TY - THES A1 - Vicik, Radim T1 - Synthese und Eigenschaften N-Acylierter Aziridin-2,3-dicarboxylate als selektive, peptidomimetische Inhibitoren von Cystein-Proteasen der Cathepsin-L-Subfamilie T1 - Synthesis and Properties N-Acylated Aziridin-2,3-dicarboxylates as selective, peptidomimetic Inhibitors of Cystein Proteases of Cathepsin-L-Subfamily N2 - Die Cystein-Proteasen der Säuger und Parasiten wurden erst in den letzten zwei Jahrzehnten als pharmazeutisch/medizinisches Target erkannt. Die genauen Aufgaben der einzelnen Enzyme dieser sehr umfangreichen und ständig wachsenden Protease-Familie bleiben zwar teilweise noch unbekannt, es ist jedoch klar, dass ihre Aufgabe nicht nur der unspezifische Protein-Abbau ist. Das Ziel der vorliegenden Arbeit waren die Synthese einer Reihe peptidomimetischer Inhibitoren mit elektrophilem Aziridin-2,3-dicarbonsäure-Baustein und deren Testung an den Proteasen Cathepsin B (human), Cathepsin L (Paramecium tetraurelia), Falcipain-2 (Plasmodium falciparum) und Rhodesain (Trypanosoma brucei rhodesiense). Die Verbindungen sind als irreversible Inhibitoren der Proteasen konzipiert. Der Aziridin-Baustein als Elektrophil wird durch den Cystein-Rest des aktiven Zentrums der Proteasen angegriffen, es erfolgt eine nucleophile Ringöffnung und damit die irreversible Alkylierung der Proteasen. Die Aziridin-Bausteine wurden entweder stereoselektiv aus Tartraten oder als Racemate aus Fumaraten dargestellt. Durch NMR-spektroskopische Versuche wurde der Mechanismus der Epimerisierung der als Intermediate der stereoselektiven Synthese auftretenden Azidoalkohole aufgeklärt. Die N-Acylierung des Aziridin-Bausteins mit den Aminosäuren bzw. Dipeptiden erfolgte über Segmentkopplungen oder über eine schrittweise Anknüpfung der Aminosäuren. Es wurden dabei verschiedenste Methoden der Peptidchemie eingesetzt. Die Hemmkonstanten der synthetisierten Substanzen wurden in einem kontinuierlichen fluorimetrischen Mikrotiterplatten-Assay bei Inhibitor-Konzentrationen von 0.35 - 140 µM ermittelt. Als Substrat diente für alle Enzyme Z-Phe-Arg-AMC. Der Nachweis der Irreversibilität der Hemmung wurde durch Dialyse-Versuche und die Affinitätsmarkierung von Cathepsin L und Falcipain 2 mit Hilfe eines Biotin-markierten Inhibitors erbracht. Bei Inhibitoren, die eine zeitabhängige Hemmung aufweisen, wurden die Alkylierungskonstanten (ki –Werte) ermittelt. Diese sind im Vergleich zu den Konstanten der Epoxysuccinyl-Peptide ca. 1000x kleiner, was frühere Untersuchungen bestätigt. Aus den ermittelten Dissoziationskonstanten (Ki) ist die Selektivität für Cathepsin-L-ähnliche Proteasen eindeutig. Dabei wird die Reihenfolge RD > CL > FP >>> CB gefunden. Der beste Inhibitor für alle Enzyme ist die Substanz 116C (BOC-(S)-Leu-(S)-Azy-(S,S)-Azi(OBn)2), für die Hemmkonstanten im unteren micromolaren bzw. sogar nanomolaren Bereich gefunden werden. Unter den Substanzen finden sich auch einige, die für einzelne Enzyme selektiv sind. Für CL sind es die Verbindungen 517C, 105G, Z-023B, 023A; für CB 034A und 013B und für RD 112C, 222C, 105B, 013A. Dabei gibt es zwei Inhibitoren (105A, 517G), die selektiv nur die parasitären Enzyme FP und RD hemmen. Die Analyse der Struktur-Wirkungs-Beziehungen ergab, dass in Abhängigkeit von den Substituenten am Aziridinring (Benzylester, Ethylester, Disäure), von den Substituenten am Aziridin-Stickstoff (Phe-Ala, Leu-Xxx, Gly-Xxx, Xxx = cyclische Aminosäure) und der Stereochemie unterschiedliche Bindungsmodi vorliegen müssen. Erste Docking-Versuche, die in Kooperation mit der Arbeitsgruppe Baumann (Institut für Pharmazie und LMC, Universität Würzburg) durchgeführt wurden, bestätigen dies. Postuliert wird für Inhibitoren, die die Sequenz Leu-Pro enthalten, eine Bindung an die S`- Seite von Cathepsin L. Dies erklärt die Selektivität dieser Inhibitoren, denn innerhalb der S`-Substratbindungstaschen finden sich die größten strukturellen Unterschiede zwischen Cathepsin B und den Cathepsin-L-ähnlichen Proteasen. Im Gegensatz dazu wird für eines der Phe-Ala-Derivate eine Bindung an die S-Taschen postuliert, die zwischen den einzelnen Proteasen geringere strukturelle Unterschiede aufweisen. Dieser Inhibitor hemmt, wie fast alle Phe-Ala-Derivate, dementsprechend auch Cathepsin B besser als die Leu-Xxx-Derivate. In Rahmen einer Kooperation mit der Arbeitsgruppe Engels Institut für Organische Chemie, Universität Würzburg) wurden quantenchemische Rechnungen durchgeführt, die u.a. den Einfluss von Substituenten auf die Kinetik und Thermodynamik der nucleophilen Ringöffnung untersuchten. Vorhergesagt wurde, dass Substituenten am Aziridin-Stickstoff, die den Übergangzustand stabilisieren (N-Formyl), zu einer besseren Hemmung führen sollten. Das darauf hin synthetisierte N-Formylaziridin-2,3-dicarboxylat 008B weist eine etwa 5000x bessere Hemmung von CL auf als das nicht-formylierte Diethylaziridin-2,3-dicarboxylat. Die gezielt als "affinity label" entwickelte Biotin-markierte Verbindung 999C wurde zur Identifizierung von Cystein-Proteasen, die von Plasmodium falciparum exprimiert werden, eingesetzt (Kooperation mit der Arbeitsgruppe Gelhaus/Leippe, Institut für Zoologie, Universität Kiel). N2 - Mammalian and parasitic cysteine proteases have been discovered as potential drug targets within the last two decades. The physiological and pathophysiological functions of this huge and growing family of proteases are not yet known in detail. However, their role is no longer considered to be only unspecific protein degradation. The goal of the present work was the syntheses of a series of peptidomimetic cysteine protease inhibitors containing aziridine-2,3-dicarboxylate as electrophilic fragment, and the testing of the synthesized compounds on the cysteine proteases cathepsin B (human), cathepsin L (Paramecium tetraurelia), falcipain 2 (Plasmodium falciparum), and rhodesain (Trypanosoma brucei rhodesiense. The compounds are designed as irreversible protease inhibitors. The aziridine ring represents an electophilic building block which is attacked by the cysteine residue of the proteases` active sites. As a consequence, the nucleophilic ring opening reaction leads to irreversible enzyme alkylation. The aziridine building blocks were synthesized stereoselectively in a chiral pool synthesis starting from tartrates, and as racemates starting from fumarates, respectively. NMR spectroscopic studies were used to clarify the mechanism of epimerization occurring during the synthesis of the azido alcohols which are intermediates of the stereoselective synthetic route. The N-acylation of the aziridines with amino acids or dipeptides was carried out via segment or subsequent peptide coupling. Various methods of peptide chemistry were used. The inhibition constants were determined in fluorimetric microplate enzyme assays with inhibitor concentrations between 0.35-140 µM. In all cases, the substrate Z-Phe-Arg-AMC was used. The irreversibility of inhibition was proven by dialysis assays, and by affinity labelling of CL and falcipain using a biotinylated inhibitor. The alkylation rate constant ki was determined in cases where time-dependent inhibition could be observed. In comparison to epoxysuccinyl peptides the ki -values are lower by three orders of magnitude confirming previous investigations. The Ki values unambiguously show that the compounds exhibit a selectivity for the CL-like enzymes. The order of inhibition potency is RD > CL > FP >>> CB. The most potent inhibitor is 116C (BOC-(S)-Leu-(S)-Azy-(S,S)-Azi(OBn)2) with inhibition constants in the submicromolar and even nanomolar range. Some compounds exhibit selectivity for single enzymes: CL: 517C, 105G, Z-023B, 023A; CB: 034A, 013B; RD: 112C, 222C, 105B, 013A. Compounds 105A and 517G selectively inhibit the parasitic proteases FP and RD. The analysis of the structure-activity-relationship led to the assumption that different binding modes have to exist in dependence on the aziridine ring substituents (benzyl ester, ethyl ester, diacid), of the aziridine nitrogen substituents (Phe-Ala, Leu-Xxx, Gly-Xxx, Xxx = cyclic amino acid), and of the stereochemistry, respectively. First docking experiments, performed in cooperation with Dr. Baumann`s group (Institue of Pharmay and Food Chemistry, University of Wuerzburg), confirm this assumption. Inhibitors containing a Leu-Pro sequence are predicted to bind into the S`-subsites of CL. Since the most striking structural difference between CB and CL-like proteases is found within these S`-subsites the selectivity between the enzymes may be due to binding into these subsites. In contrast, for a Phe-Ala derivative the docking postulates binding into the S-subsites which do not differ much between the enzymes. As a consequence, CB is inhibited much better by Phe-Ala-derivatives than by Leu-Xxx-derivatives. In cooperation with Prof. Engels` group (Institute of Organic Chemistry, University of Wuerzburg) quantumchemical computations were performed analyzing the influence of substituents on the thermodynamics and kinetics