise in wesentlichen Punkten unterscheidet. Bei der Charakterisierung der Lasereigenschaften wird zwischen den statischen und den dynamischen Eigenschaften unterschieden. Besonderheiten werden jeweils anhand theoretischer Modelle erläutert und herausgearbeitet. Außerdem zeigt sich, dass alle Laser – entweder im Hinblick auf ihre statischen oder dynamischen Eigenschaften – Bestwerte für Quantenpunktlaser erzielen. Speziell gelingt es, eine bisher unerreichte Temperaturstabilität zu erreichen. So kann erstmals an einem Rippenwellenleiterlaser ohne Rückkopplungsgitter eine negative charakteristische Temperatur bei Raumtemperatur demonstriert werden: Zwischen 25°C und 45° liegt der T0-Wert bei -190 K, der Schwellenstrom reduziert sich von 14 mA auf 13 mA. Oberhalb von 45°C zeigt der Laser mit T0=2530 K ebenfalls ein ausgezeichnetes Temperaturverhalten, das bisher an keinem anderen Laser – weder Quantenpunkt- noch Quantenfilmlaser – demonstriert werden konnte. In diesem Temperaturbereich (45°C - 85°C) ist die Laserschwelle nahezu konstant bei 13 mA. Hinzu kommt die hohe Ausgangsleistung von über 20 mW für Ströme kleiner als 40 mA bei allen Messtemperaturen. Darüber hinaus erreichen die FP-Laser bei der Kleinsignalmodulation mit 8,6 GHz bei 25°C neue Rekordwerte. Diese Ergebnisse werden erst durch eine hochwertige p- Modulationsdotierung ermöglicht, deren Einfluss und Wirkung ebenfalls erläutert werden. Das Material für diese Laser wurde in vielen Schritten aufwändig optimiert. Die DFB-Laser stellen die ersten longitudinal monomodigen Bauteile dieser Arbeit dar. Auch diese Laser verfügen über ausgezeichnete Temperatureigenschaften und erreichen bei der Kleinsignalmodulation mit 7,8 GHz bei 25°C einen neuen Bestwert für Quantenpunkt-DFB-Laser. Noch bedeutender sind allerdings die Ergebnisse der Großsignalmodulation: So kann erstmals temperaturunabhängige 10 Gbit/s-Direktmodulation im Temperaturbereich von 25°C bis 85°C über 20 km bei konstantem Betriebspunkt erreicht werden. Dies demonstriert das große Potential dieser Bauteile für einen Einsatz in Lasermodulen ohne thermoelektrischen Kühler, was durch die damit verbundene Reduzierung der Kosten in der Praxis große Bedeutung hat. Um die Bandweite auf Quantenpunktmaterial noch weiter zu erhöhen, werden Complex- Coupled-Injection-Grating-Laser untersucht. Diese Laser bestehen aus drei Segmenten und nutzen ein neuartiges Konzept zur Erhöhung der Bandweite: Durch die Wechselwirkung verschiedener Longitudinalmoden kann eine höhere Resonanz im Laser, die Photon-Photon-Resonanz, ausgenutzt werden, um die Bandweite des Bauteils auf etwa das zweieinhalbfache der vorgestellten FP-Lasers auszuweiten. Zum ersten Mal wird so eine Modulationsweite von 20 GHz an einem direkt modulierten Laser auf Quantenpunktbasis gezeigt. Durch getrenntes Ansteuern der drei Lasersegmente ist es möglich, die Lage und die Form der PPR gezielt einzustellen. Die drei Segmente übernehmen dabei unterschiedliche Funktionen: Während das Verstärkungssegment nur dazu dient, die Ausgangsleistung zu kontrollieren, kann über das Gittersegment die Position der zweiten Resonanz gesteuert werden. Strominjektionen in das Phasensegment schließlich erlauben eine Feinabstimmung der Phasenlage der Moden im Laser und somit die Steuerung der Form der Photon-Photon-Resonanz. Bei der Präsentation der Großsignaldaten zeigt sich, dass der CCIGLaser sowohl bei 25°C als auch bei 85°C eine Modulationsgeschwindigkeit von 10 GBit/s erreicht und zur Transmission über ein Glasfaserkabel von 20 km Länge geeignet ist. Wie schon der DFBLaser benötigt auch das CCIG-Bauteil aufgrund seiner hervorragenden Temperaturstabilität keinen thermoelektrischen Kühler. Wegen des äußerst sensiblen Verhaltens der Phasenlage auf Stromänderungen ist jedoch eine Anpassung der Betriebsparameter an die jeweilige Temperatur notwendig. Schließlich werden weit abstimmbare Quantenpunktlaser vorgestellt, die auf eigens hierfür optimiertem Material mit spektral breiter