of the nucleophilic ring opening. These calculations predicted that substituents stabilizing the transition state (N-formyl) should improve inhibition potency. In order to proof this predicition the compound 008B (N-formyl aziridine-2,3-dicarboxylate) was synthesized and tested. Indeed, the compound is about 5000x more potent on CL than the non-formylated diethyl aziridine-2,3-dicarboxylate. The principal mechanism of inhibition - the nucleophilic ring opening - was proven in a model reaction by means of NMR spectroscopy and mass spectrometry. The biotinylated compound 999C was designed as an affinity labelling inhibitor usable to label and to identify cysteine proteases expressed by Plasmodium falciparum (cooperation with the group of Dr. Gelhaus, Prof. Leippe, Institute of Zoology, University of Kiel). KW - Aziridine KW - Cysteinproteasen KW - Inhibitor KW - Cystein KW - Protease KW - irreversibel KW - Aziridin KW - Cathepsin KW - cystein KW - protease KW - irreversible KW - aziridin KW - cathepsin Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-11127 ER - TY - THES A1 - Ramirez, Yesid A. T1 - Structural basis of ubiquitin recognition and rational design of novel covalent inhibitors targeting Cdu1 from \(Chlamydia\) \(Trachomatis\) T1 - Strukturelle Grundlage der Ubiquitin-Erkennung und rationales Design neuer kovalenter Inhibitoren gegen die Deubiquitinylase Cdu1 aus \(Chlamydia\) \(Trachomatis\) N2 - The WHO-designated neglected-disease pathogen Chlamydia trachomatis (CT) is a gram-negative bacterium responsible for the most frequently diagnosed sexually transmitted infection worldwide. CT infections can lead to infertility, blindness and reactive arthritis, among others. CT acts as an infectious agent by its ability to evade the immune response of its host, which includes the impairment of the NF-κB mediated inflammatory response and the Mcl1 pro-apoptotic pathway through its deubiquitylating, deneddylating and transacetylating enzyme ChlaDUB1 (Cdu1). Expression of Cdu1 is also connected to host cell Golgi apparatus fragmentation, a key process in CT infections. Cdu1 may this be an attractive drug target for the treatment of CT infections. However, a lead molecule for the development of novel potent inhibitors has been unknown so far. Sequence alignments and phylogenetic searches allocate Cdu1 in the CE clan of cysteine proteases. The adenovirus protease (adenain) also belongs to this clan and shares a high degree of structural similarity with Cdu1. Taking advantage of topological similarities between the active sites of Cdu1 and adenain, a target-hopping approach on a focused set of adenain inhibitors, developed at Novartis, has been pursued. The thereby identified cyano-pyrimidines represent the first active-site directed covalent reversible inhibitors for Cdu1. High-resolution crystal structures of Cdu1 in complex with the covalently bound cyano-pyrimidines as well as with its substrate ubiquitin have been elucidated. The structural data of this thesis, combined with enzymatic assays and covalent docking studies, provide valuable insights into Cdu1s activity, substrate recognition, active site pocket flexibility and potential hotspots for ligand interaction. Structure-informed drug design permitted the optimization of this cyano-pyrimidine based scaffold towards HJR108, the first molecule of its kind specifically designed to disrupt the function of Cdu1. The structures of potentially more potent and selective Cdu1 inhibitors are herein proposed. This thesis provides important insights towards our understanding of the structural basis of ubiquitin recognition by Cdu1, and the basis to design highly specific Cdu1 covalent inhibitors. N2 - Der Krankheitserreger Chlamydia trachomatis (CT) - ein gramnegatives Bakterium - ist verantwortlich für die häufigste sexuell übertragene Infektionskrankheit weltweit, die CT basierte Chlamydiose. Sie wird von der Weltgesundheitsorganisation zu den vernachlässigten Krankheiten gezählt. CT Infektionen können unter anderem zu Unfruchtbarkeit, Erblindung und reaktiver Arthritis führen. CT agiert als Krankheitserreger mittels seiner Fähigkeit, die Immunantwort des Wirts zu umgehen. Dies umfasst unter anderem die Schwächung und Störung der NF-κB vermittelten Entzündungsantwort und des Mcl1 pro-Apoptoseweges über ihr deubiquitinierendes, deneddylierendes und trans-acetylierendes Enzym ChlaDub1 (Cdu1). Die Expression von Cdu1 ist aber auch mit der Fragmentierung des Golgi-Apparates des Wirtes verknüpft, ein Schlüsselprozess bei Infektionen mit CT. Cdu1 ist daher vermutlich ein attraktives Zielprotein für die Entwicklung von Wirkstoffen, um CT Infektionen zu behandeln. Eine Leitstrukturverbindung zur Entwicklung neuer wirksamer Inhibitoren war bislang jedoch noch nicht bekannt. Sequenzvergleiche und phylogenetische Untersuchungen verorten Cdu1 im CE Clan der Cysteinproteasen. Die Adenovirus-Protease (Adenain) gehört ebenfalls diesem Clan an und besitzt strukturelle Ähnlichkeit mit Cdu1. Unter Ausnutzung der topologischen Ähnlichkeiten der aktiven Zentren von Cdu1 und Adenain wurde ein Target-Hopping Ansatz mit einem klar definierten und fokussierten Satz von bei Novartis entwickelten Adenain-Inhibitoren verfolgt. Die hierbei identifizierten Cyano-Pyrimidine stellen die ersten kovalenten Inhibitoren von Cdu1 dar, die an das aktive Zentrum von Cdu1 binden und es direkt adressieren. Hochauflösend wurden Kristallstrukturen sowohl von Komplexen von Cdu1 mit kovalent gebundenen Cyano-Pyrimidinen als auch mit Cdu1’s natürlichem Substrat Ubiquitin bestimmt. Die Kristallstrukturdaten dieser Doktorarbeit in Kombination mit Enzymassays und kovalenten Docking-Studien liefern wertvolle Hinweise bezüglich der Aktivität des Enzyms, der molekularen Substraterkennung, der Flexibiliät der Proteintasche rund um das aktive Zentrum und potentielle Hotspots für die Wechselwirkung mit Liganden. Ein strukturbasiertes Wirkstoffdesign erlaubte die Optimierung des Cyano-Pyrimidin-basierten Molekülgerüstes, die zu der Entwicklung der HJR108 Verbindung führte. Es ist das erste Molekül seiner Art, das speziell dazu entworfen wurde Cdu1 zu inhibieren. Strukturen potentiell noch wirksamerer und selektiver Cdu1 Inhibitoren werden in dieser Arbeit vorgeschlagen. Diese Dissertationsschrift liefert somit wertvolle Beiträge zum Verständnis der strukturellen Grundlagen der molekularen Erkennung von Ubiquitin durch Cdu1 und Hinweise, die die Entwicklung hoch-spezifischer kovalenter Cdu1 Inhibitoren erlauben sollten. KW - CE Proteaes KW - covalent inhibition KW - drug repurposing KW - DUB KW - Ubiquitin KW - Inhibitor KW - Chlamydia trachomatis Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-191683 ER - TY - THES A1 - Engelmann, Daria Marie T1 - Regulation of Mammalian Phosphoglycolate Phosphatase T1 - Regulation der Phosphoglykolat-Phosphatase von Säugetieren N2 - Mammalian phoshoglycolate phosphatase (PGP, also known as AUM) belongs to the ubiquitous HAD superfamily of phosphatases. As several other members of HAD phosphatases, the Mg2+-dependent dephosphorylation is conducted via a nucleophilic attack from a conserved aspartate residue in the catalytic cleft. The protein structure of PGP could not yet be solved entirely. Only a hybrid consisting of the PGP cap and the PDXP core (pyridoxal phosphatase, closest enzyme paralog) was crystallizable so far. PGP is able to efficiently dephosphorylate 2-phosphoglycolate, 2-phospho-L-lactate, 4-phospho-D-erythronate, and glycerol-3-phosphate in vitro which makes them likely physiological substrates. The first three substrates can be derived from metabolic side reactions (during glycolysis) and inhibit key enzymes in glycolysis and pentose phosphate pathway, the latter is situated at the intersection between glycolysis and lipogenesis. 2-phosphoglycolate can also be released in the context of repair of oxidative DNA damage. The activity of purified PGP can be reversibly inhibited by oxidation - physiologically likely in association with epidermal growth factor (EGF) signal transduction. In fact, an association between persistently lacking PGP activity (via downregulation) and the presence of hyperphosphorylated proteins after EGF stimulation has been identified. Reversible oxidation and transient inactivation of PGP may be particularly important for short-term and feedback regulatory mechanisms (as part of the EGF signaling). Furthermore, cellular proliferation in PGP downregulated cells is constantly reduced. Whole-body PGP inactivation in mice is embryonically lethal. Despite the many well-known features and functions, the knowledge about PGP is still incomplete. In the present work the influence of reactive oxygen species (ROS) on PGP activity in cells und a possible connection between oxidative stress and the proliferation deficit of PGP downregulated cells was investigated. For the experiments, a spermatogonial cell line was used (due to the high PGP expression in testis). PGP activity can be reversibly inhibited in cellular lysates by H2O2 (as a ROS representative). Reversible oxidation could thus indeed be physiologically important. More oxidative DNA damage (by bleomycin) showed no PGP-dependent effects here. EGF stimulation (as an inducer of transient and well-controlled ROS production), low concentrations of menadione (as an oxidant) and N-acetylcysteine (as an antioxidant) were able to approximate the proliferation rate in PGP downregulated cells to that of control cells. The redox regulation of PGP could thus have an influence on cellular proliferation as a feedback mechanism - a mechanism that could not take place in PGP downregulated cells. However, the connections are probably even more complex and cannot be elucidated by a sole examination of the proliferation rate. The present results can thus only be regarded as preliminary experiments. For a better understanding of the features and functions of PGP, this work then focused on specific regulation of enzyme activity by pharmacologically applicable small molecules. Four potent inhibitors had previously been identified in a screening campaign. In this work, three of these four inhibiting compounds could be further characterized in experiments with highly purified, recombinant murine and human PGP. Compounds #2 and #9 showed competitive inhibition properties with a markedly rising KM value with little or no change in vmax. The results were consistent for all tested protein variants: the murine and the human PGP as well as a PGP/PDXP hybrid protein. Compound #1 was the most potent and interesting PGP-inhibitory molecule: less change in KM and a constant decrease in vmax as well as a lower impact on the PGP/PDXP hybrid hint at a mixed mode of inhibition as a combination of competitive and non-competitive inhibition. The characterization of the potential inhibitors can serve as a basis for further structural analysis and studies on the complex physiological role of PGP. N2 - Die Phosphoglykolat-Phosphatase (PGP, auch AUM genannt) in Säugetieren gehört zu der ubiquitär vorkommenden HAD Phosphatasen-Superfamilie. PGPs Proteinstruktur konnte bisher nicht vollständig gelöst werden. Es ließ sich nur ein Hybridenzym, bestehend aus der PGP-Kappe und dem PDXP-Kern (Pyridoxal-Phosphatase, am nächsten verwandtes Enzym), kristallisieren. Wie zahlreiche andere Mitglieder der HAD Phosphatasen, geschieht die Magnesium-abhängige Dephosphorylierung durch eine nukleophile Attacke eines konservierten Aspartat-Rests im katalytischen Zentrum. PGP ist in der Lage 2-Phosphoglykolat, 4-Phospho-D-Erythronat, 2-Phospho-L-Laktat und Glycerol-3-Phosphat in vitro zu dephosphorylieren, was sie zu wahrscheinlichen physiologischen Substraten macht. Die ersten drei Substrate können durch metabolische Nebenreaktionen (während der Glykolyse) entstehen und Schlüsselenzyme in Glykolyse und Pentosephosphatweg inhibieren, das letztgenannte findet sich an der Kreuzung zwischen Glykolyse und Lipogenese. 2-Phosphoglykolat kann auch im Rahmen der Reparatur von oxidativem DNA-Schaden freigesetzt werden. Die Aktivität von gereinigtem PGP kann durch Oxidation - physiologisch wahrscheinlich assoziiert mit der Signaltransduktion des epidermalen Wachstumsfaktors (EGF) - reversibel inhibiert werden. Es wurde nämlich auch ein Zusammenhang zwischen dauerhaft mangelnder PGP-Aktivität (durch Herabregulation) und dem Vorkommen hyperphosphorylierter Proteine nach EGF-Stimulation festgestellt. Reversible Oxidation und vorübergehende Inaktivierung der PGP könnten vor allem für Kurzzeit- und Rückkopplungs-Regulationsmechanismen (im Rahmen der EGF-Signalkaskade) bedeutend sein. Weiterhin ist die zelluläre Proliferation in PGP-herabregulierten Zellen konstant reduziert. Eine PGP-Inaktivierung im gesamten Organismus in Mäusen ist embryonal letal. Trotz der vielen inzwischen bekannten Eigenschaften und Funktionen ist das gesammelte Wissen über PGP noch lückenhaft. In der vorliegenden Arbeit wurde zunächst der Einfluss von reaktiven Sauerstoffspezies (ROS) auf die PGP-Aktivität in Zellen und ein möglicher Zusammenhang zwischen oxidativem Stress und dem Proliferationsdefizit von PGP-herabregulierten Zellen untersucht. Für die Experimente wurde (aufgrund der hohen PGP-Expression in Hoden) eine spermatogoniale Zelllinie verwendet. PGP-Aktivität kann in zellulären Lysaten reversibel durch H2O2 (als ROS Vertreter) gehemmt werden. Reversible Oxidation könnte also tatsächlich auch physiologisch von Bedeutung sein. Mehr oxidativer DNA Schaden (durch Bleomycin) zeigte hier keine PGP-abhängigen Effekte. EGF-Stimulation (als Auslöser von transienter und gut kontrollierter ROS-Produktion), niedrigdosiertes Menadion (als Oxidans) und N-Acetylcystein (als Antioxidans) konnten die Proliferationsrate in PGP-herabregulierten Zellen an die von Kontrollzellen annähern. Die Redox-Regulation von PGP könnte als Feedback-Mechanismus also auch Einfluss auf die zelluläre Proliferation haben - ein Mechanismus, der bei PGP herabregulierten Zellen so nicht stattfinden könnte. Wahrscheinlich sind die Zusammenhänge aber noch komplexer und mit einer alleinigen Untersuchung der Proliferationsrate nicht aufzuklären. Die vorliegenden Ergebnisse können also nur als Pionierversuche betrachtet werden. Um die Merkmale und Funktionen von PGP besser zu verstehen, fokussierte sich die weitere Arbeit auf die spezifische Regulation der Enzymaktivität durch pharmakologisch anwendbare kleine Moleküle. Vier potentielle Inhibitoren waren zuvor in einer Screening-Kampagne identifiziert worden. In dieser Arbeit konnten drei von vier der inhibierenden Moleküle in Experimenten mit hoch-aufgereinigtem, rekombinantem murinem und humanem PGP näher charakterisiert werden. Die Moleküle #2 und #9 zeigten kompetitiv hemmende Eigenschaften mit deutlich steigendem KM-Wert bei geringer oder gar keiner Veränderung der Maximalgeschwindigkeit (vmax). Die Ergebnisse waren bei allen untersuchten Protein-Varianten - murinem und humanem PGP sowie einem PGP/PDXP-Hybrid-Protein - vergleichbar. Molekül #1 war der potenteste und interessanteste PGP-Inhibitor: eine geringere Veränderung des KM-Werts und eine konstante Verminderung von vmax sowie ein reduzierter Einfluss auf den PGP/PDXP-Hybriden weisen auf einen gemischten Inhibitionsmechanismus als Kombination aus kompetitiver und nicht-kompetitiver Hemmung hin. Die Charakterisierung der potentiellen Inhibitoren kann als Basis für weiterführende strukturelle Analysen und der Untersuchung der komplexen physiologischen Rolle von PGP dienen. KW - Phosphoglykolatphosphatase KW - Regulation KW - Inhibitor KW - Reaktive Sauerstoffspezies KW - Dephosphorylierung KW - phosphoglycolate phosphatase KW - haloacid dehalogenase phosphatase KW - metabolite repair KW - Proliferation KW - GC1 cells KW - reversible oxidation Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-199577 ER - TY - THES A1 - Schust, Jochen T1 - Neue Ansätze zur Identifizierung niedermolekularer Inhibitoren der STAT3-Aktivierung und -Homodimerisierung T1 - New approaches to identify small molecule inhibitors of STAT3 activation and dimerization N2 - Die STATs (signal transducers and activators of transcription) sind eine Familie latent zytoplasmatischer Transkriptionsfaktoren, die Signale von der Zellmembran in den Zellkern weiterleiten. Ein Mitglied der Proteinfamilie, STAT3, ist aufgrund übermäßiger Tyrosinkinase-Aktivität in einer breiten Vielzahl von Krebszelllinien und menschlichen Tumoren konstitutiv-aktiv. Um kleine organische Moleküle zu identifizieren, die die Funktion der SH2-Domäne von STAT3 blockieren und dadurch die Aktivität und die Dimerisierung des Proteins inhibieren, wurde ein Hochdurchsatz-Verfahren entwickelt, welches auf Fluoreszenzpolarisation beruht. Das Prinzip dieses Verfahrens war die Bindung eines Fluorescein-markierten Phosphotyrosin-Peptids, welches von gp130, einer Untereinheit des Interleukin-6-Rezeptors, abgeleitet war, an nicht phosphoryliertes STAT3-Protein. Der Kd Wert dieser Bindung betrug 150 nM und der Assay war stabil im Hinblick auf die Salzkonzentration, der Konzentration an Dimethylsulfoxid und der Zeit. Der Assay wurde auf ein 384-Lochplattenformat angepasst und wies einen Z’-Wert von 0,87 auf. Das Fluorscein-markierte Phosphotyrosin-Peptid band spezifisch an die SH2-Domäne von STAT3 und die Bindung konnte durch Phosphotyrosin-Peptide unterschiedlich stark inhibiert werden. Die Hochdurchsatz-Analyse mehrerer Substanzbibliotheken führte schließlich zur Identifikation eines spezifischen STAT3-Inhibitors, Stattic (STAT three inhibitory compound). Stattic ist das erste nicht-peptidische kleine Molekül, welches selektiv die Funktion der STAT3-SH2-Domäne beeinträchtigte. Dabei spielte der Aktivierungszustand von STAT3 in vitro keine Rolle. Die gleichzeitige Inkubation mit Stattic führte im Fluoreszenzpolarisations-Assay zur Inhibition der Bindung des Fluorescein-markierten Phosphotyrosin-Peptids an die SH2-Domäne von STAT3. Diese antagonistische Reaktion stellte sich als stark temperaturabhängig heraus und hatte in vitro bei der physiologisch