Verstärkungscharakteristik prozessiert wurden. Diese Laser emittieren monomodig bei 1315 nm, 1335 nm, 1355 nm, 1375 nm und 1395 nm. Die Wellenlänge lässt sich durch einen einfachen Abstimmmechanismus diskret einstellen, eine kontinuierliche Feinabstimmung ist zusätzlich möglich. Mit diesen Eigenschaften eignen die Laser sich hervorragend für den Einsatz in CWDM-Systemen, deren Kanalabstand jeweils 20 nm beträgt. Durch den breiten Abstimmbereich von 80 nm sind sie zudem als einzige bisher realisierte Laser in der Lage, fünf unterschiedliche Kanäle anzusprechen. Darüber hinaus sind auch diese Bauteile für den kosteneffizienten Einsatz unter Direktmodulation ausgelegt. Obwohl auch diese Laser auf Quantenpunkten bei 1,3 μm basieren, sind die Anforderungen an das Material für einen abstimmbaren Laser andere als bei den bereits präsentierten Lasern. Besonders wichtig ist hier die Breite der Verstärkungskurve, so dass ein möglichst großer Spektralbereich abgedeckt werden kann. Hierzu konnte anhand eines Modells der Verstärkungsbereich theoretisch bestimmt werden. Rechnerisch zeigt sich, dass Laseremission über einen Bereich von mehr als 60 nm möglich ist. In der Praxis wird dieser Wert sogar noch um 20 nm übertroffen, da die Rechnung die Rotverschiebung der Verstärkungskurve mit der Temperatur nicht berücksichtigt. Mit den in dieser Arbeit vorgestellten Daten und Ergebnissen wird die hervorragende Eignung von Quantenpunklasern für verschiedenste Anwendungen im Telekommunikationsbereich gezeigt. Darüber hinaus zeigt sich in vielen wesentlichen Punkten die Überlegenheit dieser Laser über konventionelle Quantenfilmlaser. Somit konnte erfolgreich die Grundlage für zukünftige kommerzielle Anwendungen der Quantenpunkttechnologie gelegt werden. N2 - This work deals with new and different kinds of semiconductor lasers for telecommunication applications in the wavelength area around 1.3 μm. The different devices presented within this work represent the best quantum dot lasers that can be found in literature. This work clearly demonstrates the excellent suitability of these lasers for telecommunication applications with significantly improved properties in comparison to quantum well lasers. Within this work, each chapter presenting the different lasers and their properties, starts with the description of their fabrication. The manner of fabrication differs, as it depends on the function of each laser in the field of telecommunications. Within the chapters dealing with the characterisation of each laser both static and dynamic properties are demonstrated. Furthermore special features of these devices are explained by theoretical models. It is also shown that all devices attain best results in international competition – whether in statical or dynamical operation. The FP devices are able to reach a high temperature stability that has never been shown before. For the first time a ridge waveguide laser without grating reached a negative characteristic temperature at room temperature: Between 25°C and 45°C the device reaches a T0 of -190 K, corresponding to a reduction of the threshold current from 14 mA to 13 mA. Even above 45°C the laser shows an excellent temperature behaviour (T0=2530 K), which has not been demonstrated by quatum dot or quantum well lasers before. In this temperatur range (45°C - 85°C) the threshold current is almost constant at 13 mA. In addition to that, a high optical output power of 20 mW for currents less than 40 mA at all temperatures deserves to be mentioned. Furthermore the FP devices reach a new record in small signal bandwidth of 8.6 GHz at 25°C. These results are due to the high quality p-modulation doping, which is also explained in detail. The material of these lasers has been optimized in various steps. The DFB lasers presented are the first devices in this work that emit longitudinal singlemode light. These lasers also show an excellent temperature stability and they reach a new record for quantum dot DFB lasers at 7.8 GHz under small signal modulation at 25°C. Even more impressive are the results obtained in large signal measurement: For the first time a singlemode DFB device under 10 Gbit/s direct modulation was capable of temperature independent transmission over 20 km of glass fibre at a constant point of operation in the temperature range between 25°C and 85°C. This result clearly demonstrates the vast potential of these devices for operation in laser modules without a thermoelectric cooler, which is specifically important in regard to reducing production and maintaining costs. In order to further extend the bandwidth on quantum dot material complex-coupled-injection grating lasers are investigated. The design of the lasers consists of three sections. The CCIG lasers use a new concept to enlarge the bandwidth: The interaction of different longitudinal modes in the cavity enables a higher order resonance, the photon-photon-resonance, that can be utilised to enhance the modulation bandwidth to two and a half times the bandwidth of the presented FP devices. This effect allows to reach a modulation bandwidth of 20 GHz on directly modulated lasers based on quantum dot material for the very first time. By separately controlling the three sections of the laser, it is possible to tune the position and the shape of the PPR. The three sections each have a different function: While the gain section only controls the optical output power, the grating section controls the position of the second resonance. Finally, the phase section allows the fine tuning of the phase of the interacting modes, hence the shape of the PPR. The presentation of the large signal data reveals that the CCIG laser reaches a bandwidth of 10 Gbit/s over 20 km of glass fibre in the temperature range form 25°C to 85°C. Just like the DFB-devices, the CCIG laser does not need a thermoelectric cooler due to its excellent temperature stability. But it is necessary to adjust the operating paramters to the temperature because of the sensitive reaction of the phase to current variations. Finally, widely tuneable devices are presented. These devices were processed on wafer material with spectrally broad gain characteristics that has especially been optimized for this purpose. The lasers show singlemode emission at wavelentghs of 1315 nm, 1335 nm, 1355 nm and 1395 nm. The wavelength can be discretely switched using a simple adjusting mechanism. In addition to that, a continuous fine tuning is possible. Showing these qualities, the lasers are particularly suitable for operations in CWDM systems with a channel spacing of 20 nm. Due to their broad tuning range of 80 nm, they are the only lasers worldwide that are capable of covering five different channels. Furthermore these devices are suitable for cost-efficient operation under direct modulation. Even though these lasers are based on 1.3 μm quantum dot material, the material requirements of a tuneable laser differ from the reqirements of the lasers presented so far. Special attention should be paid to the broadness of the gain curve to cover as large a spectral range as possible. A model, which allows the theoretical prediction of the gain range, has been developed. On the basis of this model, it was possible to predict an emission range larger than 60 nm. In practice, this range is even exceeded by 20 nm due to the temperature induced red shift of the gain curve, which the model does not take into account. The data and results presented in this work clearly show the excellent suitability of quantum dot lasers for all kinds of applications in the different fields of telecommunication. Even more importantly do they show the superiority of these lasers over conventional quantum well lasers. Thus, this work was possible to successfully create the foundation of commercial applications of the quantum dot technology in the future. KW - Quantenpunktlaser KW - Indiumarsenid KW - Galliumarsenid KW - Aluminiumarsenid KW - Quantenpunktlaser