relevanten Temperatur von 37°C nach 60 Minuten einen IC50 Wert von 5,1 µM. Zusammen mit einer Abhängigkeit von der Zeit wiesen die Ergebnisse auf eine irreversibel ablaufende Reaktion unter Knüpfung einer kovalenten Bindung zwischen Stattic und STAT3 hin. Die Inhibition war spezifisch gegenüber der Bindung verschiedener Fluorescein-markierten Phosphotyrosin-Peptide an die jeweiligen Proteine STAT1, STAT5b und Lck und Stattic hatte ebenfalls nur einen sehr geringen Effekt auf die Proteindimerisierung von c-Myc/Max und Jun/Jun. Die genauere Betrachtung der Kinetik der antagonistischen Reaktion zeigte eine signifikante Verlangsamung der Reaktionsgeschwindigkeit beim Vergleich zwischen STAT3 und STAT1 bzw. STAT3 und STAT5b. Die Inhibierung der Bindung des entsprechenden Fluorescein-markierten Phosphotyrosin-Peptids an das Protein Lck durch Stattic war hingegen nicht zeitabhängig. Diese Versuche zeigten eine deutliche Präferenz der Bindung von Stattic an das Protein STAT3. Die Verdrängung des Fluorescein-markierten Phosphoytrosin-Peptids von der STAT3-SH2-Domäne durch Stattic verlief kompetitiv zur Inhibition mit einem Phophotyrosin-Peptid, welches an die SH2-Domäne von STAT3 bindet. In Verbindung mit den vorherigen Experimenten wies dies auf eine kovalente Bindung von Stattic innerhalb des STAT3-Proteins hin. Eine abschließende Struktur-Wirkungs-Beziehung in vitro zeigte die Notwendigkeit sowohl von der Nitrogruppe als auch von der Doppelbindung der Vinylsulfongruppe in Stattic für die Bindung an STAT3 und untermauerte die These, dass Stattic kovalent innerhalb des STAT3-Proteins bindet. In zellbiologischen Systemen wurde die Wirksamkeit von Stattic anhand verschiedener molekularbiologischer Assays bestätigt. Stattic inhibierte selektiv die Tyrosinphosphorylierung von STAT3 in HepG2 Zellen, in NIH3T3/v-Src Zellen und in den Brustkrebszelllinien MDA-MB-231 und MDA-MB-435S. Aber auch bereits phosphorylierte STAT3-Proteine wurden durch Stattic in vitro an der Homodimerisierung gehindert, was in einer EMSA-Analyse gezeigt wurde. Somit inhibierte Stattic in vitro selektiv die Signalkette von STAT3 unabhängig von dessen Aktivierungszustand. Andere Signalketten oder die Funktion der in der Signalkette über STAT3 liegenden Tyrosinkinasen wurden in Zellen nicht beeinflusst. Im Folgenden konnte demonstriert werden, dass Stattic als direkter STAT3-Inhibitor dessen Lokalisierung in den Zellkern inhibierte, nicht jedoch die Lokalisierung des Gegenspielers STAT1. Weiterhin reduzierte der Einsatz von Stattic selektiv das von v-Src in NIH3T3 Zellen induzierte und von STAT3-abhängige Wachstum von Kolonien in Weichagar. Dass Stattic schließlich selektiv die Apoptoserate in Zellen mit konstitutiver STAT3-Aktivtät erhöhte, bestätigte die bisherigen Daten. Mit Stattic konnte daher ein neues biologisches Werkzeug generiert werden, um selektiv STAT3 in Zelllinien oder Tumoren in Tiermodellen auszuschalten, die eine konstitutive STAT3-Aktivität aufweisen. N2 - Signal Transducers and Activators of Transcription (STATs) are a family of latent cytoplasmic transcription factors which signals from the cell membrane to the nucleus. One member of the protein family, STAT3, is constitutively activated by aberrant upstream tyrosine kinase activities in a broad spectrum of cancer cell lines and human tumors. A high-throughput assay based on fluorescence polarization was developed to identify small organic molecules blocking the function of the STAT3 SH2 domain and thereby inhibiting STAT3 activity and dimerization. The principle of the assay was the binding of a fluorescein-labeled phosphotyrosine-peptide derived from the interleukin-6 receptor subunit gp130 to unphosphorylated STAT3 with a Kd of 150 nM. The assay was stable with regard to salt concentration, dimethyl sulfoxide concentration, and time. It has been adapted to a 384-well format, with a Z’ value of 0.87. The fluorecein-labeled phosphotyrosine-peptide bound specifically to the STAT3 SH2 domain and this binding could be inhibited by different phosphotyrosine-peptides with varying activities. The high-throughput screening of a number of compound libraries finally lead to the identification of a specific STAT3 inhibitor, dubbed Stattic (STAT three inhibitory compound). Stattic is depicted as the first non-peptidic small molecule having an selective impact on the function of the STAT3 SH2 domain. Thereby the activation state of STAT3 was irrelevant in vitro. Simultaneous incubation with Stattic inhibited the binding of the fluorescein-labeled phosphotyrosine-peptide to the SH2 domain of STAT3 in the fluorescence polarization assay. This antagonistic reaction turned out to be strongly temperature-dependent and showed an IC50 of 5.1 µM in vitro at the physiological relevant temperature of 37°C after 60 minutes incubation. With regard to an time-dependency these results suggested an irreversible reaction with the formation of a covalent bond between Stattic and STAT3. The inhibitory reaction was specific over the binding of different fluorescein-labeled phosphotyrosin-peptides to the particular proteins STAT1, STAT5b and Lck, and Stattic also only marginally inhibited the protein dimerization of c-Myc/Max or Jun/Jun. A closer look on the kinetics of the reaction revealed a significant slowdown of the reaction speed comparing STAT3 to STAT1 or STAT3 to STAT5b. Stattic inhibited the binding of the corresponding fluorescein-labeled phosphotyrosine-peptides to Lck in a time-independent way altogether showing a clear preference of Stattic binding to STAT3. The displacement of the fluorescein-labeled phosphotyrosine-peptide from the STAT3 SH2 domain through Stattic was competitive to a phosphotyrosine-peptide binding to the SH2 domain of STAT3. With regard to other results, this result indicated Stattic covalently binding to STAT3. A structure-activity relationship in vitro showed the nitro moiety and the double bond within the vinylsulfone moiety of stattic being important for binding to STAT3. This confirmed the indication that Stattic covalently binds to STAT3 domain. The effectiveness of Stattic in cellular systems was proven by different molecular biological assays. Stattic selectively inhibited the tyrosine phosphorylation in HepG2 cells, in NIH3T3/v-src cells as well as in the breast cancer cell lines MDA-MB-231 and MDA-MB-435S. But also STAT3 proteins which already were phosphorylated could not dimerize after incubation with stattic in vitro which was shown with an EMSA analysis. Therby Stattic also inhibited STAT3 signaling in vitro regardless of STAT3 phosphorylation. Other signalling pathways or function of upstream tyrosinkinases in cells were not inhibited at the same time. It could be demonstrated that the direct STAT3 inhibitor Stattic specifically inhibited nuclear localization of STAT3, but not of its counterpart STAT1. Stattic reduced v-src induced STAT3 dependent colony growth of NIH3T3 cells in soft agar. The results were confirmed by Stattic selectively increasing the apoptotic rate in cell lines having constitutively active STAT3. In summary Stattic turned out to be a novel biological tool to selectively inhibit STAT3 in cell lines or tumor animal models which show constitutive active STAT3. KW - STAT KW - Inhibitor KW - Stattic KW - Chemische Biologie KW - STAT3 KW - niedermolekularer Inhibitor KW - Stattic KW - chemical biology KW - STAT3 KW - small molecule inhibitor Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-19952 ER - TY - THES A1 - Kumari, Geeta T1 - Molecular Characterization of the Induction of Cell Cycle Inhibitor p21 in Response to Inhibition of the Mitotic Kinase Aurora B T1 - Untersuchungen zur Induktion des Zellzyklusinhibitors p21 nach Inhibition der Mitotischen Kinase Aurora B N2 - Aurora B ist eine mitotische Kinase, die entscheidende Funktionen in der Zellteilung ausübt. Aurora B ist außerdem in einer Vielzahl von Krebsarten mutiert oder überexprimiert. Daher ist die Aurora B Kinase ein attraktives Ziel für die Tumortherapie. Gegenwärtig werden Aurora B-Inhibitoren zur Behandlung von soliden Tumoren und Leukämien in verschiedenen klinischen Studien getestet. Es fehlen jedoch Informationen, welche molekularen Mechanismen den beschriebenen Phänotypen wie Zellzyklusarrest, Aktivierung des Tumorsuppressors p53 und seines Zielgens p21 nach Aurora B-Hemmung zugrunde liegen. Hauptziel dieser Arbeit war es die Mechanismen der p21-Induktion nach Hemmung von Aurora B zu untersuchen. Es konnte gezeigt werden, dass nach Hemmung von Aurora B die p38 MAPK phosphoryliert und somit aktiviert wird. Experimente mit p38-Inhbitoren belegen, dass p38 für die Induktion von p21 und den Zellzyklusarrest benötigt wird. Die Stabilisierung von p53 nach Aurora B-Inhibition und die Rekrutierung von p53 an den p21-Genpromotor erfolgen jedoch unabhängig vom p38-Signalweg. Stattdessen ist p38 für die Anreicherung der elongierenden RNA-Polymerase II in der kodierenden Region des p21-Gens und für die Bildung des p21 mRNA Transkripts notwendig. Diese