KW - Halbleiterlaser KW - quantum dot laser KW - semiconductor laser Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-53362 N1 - PACS - Klassifikation: Quantum dots devices, 85.35.Be, Semiconductors, III-V, Semiconductor lasers, 42.55.Be ER - TY - THES A1 - Schwertberger, Ruth T1 - Epitaxie von InAs-Quanten-Dash-Strukturen auf InP und ihre Anwendung in Telekommunikationslasern T1 - Epitaxy of InAs quantum dash structures on InP and their application in telecommunication lasers N2 - Die vorliegende Arbeit beschäftigt sich mit der Herstellung und Charakterisierung von niedrigdimensionalen Strukturen für den Einsatz als aktive Schicht in InP-Halbleiterlasern. Quantenpunktstrukturen als Lasermedium weisen gegenüber herkömmlichen Quantenfilmlasern einige Vorteile auf, wie beispielsweise geringe Schwellenstromdichten, breites Verstärkungsspektrum und geringe Temperatursensitivität der Emissionswellenlänge. Ziel dieser Arbeit ist es, diese speziellen Vorteile, die im GaAs-System größtenteils nachgewiesen sind, auch auf das InP-System zu übertragen, da dieses für die Telekommunikationswellenlänge 1.55 µm prädestiniert ist. Die vorgestellten Strukturen wurden mittels einer Gasquellen-Molekularstrahlepitaxie-Anlage unter Verwendung der alternativen Gruppe-V-Precursor Tertiärbutylphosphin (TBP) und -arsin (TBA) hergestellt. Die Bildung der Quantenpunktstrukturen wurde zunächst an Hand von Teststrukturen optimiert. Scheidet man InAs auf einem InP(100)-Substrat ab, so bilden sich – anders als auf GaAs – keine runden InAs-Quantenpunkte, sondern unregelmäßige, strichförmige Strukturen mit einer klaren Vorzugsorientierung, sogenannte Dashes. Verschiedene Wachstumsparameter, wie die Menge an deponiertem InAs, der Strukturaufbau oder der Wachstumsmodus, lassen eine Beeinflussung der Emissionseigenschaften zu, die mittels Photolumineszenz (PL)-Spektroskopie untersucht wurden. So kann die Emissionswellenlänge der Dashes sehr genau und über einen großen Bereich zwischen 1.2 und 2.0 µm über die nominelle Dicke der Dash-Schicht festgelegt werden. Dieser Zusammenhang lässt sich auch nutzen, um durch die Kombination von Schichten unterschiedlicher Dash-Größe eine extreme Verbreiterung des Verstärkungsspektrums auf über 300 nm zu erzielen. Neben der Hauptanwendung als Telekommunikationslaser sind auch Einsatzmöglichkeiten in der Gassensorik für einen Wellenlängenbereich zwischen 1.8 und 2.0 µm denkbar. Dieser ist neben der Verwendung extrem dicker Schichten durch das Prinzip des migrationsunterstützten Wachstums (engl. migration enhanced epitaxy) oder durch die Einbettung der Dash-Schichten in einen InGaAs-Quantenfilm ("Dash-in-a-Well"-Struktur) realisierbar. Letzteres zieht eine starke Rotverschiebung um etwa 130 meV bei gleichzeitiger schmaler und intensiver Emission nach sich. Da die Dashes einige sehr interessante Eigenschaften aufweisen, wurde ihre Eignung als aktive Schicht eines InP-Halbleiterlasers untersucht. Zunächst wurden der genaue Schichtaufbau, speziell die Fernfeldcharakteristik, und die Wachstumsparameter optimiert. Ebenso wurde der Effekt eines nachträglichen Ausheilschritts diskutiert. Da die speziellen Vorteile der Quanten-Dash(QD)-Strukturen nur Relevanz haben, wenn auch ihre Grunddaten einem Quantenfilmlaser (QW-Laser) auf InP ebenbürtig sind, wurde besonderer Wert auf einen entsprechenden Vergleich gelegt. Dabei zeigt sich, dass die Effizienzen ebenso wie die Absorption der QD-Laser nahezu identisch mit QW-Lasern sind. Die Schwellenstromdichten weisen eine stärkere Abhängigkeit von der Länge des Laserresonators auf, was dazu führt, dass ab einer Länge von 1.2 mm QD-Laser geringere Werte zeigen. Die Temperaturabhängigkeit der Schwellenstromdichte, die sich in der charakteristischen Temperatur T0 äussert, zeigt dagegen für QD-Laser eine stärkere Sensitivität mit maximalen T0-Werten von knapp über 100 K. Betrachtet man das Emissionsspektrum der QD-Laser, so fällt die starke Blauverschiebung mit abnehmender Bauteillänge auf. Gleichzeitig zeigen diese Laser im Vergleich zu QW-Lasern eine deutlich größere Temperaturstabilität der Emissionswellenlänge. Beide Eigenschaften haben ihre Ursache in der flachen Form des Verstärkungsspektrums. Zusätzlich wurden einige der an Hand der Teststrukturen gezeigten Dash-Eigenschaften auch an Laserstrukturen nachgewiesen. So lässt sich durch Variation der Dash-Schichtdicke von 5 auf 7.5 ML eine Verschiebung der Emissionswellenlänge um bis zu 230 nm realisieren, wobei dieses Verfahren damit noch nicht ausgereizt ist. Ebenso wurde auch ein Überlapp aus sechs jeweils verschieden dicken Dash-Schichten in eine Laserstruktur eingebaut. An Hand von Subschwellspektren wurde eine Verstärkungsbreite von etwa 220 nm nachgewiesen, die eine Abdeckung des gesamten Telekommunikationsbandes durch eine einzige Laserstruktur erlauben würde. Aus Quanten-Dash-Material prozessierte Stegwellenleiter (RWG)-Laser weisen sehr vielversprechende Daten mit hohen Ausgangsleistungen bis 15 mW pro Facette und niedrigen Schwellenströmen auf. Damit schafft diese Arbeit die Grundvoraussetzungen, um InAs-Quanten-Dashes als echte Alternative zu herkömmlichen Quantenfilmen in InP-Halbleiterlasern zu etablieren. Besonders das breite Verstärkungsspektrum und die hohe Temperaturstabilität der Emissionswellenlänge zeichnen dieses Material aus. N2 - In this work the fabrication and characterisation of low-dimensional structures that can be used as active regions in InP semiconductor lasers are presented. Compared to conventional quantum well lasers quantum dot material shows some advantages like low threshold current density, broad gain spectrum and low temperature sensitivity of the emission wavelength. Most of these special advantages have already been demonstrated in the GaAs system and should be transferred to the InP system which is the material of choice for the telecommunication wavelength 1.55 µm. The presented structures were grown in a gas source molecular beam epitaxy system using the alternative group-V-precursors tertiarybutylphosphine (TBP) and tertiarybutylarsine (TBA). In a first step the formation of the quantum dot-like structures was optimised in test samples. When InAs is deposited on an InP(100) substrate unlike on GaAs there are no circular InAs quantum dots formed, but irregular dash-like structures with a preferred orientation. Growth parameters like the amount of InAs deposited, the design of the structure or the growth mode allow an influence on the emission properties which were investigated by photoluminescence (PL) spectroscopy. Thus the emission wavelength of the dashes can be defined very accurately over a large region between 1.2 and 2.0 µm by varying the thickness of the dash layer. This dependence can be used to achieve an extreme broadening of the gain spectrum of over 300 nm by overlapping layers with different thicknesses. Beside the major application in telecommunication lasers the usage for gas sensing detectors in the wavelength range between 1.8 and 2.0 µm is also possible. In addition to the employment of extremely thick dash layers this region can be reached by the growth principle of migration enhanced epitaxy or by embedding the dash layers in an InGaAs quantum well in a so-called DWell structure. The latter involves a large red-shift of about 130 meV accompanied by a small and intense emission. With the dashes showing a very interesting behaviour their suitability as an active layer of an InP semiconductor laser needs to be investigated. The exact layer design, especially the farfield characteristic, and the growth parameters had to be optimised. Also the effect of a subsequent annealing step was discussed. As the special advantages of quantum dash (QD) lasers are only of importance if their basic data are comparable to a quantum well (QW) laser on InP much attention was paid to a corresponding comparison. It can be shown that the efficiencies and the absorption of the QD lasers are nearly similar