Daten zeigen, dass p38 transkriptionelle Elongation des p21-Gens nach Aurora B Hemmung fördert. In weiteren Untersuchungen konnte ich zeigen, dass die Aurora B-Hemmung zu einer Dephosphorylierung des Retinoblastoma-Proteins führt und dadurch eine Abnahme der E2F-abhängigen Transkription bewirkt. Dies löst indirekt einen Zellzyklusarrest aus. Weiterhin konnte mit Hilfe von synchronisierten Zellen gezeigt werden, dass p21 nach Durchlaufen einer abnormalen Mitose induziert wird, jedoch nicht nach Aurora B-Hemmung in der Interphase. Interessanterweise werden p38, p53 und p21 schon bei partieller Inhibition von Aurora B aktiviert. Die partielle Inhibition von Aurora B führt zu chromosomaler Instabilität aber nicht zum Versagen der Zytokinese und zur Bildung polyploider Zellen. Damit korreliert die Aktivierung des p38-p53-p21-Signalweges nicht mit Tetraploidie sondern mit vermehrter Aneuploidie. Die partielle Hemmung von Aurora B führt außerdem zur vermehrten Entstehung von reaktive Sauerstoffspezies (ROS), welche für die Aktivierung von p38, p21 und für den Zellzyklusarrest benötigt werden. Basierend auf diesen Beobachtungen kann folgendes Modell postuliert werden: Die Hemmung von Aurora B führt zu Fehlern in der Chromosomenverteilung in der Mitose und damit zu Aneuploidie. Dies führt zu vermehrter Produktion von ROS, möglicherweise durch proteotoxischer Stress, hervorgerufen durch die Imbalanz der Proteinbiosynthese in aneuploiden Zellen. ROS bewirkt eine Aktivierung der p38 MAPK und trägt damit zur Induktion von p21 und dem resultierenden Zellzyklusarrest bei. Aneuploidie, proteotoxischer und oxidativer Stress stellen Schlüsselmerkmale von Tumorkrankungen dar. Anhand der Ergebnisse dieser Arbeit könnte die Kombination von Aurora B-Hemmstoffen mit Medikamenten, die gezielt aneuploide Zellen angreifen, in Tumorerkrankungen therapeutisch wirksam sein. N2 - Aurora B is a mitotic kinase that is essential for cell division. Because it is mutated or overexpressed in a range of cancer types, it has been suggested as a novel therapeutic target. Currently chemical inhibitors against Aurora B are in various phases of clinical trials for treatment of solid tumors and leukemia. Information regarding the molecular requirements for the reported phenotypes of Aurora B inhibition such as cell cycle arrest, activation of the tumor suppressor p53 and its target p21 are not well understood. In this study, I investigated the requirements for p21 induction after Aurora B inhibition. I found that p38 is phosphorylated and activated when Aurora B is inhibited. Experiments with chemical inhibitors against p38 indicate that p38 is required for p21 induction and cell cycle arrest in response to Aurora B inhibition. p53 induction after impairment of Aurora B function and the recruitment of p53 to its binding site in the p21 gene promoter occur independently of p38 signaling. Instead, I found that p38 is required for the enrichment of the elongating RNA Polymerase II in the coding region of the p21 gene. Furthermore, p38 is required for formation of the full-length p21 mRNA transcript. These data indicate that p38 promotes the transcriptional elongation of p21 gene in response to Aurora B inhibition. In further experiments I could show that the p21 causes cell cycle arrest due to a decrease in E2F-dependent transcription by promoting the dephosphorylation of the retinoblastoma protein. Using synchronized cells I could show that the induction of p21 in response to Aurora B inhibition requires transition through an aberrant mitosis and does not occur in cells that are arrested in interphase. Interestingly, p38, p53 and p21 are already induced by partial inhibition of Aurora B, which results in aneuploidy but not in cytokinesis failure and in tetraploidy. This supports the notion that activation of p38-p53-p21 signaling correlates with aneuploidy but not with tetraploidy or binucleation. Partial inhibition of Aurora B also leads to increased generation of reactive oxygen species (ROS), which are required for the activation of p38, p21 and cell cycle arrest. Based on these observations I propose the following model: Inhibition of Aurora B leads to chromosome missegregation resulting in aneuploidy. This results in increased generation of ROS (reactive oxygen species) possibly through proteotoxic stress caused by an imbalance of protein synthesis in aneuploid cells. ROS triggers the activation of p38, which then stimulates the transcriptional elongation of p21 resulting in cell cycle arrest. Aneuploidy, proteotoxic stress and oxidative stress are hallmarks of cancer cells. Based on my results reported in this study, I suggest that the combination of Aurora B inhibitors with drugs that specifically target aneuploid cells might be a novel strategy for cancer therapy, as this is a lethal combination for proliferation of cancer cells. KW - Zellzyklus KW - Biomedicine KW - Inhibitor KW - Cell Cycle KW - Aneuploidy KW - Aurora B Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-101327 ER - TY - THES A1 - Heilos, Anna T1 - Mechanistic Insights into the Inhibition of Cathepsin B and Rhodesain with Low-Molecular Inhibitors T1 - Mechanistische Untersuchungen zur Inhibition von Cathepsin B und Rhodesain mit niedermolekularen Inhibitoren N2 - Cysteine proteases play a crucial role in medical chemistry concerning various fields reaching from more common ailments like cancer and hepatitis to less noted tropical diseases, namely the so-called African Sleeping Sickness (Human Arfican Trypanosomiasis). Detailed knowledge about the catalytic function of these systems is highly desirable for drug research in the respective areas. In this work, the inhibition mechanisms of the two cysteine proteases cathepsin B and rhodesain with respectively one low-molecular inhibitor class were investigated in detail, using computational methods. In order to sufficiently describe macromolecular systems, molecular mechanics based methods (MM) and quantum mechanical based method (QM), as well as hybrid methods (QM/MM) combining those two approaches, were applied. For Cathespin B, carbamate-based molecules were investigated as potential inhibitors for the cysteine protease. The results indicate, that water-bridged proton-transfer reactions play a crucial role for the inhibition. The energetically most favoured pathway (according to the calculations) includes an elimination reaction following an E1cB mechanism with a subsequent carbamylation of the active site amino acid cysteine. Nitroalkene derivatives were investigated as inhibitors for rhodesain. The investigation of structurally similar inhibitors showed, that even small steric differences can crucially influence the inhibition potential of the components. Furthermore, the impact of a fluorination of the nitroalkene inhibitors on the inhibition mechanism was investigated. According to experimental data measured from the working group of professor Schirmeister in Mainz, fluorinated nitroalkenes show – in contrast to the unfluorinated compounds – a time dependent inhibition efficiency. The calculations of the systems indicate, that the fluorination impacts the non-covalent interactions of the inhibitors with the enzymatic environment of the enzyme which results in a different inhibition behaviour. N2 - Cysteinproteasen spielen eine wichtige Rolle in der medizinischen Chemie. Nicht nur im Bereich bekannterer Krankheiten wie Krebs oder Hepatitis, sondern auch bezüglich weniger verbreiteter, tropischer Krankheiten wie der sogenannten afrikanischen Schlafkrankheit (Afrikanische Trypanosomiasis) haben diese Enzyme eine große Bedeutung. Im Bereich der Wirkstofffindung ist ein detailliertes Wissen über die katalytische Funktion der an einer Krankheit beteiligten Enzyme unabdingbar .In der vorliegenden Arbeit wurden die Inhibitionsmechanismen der beiden Cysteinproteasen Cathepsin B und Rhodesain in Verbindung mit zwei niedermolekularen Inhibitorklassen anhand theoretischer Berechnungen untersucht. Um die makromolekularen Systeme ausreichend genau beschreiben zu können, wurden neben molekularmechanischen (MM) und quantenmechanischen (QM) Ansätzen auch Hybridmethoden verwendet, welche beide Ansätze (QM/MM) verbinden. Für Cathepsin B wurden Carbamat-basierte Moleküle als potenzielle Inhibitoren der Cysteinprotease untersucht. Die Ergebnisse weisen darauf hin, dass wasser-verbrückte Protonentransferreaktionen eine entscheidende Rolle für die Inhibition spielen. Der laut den Rechnungen energetisch günstigste Mechanismus beinhaltet eine Eliminierungsreaktion nach einem E1cB Mechanismus gefolgt von der Carbamylierung der Aminosäure Cystein in der aktiven Tasche des Enzyms. Nitroalken-Derivate wurden als potenzielle Rhodesain Inhibitoren untersucht. Der Vergleich strukturell ähnlicher Verbindungen weist darauf hin, dass schon kleine sterische Veränderungen einen großen Einfluss auf das Inhibitionspotenzial der Nitroalkene haben können. Außerdem wurde der Einfluss einer Fluorierung der Inhibitoren anhand von Berechnungen