to QW lasers. The threshold current densities have a stronger dependence on the resonator length resulting in lower values for quantum dash lasers above 1.2 mm cavity length. The temperature dependence of the threshold current density corresponding to the characteristic temperature T0 shows a stronger sensitivity for QD lasers with maximum T0 values of about 100 K. In the emission spectra of the dash lasers a strong blue-shift with decreasing device length is recognised. At the same time these lasers have a much larger temperature stability of the emission wavelength. Both effects have their reason in the smaller slope of the gain spectrum. Some of the dash properties shown for test structures were also demonstrated for laser structures. By varying the thickness of the dash layers from 5 to 7.5 MLs a shift of the emission wavelength of about 230 nm was realised bearing potential for an even further extension of this method. Also a stack of six dash layers all slightly different in thickness was embedded in a laser structure. Using subthreshold spectra a gain width of 220 nm was measured giving the opportunity to cover the whole telecommunication band with a single device. Ridge waveguide lasers processed from quantum dash material show promising results with high maximum output powers of up to 15 mW per facet and low threshold currents. This work creates the basis for establishing InAs quantum dash lasers as an alternative for conventional quantum well lasers in the InP system. Especially the broad gain spectrum and the high temperature stability of the emission wavelength distinguish this material. KW - Halbleiterlaser KW - Indiumphosphid KW - Indiumarsenid KW - Nanostruktur KW - Molekularstrahlepitaxie KW - Optoelektronik KW - Halbleiterlaser KW - Epitaxie KW - Quanten-Dash KW - InP KW - optoelectronics KW - semiconductor laser KW - epitaxy KW - quantum dash KW - InP Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-14609 ER - TY - THES A1 - Brunner, Raimund T1 - Analyse optischer Heterodynsignale zur dynamischen Charakterisierung von Diodenlasern T1 - Analysis of optical heterodyne signals for dynamical characterization of laser diodes N2 - Die stetige Degradation von Halbleiterlasern, speziell bei Bleichalkogenidlasern, erfordert in spektroskopischen Systemen eine regelmäßige Überwachung typischer Eigenschaften wie Abstimmcharakteristik und Linienbreite. Im Hinblick auf einen möglichst hohen Automatisierungsgrad wird langfristig eine Online-Analysemethode zur Überwachung notwendig sein. Die üblicherweise verwendete Methode, den Laserarbeitspunkt über zugrunde liegende Modenkarten einzustellen, hat den gravierenden Nachteil, dass solche Modenkarten in der Regel nicht unter dynamischen Modulationsbedingungen vermessen wurden. Gerade im dynamischen Fall sind diese Karten empfindlich abhängig gegenüber Veränderungen durch Zyklieren und Degradieren des Lasers. Etalons (Etalonsignale) sind bezüglich der Abstimmcharakteristik nicht zuverlässig genug und von daher für eine wünschenswerte Automatisierung nicht ausreichen. Modensprünge oder schwache Rückkopplungseffekte lassen sich im Interferogramm nicht ohne weiteres identifiziert. Eine erweiterte Analyse der Störungen dieser Interferogramme im Zeit-Frequenzbereich mittels einer AOK(Adaptive Optimal Kernel)-Transformation erwies sich speziell bei Signalen mit wenigen Perioden als deutlich aussagekräftiger. Mittels optischer Homodynmischung wurde die Linienbreite von Bleichalkogenidlasern ermittelt. Bei inkohärenter Überlagerung entspricht die spektrale Verteilung der Mischung der Faltung der ursprünglichen Verteilung mit sich selbst. Der Laser wird dabei nicht abgestimmt, die optische Laufzeitverzögerung wurde mittels integrierter White-Zelle realisiert. Es wurde beobachtet, dass je nach Grad des Rauschens des Injektionsstroms, das Linienbreitenprofil von Lorentz nach Gauß überging. Mit einem externen CO2-Laser als lokalen Oszillator wurden Heterodynmessungen durchgeführt. Die Linienbreite eines CO2-Lasers ist mit wenigen kHz im Vergleich zu derjenigen eines Bleichalkogenidlasers vernachlässigbar und die Überlagerung erfolgt absolut inkohärent. Gemessen wurden spektrale Verteilungen mit typischem Lorentzprofil von 10 MHz bis zu 100 MHz und darüber hinaus. Auffällig waren häufig symmetrische Nebenpeaks, die in den Bereichen der Seitenflanken des Lorentzprofils auftraten. Anhand einer numerischen Simulation eines Modells einer Laserdiode, basierend auf Ratengleichungen mit für Bleichalkogenidlasern typischen Parameterwerten, konnte verdeutlicht werden, dass sich durch das nichtlineare Lasermodell ausgeprägte Vielfache von Resonanzen bereits im Abstand von 25 MHz ausbilden können. Derartige Resonanzen tauchen im E-Feld-Spektrum als typische Relaxationsoszillationen in den Seitenbändern wieder auf und erklären die in der Messung beobachteten Nebenpeaks innerhalb der spektralen Verteilung. Die Stärke der Seitenbänder ist ein Maß für die Korrelation zwischen Phasen- und Amplitudenfluktuationen. Das Modell für die numerische Berechnung des E-Feldes wurde mit einem thermischen Verhalten erweitert. Eine umfassende Charakterisierungsmethode zur automatisierten Einstellung eines modulierten Lasersystems muss dynamisch und zeitaufgelöst erfolgen. Die Auswertung optischer Mischfrequenzen beschränkt sich dabei nicht mehr auf die direkte Interpretation von einzelnen Spektren, sondern erweitert sich auf die Analyse im Zeit-Frequenzraum. Für eine direkte und schnelle Zeitfrequenztransformation bietet sich ein „Gefensterte Fouriertransformation“ (STFT) an, die sich außerdem relativ einfach in moderne Signalprozessortechnik implementieren lässt. Sie erweist sich als sehr robust und für die hier erforderliche Analyse von Heterodynsignalen als ausreichend. Mit der Festlegung des Analysefensters innerhalb einer STFT ist die Auflösung in Zeit und Frequenz fest definiert. Analysen von Mischsignalen mit einer kontinuierlichen Wavelettransformation haben vergleichsweise gezeigt, dass Details im Zeitfrequenzraum zwar besser herausgearbeitet werden können, jedoch ist der Rechenaufwand durch die variable Skalierung und somit stark redundante Analyse und ihre Darstellung unverhältnismäßig größer. Eine Analyse des Linienbreitenprofils erfolgt dabei über die Entwicklung der Skalierung eines Signals. Die über Heterodynsignale ermittelte effektive Linienbreite bei einer modulierten Abstimmung sollte eher als „dynamische“ oder „intrinsische“ Laserlinienbreite bezeichnet werden. Eine direkte Korrelation der Frequenzvariation des Lasers mit dem Stromrauschen des Injektionsstroms ist offensichtlich. Die wirksame Bandbreite des Stromrauschens wird durch die Systemelektronik einerseits und die Modulationsbandbreite des Lasers andererseits begrenzt. Außer den wichtigen Parametern wie Abstimmung und Linienbreite lassen sich über die dynamische Zeitfrequenzanalyse von Heterodynsignalen darüber hinaus weitere Phänomene wie Rückkopplung, Modenüberlagerung oder Einschwingverhalten aufgrund direkter Kopplung zwischen Intensitäts­ und Frequenzmodulation beobachten. N2 - The continual degradation of semiconductor lasers, in particular with lead-chalcogenide lasers, requires a regular monitoring of typical characteristics such as tuning characteristics and linewidth. Considering a system requiring with a high degree of automation an online method of analysis will be required. The common used method of determining the laser operating point based on the mode charts does have the major disadvantage that the mode charts are based on dc current operation. In particular in the case of dynamic operation the mode emission is very sensitive to the temperature cycling history and resultant degradation of the device. Considering the tuning characteristics etalon signals are not reliable enough and are therefore not suitable for an automatic tuning system. Mode hops or weak feedback effects cannot be easily identified by such kind of interferogram. Further