untersucht. Messungen der Arbeitsgruppe von Prof. Schirmeister in Mainz zu fluorierten und unfluorierten Nitroalkenen zeigen, dass die fluorierten Verbindungen ein zeitabhängiges Inhibitionspotenzial in Rhodesain aufweisen. Die Berechnungen der Systeme deuten darauf hin, dass die Fluorierung die nicht-kovalenten Wechselwirkungen der Inhibitoren mit der enzymatischen Umgebung des Systems beeinflussen, was zu einem unterschiedlichen Inhibitionsverhalten führt. KW - Cysteinproteasen KW - Inhibitor KW - Mechanismus KW - Berechnung KW - Inhibition Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-178228 ER - TY - THES A1 - Paasche, Alexander T1 - Mechanistic Insights into SARS Coronavirus Main Protease by Computational Chemistry Methods T1 - Mechanistische Einblicke in die SARS Coronavirus Hauptprotease mit computerchemischen Methoden N2 - The SARS virus is the etiological agent of the severe acute respiratory syndrome, a deadly disease that caused more than 700 causalities in 2003. One of its viral proteins, the SARS coronavirus main protease, is considered as a potential drug target and represents an important model system for other coronaviruses. Despite extensive knowledge about this enzyme, it still lacks an effective anti-viral drug. Furthermore, it possesses some unusual features related to its active-site region. This work gives atomistic insights into the SARS coronavirus main protease and tries to reveal mechanistic aspects that control catalysis and inhibition. Thereby, it applies state-of-the-art computational methods to develop models for this enzyme that are capable to reproduce and interpreting the experimental observations. The theoretical investigations are elaborated over four main fields that assess the accuracy of the used methods, and employ them to understand the function of the active-site region, the inhibition mechanism, and the ligand binding. The testing of different quantum chemical methods reveals that their performance depends partly on the employed model. This can be a gas phase description, a continuum solvent model, or a hybrid QM/MM approach. The latter represents the preferred method for the atomistic modeling of biochemical reactions. A benchmarking uncovers some serious problems for semi-empirical methods when applied in proton transfer reactions. To understand substrate cleavage and inhibition of SARS coronavirus main protease, proton transfer reactions between the Cys/His catalytic dyad are calculated. Results show that the switching between neutral and zwitterionic state plays a central role for both mechanisms. It is demonstrated that this electrostatic trigger is remarkably influenced by substrate binding. Whereas the occupation of the active-site by the substrate leads to a fostered zwitterion formation, the inhibitor binding does not mimic this effect for the employed example. The underlying reason is related to the coverage of the active-site by the ligand, which gives new implications for rational improvements of inhibitors. More detailed insights into reversible and irreversible inhibition are derived from in silico screenings for the class of Michael acceptors that follow a conjugated addition reaction. From the comparison of several substitution patterns it becomes obvious that different inhibitor warheads follow different mechanisms. Nevertheless, the initial formation of a zwitterionic catalytic dyad is found as a common precondition for all inhibition reactions. Finally, non-covalent inhibitor binding is investigated for the case of SARS coranavirus main protease in complex with the inhibitor TS174. A novel workflow is developed that includes an interplay between theory and experiment in terms of molecular dynamic simulation, tabu search, and X-ray structure refinement. The results show that inhibitor binding is possible for multiple poses and stereoisomers of TS174. N2 - Das Schwere Akute Respiratorische Syndrom (SARS) wird durch eine Infektion mit dem SARS Virus ausgelöst, dessen weltweite Verbreitung 2003 zu über 700 Todesfällen führte. Die SARS Coronavirus Hauptprotease stellt ein mögliches Wirkstoffziel zur Behandlung dar und hat Modellcharakter für andere Coronaviren. Trotz intensiver Forschung sind bis heute keine effektiven Wirkstoffe gegen SARS verfügbar. Die vorliegende Arbeit gibt Einblicke in die mechanistischen Aspekte der Enzymkatalyse und Inhibierung der SARS Coronavirus Hauptprotease. Hierzu werden moderne computerchemische Methoden angewandt, die mittels atomistischer Modelle experimentelle Ergebnisse qualitativ reproduzieren und interpretieren können. Im Zuge der durchgeführten theoretischen Arbeiten wird zunächst eine Fehlereinschätzung der Methoden durchgeführt und diese nachfolgend auf Fragestellungen zur aktiven Tasche, dem Inhibierungsmechanismus und der Ligandenbindung angewandt. Die Einschätzung der quantenchemischen Methoden zeigt, dass deren Genauigkeit teilweise von der Umgebungsbeschreibung abhängt, welche als Gasphasen, Kontinuum, oder QM/MM Modell dargestellt werden kann. Letzteres gilt als Methode der Wahl für die atomistische Modellierung biochemischer Reaktionen. Die Vergleiche zeigen für semi-empirische Methoden gravierende Probleme bei der Beschreibung von Proton-Transfer Reaktionen auf. Diese wurden für die katalytische Cys/His Dyade betrachtet, um Einblicke in Substratspaltung und Inhibierung zu erhalten. Dem Wechsel zwischen neutralem und zwitterionischem Zustand konnte hierbei eine zentrale Bedeutung für beide Prozesse zugeordnet werden. Es zeigt sich, dass dieser „electrostatic trigger“ von der Substratbindung, nicht aber von der Inhibitorbindung beeinflusst wird. Folglich beschleunigt ausschließlich die Substratbindung die Zwitterionbildung, was im Zusammenhang mit der Abschirmung der aktiven Tasche durch den Liganden steht. Dies gibt Ansatzpunkte für die Verbesserung von Inhibitoren. Aus in silico screenings werden genauere Einblicke in die reversible und irreversible Inhibierung durch Michael-Akzeptor Verbindungen gewonnen. Es wird gezeigt, dass unterschiedlichen Substitutionsmustern unterschiedliche Reaktionsmechanismen in der konjugierten Additionsreaktion zugrunde liegen. Die vorangehende Bildung eines Cys-/His+ Zwitterions ist allerdings für alle Inhibierungsmechanismen eine notwendige Voraussetzung. Letztendlich wurde die nicht-kovalente Bindung eines Inhibitors am Beispiel des TS174-SARS Coronavirus Hauptprotease Komplexes untersucht. Im Zusammenspiel von Theorie und Experiment wurde ein Prozess, bestehend aus Molekulardynamik Simulation, Tabu Search und Röntgenstruktur Verfeinerung ausgearbeitet, der eine Interpretation der Bindungssituation von TS174 ermöglicht. Im Ergebnis zeigt sich, dass der Inhibitor gleichzeitig in mehreren Orientierungen, als auch in beiden stereoisomeren Formen im Komplex vorliegt. KW - SARS KW - Inhibitor KW - Enzym KW - Computational chemistry KW - Coronaviren KW - SARS KW - Protease KW - Mechanismus KW - Inhibitor KW - Computerchemie KW - SARS KW - protease KW - mechanism KW - inhibitor KW - computational chemistry Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-79029 ER - TY - THES A1 - Endres, Erik T1 - Kovalente Inhibitoren: Modellierung und Design T1 - Covalent Inhibitors: Modeling and Design N2 - Kovalente Inhibition stellt einen effektiven Weg dar, die Verweildauer des Liganden innerhalb einer Bindetasche zu erhöhen. In dieser Arbeit wurden theoretische Methoden angewendet, um die Reaktivität und den nichtkovalenten Zustand vor der Reaktion zu modellieren. Im Rahmen einer Fallstudie zu Cathepsin K wurden nichtkovalente Modelle von kovalenten Inhibitoren generiert. Für verschiedene Komplexe aus Cathepsin K und einem kovalent gebundenem Liganden wurde der Zustand vor der Reaktion modelliert und dessen Stabilität im Rahmen einer klassischen MD-Simulation überprüft. Die Stabilität des Warheads in der Bindetasche hing hauptsächlich vom gewählten Protonierungszustand der katalytischen Aminosäuren ab. Für eine Reihe von Inhibitoren der ChlaDUB1 wurde ein Protokoll aus quantenmechanischen Rechnungen genutzt, um die Reaktivität verschiedener Warheads abzuschätzen. Die erhaltenen Aktivierungsenergien korrelierten mit experimentell bestimmten Raten zur Inaktivierung des Enzyms. Im Rahmen eines Wirkstoffdesign-Projektes zur Deubiquitinase USP28 wurden von unpublizierten Kristallstrukturen ausgehend erste Docking-Experimente durchgeführt. Es konnte gezeigt werden, dass ein literaturbekannter Inhibitor von USP28 mit einem Warhead so modifiziert werden kann, dass die reaktive Einheit in direkter Nachbarschaft zu einem Cystein positioniert wird. Für diese Warheads wurden ebenfalls quantenmechanische Rechnungen zur Bestimmung der Aktivierungsenergie durchgeführt. Um besser nachvollziehen zu können, warum bei einem Photoswitch-Inhibitor der Butyrylcholin-Esterase der cis-Zustand des Moleküls besser inhibiert als der trans-Zustand, wurde eine Docking-Studie des Zustandes vor der Reaktion durchgeführt. Es konnte ein qualitatives Modell aufgestellt werden, das zeigt, dass der trans-Zustand aufgrund seiner längeren Form mit wichtigen Aminosäuren am Eingang der Bindungstasche kollidiert. N2 - Covalent inhibition is an effective way to increase the residence time of a ligand within the active site. In this work theoretical methods were used to model the reactivity and the noncovalent pre-reaction state. Noncovalent models of covalent inhibitors were generated as part of a case study of Cathepsin K. Several complexes of Cathepsin K and a covalently bound ligand were modeled in their state before the reaction, and their stability was assessed by classical molecular dynamics simulations. In most cases the warhead was positioned in close proximity to the catalytic unit, remaining there for up to several hundred nanoseconds. This stable positioning was largely dependent on the protonation state of the catalytic amino acids. To estimate the reactivity of a series of ChlaDUB1 inhibitors, a protocol of quantum mechanical calculations was adapted. The obtained activation energies correlated with experimentally obtained rate constants of enzyme inactivation. Using unpublished crystal structures, first design steps for the inhibition of the deubiquitinase USP28 were performed. Docking studies showed that modification of a literature-known inhibitor of USP28 with a warhead allowed to place this reactive unit close to a cysteine. Activation energies were also obtained for these structures via quantum mechanical calculations. To better rationalize the differences in inhibition between the cis- and trans-state of a photoswitch inhibitor of butyrylcholine esterase, a docking study of the noncovalent state was performed. The different ring conformers and stereochemical properties of the photoswitch were critical for a sensible model of the ligand. A qualitative model could be obtained which explains that the cis-isomer is more active than the trans-isomer due to a steric clash of the latter with amino acids at the entrance of the pocket. KW - Molekulardynamik KW - Docking KW - Inhibitor KW - Computational chemistry KW - Arzneimitteldesign KW - Cathepsin KW - Deubiquitinasen KW - Kovalente Inhibitoren Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-359330 ER - TY - THES A1 - Pfetzer, Nadja T1 - Identifizierung und Testung spezifischer Inhibitoren des Energiestoffwechsels von Tumorzellen T1 - Identification and testing of specific inhibitors of metabolism in tumour cells N2 - Charakteristisch für viele maligne Tumorzellen ist eine erhöhte Aufnahme von Glucose und die Bildung großer Mengen Milchsäure auch in Anwesenheit von Sauerstoff (Warburg Effekt) und eine verminderte Nutzung des Zitratzyklus. Als Grund werden Defekte in der mitochondrialen Atmungskette diskutiert. Aber auch eine durch Onkogene gesteigerte Glykolyserate, könnte ursächlich sein. Ein weiterer für Tumorzellen wichtiger Stoffwechselweg, in dem Glucose abgebaut wird, ist der Pentosephosphatweg, dessen Blockade das Wachstum der Krebszellen hemmen könnte. Zudem stellt die Manipulation derjenigen Signalwege, die in den Tumorstoffwechsel involviert und in Tumorzellen überaktiviert (Ras/PI3K/Akt/mTOR- und Raf/MEK/ERK-Signalweg) oder unterdrückt (oxidative Phosphorylierung) sind, mögliche Ansatzpunkte dar. In dieser Arbeit wurde daher in vitro die Wirkung von 15 Substanzen an drei verschiedenen Tumorzelllinien und vier verschiedenen benignen Zellen untersucht, welche in die oben genannten charakteristischen Stoffwechselwege von Tumorzellen eingreifen und gegenwärtig intensiv als mögliche Tumortherapeutika diskutiert werden. Ziel war es, geeignete Kandidaten für eine zielgerichtete Therapie zu identifizieren. Der Schwerpunkt dieser Arbeit war die Beeinflussung des Glucosestoffwechsels in Tumorzellen. Da Glucose sowohl aerob als auch anaerob verstoffwechselt werden kann, wurden in einem ersten Ansatz zum einen Substanzen gestestet, die die Glykolyse auf verschiedenen Ebenen hemmen, zum anderen wurden Substanzen untersucht, die den mitochondrialen Stoffwechsel beeinflussen. Die Wirkung aller 15 Substanzen wurde zunächst jeweils als Einzelbehandlung getestet. Hierbei führten nur sehr hohe Konzentrationen in Tumorzellen zu einem drastisch verminderten ATP-Gehalt, die für benigne Zellen aber ebenfalls toxisch waren. Daher wurde in einem zweiten Schritt untersucht, ob durch die gleichzeitige Manipulation des Glucosestoffwechsels und des mitochondrialen Stoffwechsels mit jeweils subtoxischen Konzentrationen eine tumorselektive Wirkung erreicht werden kann. Bei der Kombination der Substanzen Oxythiamin/NaDCA bzw. 2-DG/Rotenon ergaben sich zwar synergistische Effekte auf die Verminderung des ATP-Gehaltes in den getesteten Tumorzellen, eine generelle tumorselektive Wirkung konnte jedoch durch die kombinierte Behandlung nicht erreicht werden. In jüngster Zeit mehren sich die Hinweise, dass die Glutaminolyse einen sehr wichtigen Stoffwechselweg für Energiegewinnung und Syntheseprozesse von Tumorzellen darstellt. Deshalb wurde in einem dritten Schritt untersucht, ob durch die Hemmung der Glutaminolyse mit der Substanz 6-Diazo-5-oxo-L-norleuzin (DON) eine tumorspezifische Wirkung erreicht werden kann. In der Tat konnte durch DON eine andeutungsweise tumorselektive Wirkung auf den ATP-Gehalt der Zellen erzielt werden, jedoch war das therapeutische Fenster sehr eng. Durch die Hemmung der oxidativen Phosphorylierung wurde in allen drei untersuchten Tumorzelllinien eine gesteigerte Milchsäureproduktion nachgewiesen. Dies ist ein eindeutiger Hinweis dafür, dass in diesen Tumorzellen die Mitochondrien keine Defekte aufweisen. Die hier untersuchten benignen und malignen Zellen wurden hinsichtlich des Glucosestoffwechsels mit verschiedenen Methoden näher charakterisiert, um zu beurteilen, ob sich die Zellen in ihrem Stoffwechselphänotyp unterscheiden. Bei der Quantifizierung der Glucoseaufnahme wurde deutlich, dass auch manche benigne Zellen deutliche Mengen an Glucose aufnehmen, welche allerdings nur der Tumorzelllinie mit der niedrigsten Aufnahme glich. Mittels immunhistochemischer Färbungen wurden charakteristische Proteine des Zuckerstoffwechsels dargestellt. Zudem wurde die Expression von zentralen Genen des Stoffwechsels auf mRNA- bzw. Proteinebene untersucht. Hierbei wurde deutlich, dass sowohl Tumorzellen als auch manche benigne Zellen für die Glykolyse typische Proteine bzw. mRNA stark exprimieren. Fazit der Charakterisierung ist, dass es zwischen den hier verwendeten malignen und benignen Zellen keine eindeutige Differenzierung aufgrund des Stoffwechselprofils gibt, sondern sich die getesteten Zellen nur graduell unterscheiden. Dieses Ergebnis erklärt möglicherweise die geringe Tumorspezifität der getesteten Substanzen. Im Vergleich mit den vielversprechenden Ergebnissen aus der Literatur zeigten die hier gewonnenen in vitro-Daten eindeutig, dass die Wirkung von potenziell tumorhemmenden Substanzen je nach Tumorzelltyp extrem verschieden war. Dies beruht darauf, dass der vorherrschende Stoffwechseltyp (oxidativ bzw. glykolytisch) für jede Tumorentität verschieden ist. Daher muss vermutlich für jede Tumorentität bzw. sogar für jeden Patienten individuell die Wirkung und der Nutzen einer Hemmung des Tumorstoffwechsels untersucht werden, bevor künftig an eine zielgerichtete Therapie gedacht werden kann. N2 - A characteristic feature of aggressive tumour cells is a high uptake of glucose and enhanced lactic acid production even in the presence of oxygen (aerobic glycolysis, “Warburg effect”) with a reduced use of the tricarboxylic acid cycle. Defects in mitochondrial function and oncogene activation are supposed to contribute to increased glycolysis, that is not subjected to the Pasteur effect (reduced rate of glycolysis in the presence of oxygen). The pentose phosphate pathway (PPP) is an important metabolic pathway in cancer cells, supplying building blocks for nucleotide synthesis and NADPH for proper redox control. Hence, inhibition of the PPP might block tumour cell growth. Perturbation of signalling pathways that are involved in tumour cell metabolism and are hyperactivated (Ras/PI3K/Akt/mTOR- and Raf/MEK/ERK-pathway) or suppressed (oxidative phosphorylation, p53) in cancer cells are possible targets for anticancer drugs. Thus, in this work the effect of 15 substances highly discussed as potential anticancer agents which influence the aforementioned metabolic and signalling pathways was evaluated in vitro on three different tumour cells lines [two breast cancer cells lines with different metastatic phenotype (MDA-MB 231 and 468) and one gastric cancer cell line (23132/87)] and four normal cell types [endometrial fibroblasts, endothelial cells (HUVEC), peripheral blood leukocytes and skin keratinocytes]. Aim of the study was to identify suitable candidates for targeted therapies. ATP-level was measured as readout to determine the efficacy of the substances, because the ATP content of cells correlates well with cell viability. The main focus of this work was to selectively modulate the glucose metabolism of