analysis of interference of etalon signals in time frequency domain using AOK (adaptive optimal kernel) transformation provided significant results particularly for signals of a low periodic nature. The linewidth of our laser diode source was determined using an optical homodyne mixing technique. In a non-coherent condition this spectral distribution of the mixing corresponds to the convolution of the original distribution with itself. The laser was not tuned and the necessary optical delay was realized by an integrated optical white cell. It could be clearly observed that depending on the level of laser injection noise current, the spectral profile changed from the Lorentzian to the Gaussian form. Heterodyne measurements using a CO2 laser as a local oscillator were carried out. The linewidth of CO2 laser with a few kHz is negligible in comparison with that of a lead-chalcogenide laser, the superposition is absolutely incoherent. Typical linewidths were measured with a Lorentzian profile from 10 MHz up to 100 MHz and above. In many cases symmetrical sidebands were noticed close to the main Lorentzian emission profile. With numerical simulations based on rate equations using typical values for lead- chalcogenide laser diodes, it could be shown that due to the nonlinearity of the laser model a number of harmonic resonance frequencies occur in intervals as low as 25 MHz from the main emission frequency. These kind of resonances can be detected in the E-field spectrum as typical relaxation oscillations and therefore explain the observed sidebands within the spectral distribution. The sideband magnitude is a measure of the correlation between phase and amplitude fluctuations. The model for the numerical calculation of the E-field was extended by including the effects of thermal behaviour. For an automated spectrometer system a comprehensive method of laser characterization will be necessary. They are based on a dynamical time resolved analysis of the optical mixing signals. The evaluation of this signals are not only concerned with the direct interpretation of the individual spectra but are also extended to include a time frequency domain analysis. A suitable method for and direct and rapid time-frequency transformation is the Short-Time-Fourier-Transform (STFT), which can be also relatively easily implemented using modern signal processing techniques. This method used proved to be quiet robust for the required analysis of heterodyne signals. By choosing a particular type of analysis window the STFT is defined in time and frequency resolution. Analysis of heterodyne signals with a continuous wavelet transformation has shown in comparison that fine signal details could be better extracted but increased computing time for redundant representation can not be justified in this case. Determination of the linewidth in the frequency domain is performed by interpretation the frequency scaling variation with time. Linewidth parameters derived from the heterodyne signals under modulated laser tuning should rather be called the ‘dynamic’ or ‘intrinsic’ laser linewidth. A direct correlation of laser frequency variation with the injection current noise is obviously. The effective bandwidth of the current noise is on the one hand limited by the system electronics and on the other hand on the modulation bandwidth of the laser. Apart from the most important parameters such as tuning and linewidth, various other phenomena such as optical feedback, mode superposition or transient response behaviour due to the direct relationship between frequency and intensity modulation can also be observed. KW - Laserdiode KW - Abstimmung KW - Linienbreite KW - Heterodynspektroskopie KW - Halbleiterlaser KW - Heterodyn KW - Abstimmung KW - Linienbereite KW - Zeitfrequenzanalyse KW - semiconductor laser KW - heterodyne mixing KW - laser tuning KW - linewidth KW - time frequency analysis Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-17195 ER -