cancer cells. Because glucose can be metabolized aerobically and anaerobically, we first tested substances that inhibit glycolysis at different steps and substances that interfere with mitochondrial metabolism. All of the 15 substances were tested as single treatment. Here, only very high concentrations of the respective substance significantly decreased ATP-levels in cancer cells - but to a much greater extend in normal cells. Therefore, in the next step we determined if impairing glucose and mitochondrial metabolism simultaneously with less toxic drug concentrations would be more specific in targeting cancer cells. Although synergistic effects were observed by co-treatment with oyxthiamine/NaDCA and 2-DG/rotenone respectively on reducing ATP-levels, this effect was not selective for tumour cells too. Recently, evidence is coming up that glutaminolysis (degradation of glutamine) is an important metabolic pathway for cancer cells providing energy substrates and building blocks. Thus, we examined if a tumour-specific effect could be achieved by inhibition of glutaminolysis with 6-Diazo-5-oxo-L-norleuzin (DON). Actually, other than the substances interfering with glucose metabolism, DON showed a tumour-specific effect to some extent, although the therapeutical range was very small. Inhibition of oxidative mitochondrial metabolism with the substances rotenone, oligomycin, 2,4-dinitrophenol and rhodamine 123 increased lactic acid production in all three cancer cell lines. Thus, it was possible to impede oxidative phosphorylation and to force the cells to increase glycolysis, indicating that mitochondria had no defects. To determine if tumour cells and normal cells differ in regard of their metabolic phenotype, the cells were analyzed for parameters concerning glucose metabolism with different methods. Quantifying glucose uptake of the cells revealed that some normal cells (fibroblasts, T-cells) take up significant amounts of glucose that are similar to those of cancer cells (MDA-MB 231) which showed the lowest glucose uptake among the three tumour cell lines tested. Characteristic proteins of glucose metabolism were analyzed using immunohistochemistry. Furthermore expression patterns of crucial genes involved in glucose metabolism were analyzed on mRNA and protein level. Thereby, it became obvious that both tumour cells as well as normal cells have very similar expression patterns regarding these typical genes. In conclusion, the characterization of tumour and normal cells did not show any substantial but rather gradual differences concerning the metabolic phenotype. These results might explain the marginal tumour specific effect of the drugs tested herein Compared to the promising results from the literature our in vitro data clearly show that the effect of potential anticancer drugs is extremely different for several tumour cell types. This might be due to the predominant metabolic phenotype (oxidative or glycolytic) of different tumour entities. Thus, we suppose that inhibition of tumour cell metabolism has to be evaluated for every single cancer cell type or even every cancer patient on regard of effect and benefit for implementation of selective cancer pharmacotherapy. KW - Tumorzelle KW - Glykolyse KW - Inhibitor KW - Warburgeffekt KW - Stoffwechsel KW - Tumor KW - glycolysis KW - metabolism KW - tumour KW - glucose KW - Warburg effect Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-65406 ER - TY - THES A1 - Winkler, Ann-Cathrin Nicole T1 - Identification of human host cell factors involved in \(Staphylococcus\) \(aureus\) 6850 infection T1 - Identifizierung von humanen Wirtszellfaktoren die eine Rolle bei der \(Staphylococcus\) \(aureus\) Infektion spielen N2 - Staphylococcus aureus is both a human commensal and a pathogen. 20%-30% of all individuals are permanently or occasionally carriers of S. aureus without any symptoms. In contrast to this, S. aureus can cause life-threatening diseases e.g. endocarditis, osteomyelitis or sepsis. Here, the increase in antibiotic resistances makes it more and more difficult to treat these infections and hence the number of fatalities rises constantly. Since the pharmaceutical industry has no fundamentally new antibiotics in their pipeline, it is essential to better understand the interplay between S. aureus and the human host cell in order to find new, innovative treatment options. In this study, a RNA interference based whole genome pool screen was performed to identify human proteins, which play a role during S. aureus infections. Since 1,600 invasion and 2,271 cell death linked factors were enriched at least 2 fold, the big challenge was to filter out the important ones. Here, a STRING pathway analysis proved to be the best option. Subsequently, the identified hits were validated with the help of inhibitors and a second, individualised small interfering RNA-based screen. In the course of this work two important steps were identified, that are critical for host cell death: the first is bacterial invasion, the second phagosomal escape. The second step is obligatory for intracellular bacterial replication and subsequent host cell death. Invasion in turn is determining for all following events. Accordingly, the effect of the identified factors towards these two crucial steps was determined. Under screening conditions, escape was indirectly measured via intracellular replication. Three inhibitors (JNKII, Methyl-beta-cyclodeytrin, 9-Phenantrol) could be identified for the invasion process. In addition, siRNAs targeted against 16 different genes (including CAPN2, CAPN4 and PIK3CG), could significantly reduce bacterial invasion. Seven siRNAs (FPR2, CAPN4, JUN, LYN, HRAS, AKT1, ITGAM) were able to inhibit intracellular replication significantly. Further studies showed that the IP3 receptor inhibitor 2-APB, the calpain inhibitor calpeptin and the proteasome inhibitor MG-132 are able to prevent phagosomal escape and as a consequence intracellular replication and host cell death. In this context the role of calpains, calcium, the proteasome and the mitochondrial membrane potential was further investigated in cell culture. Here, an antagonistic behaviour of calpain 1 and 2 during bacterial invasion was observed. Intracellular calcium signalling plays a major role, since its inhibition protects host cells from death. Beside this, the loss of mitochondrial membrane potential is characteristic for S. aureus infection but not responsible for host cell death. The reduction of membrane potential can be significantly diminished by the inhibition of the mitochondrial Na+/Ca2+ exchanger. All together, this work shows that human host cells massively contribute to different steps in S. aureus infection rather than being simply killed by bacterial pore-forming toxins. Various individual host cell factors were identified, which contribute either to invasion or to phagosomal escape and therefore to S. aureus induced cytotoxicity. Finally, several inhibitors of S. aureus infection were identified. One of them, 2-APB, was already tested in a sepsis mouse model and reduced bacterial load of kidneys. Thus, this study shows valuable evidence for novel treatment options against S. aureus infections, based on the manipulation of host cell signalling cascades. N2 - Staphylococcus aureus kann sowohl ein Bestandteil der natürlichen Hautflora als auch ein Krankheitserreger sein. 20%-30% aller Menschen werden, permanent oder zeitweise, von S. aureus besiedelt, ohne Krankheitssymptome aufzuweisen. Im Gegensatz dazu kann S. aureus lebensbedrohliche Krankheiten wie Endokarditis, Osteomyelitis oder Sepsis verursachen. Diese Infektionen können immer schlechter behandelt werden, da immer mehr Stämme Resistenzen gegen die vorhandenen Antibiotika aufweisen. Dies führt zu einer steigenden Anzahl an Todesfällen, die auf Staphylokokkeninfektionen zurückzuführen sind. Da die Pharmaindustrie keine grundlegend neuen Antibiotika kurz vor der Marktreife hat, ist ein besseres Verständnis für das Wechselspiel zwischen Staphylokokken und ihren menschlichen Wirtszellen unbedingt notwendig, um neue, innovative Behandlungsmöglichkeiten finden zu können. Dafür wurde in dieser Arbeit ein genomweiter RNA-interferenz basierter Screen durchgeführt. Es sollten so die Proteine identifiziert werden, die eine Rolle bei der Staphylokokkeninfektion spielen. Da 1.600 invasionsrelevante und 2.271 zelltodrelevante Faktoren mindestens 2-fach angereichert waren, musste ein Weg gefunden werden die wichtigen Faktoren herauszufiltern. Eine STRING-Pathwayanalyse stellte sich als die beste Methode hierfür heraus. In einem zweiten Schritt wurden die so identifizierten Faktoren mit Inhibitoren oder einzelnen siRNAs ein weiteres Mal herunterreguliert, um ihre tatsächlichen Auswirkungen auf den Infektionsverlauf zu untersuchen. Im Verlauf dieser Arbeit konnte gezeigt werden, dass dem S. aureus induzierten Wirtszelltod mindestens zwei wichtige Schritte vorausgehen müssen. Erstens die Invasion der Wirtszelle und zweitens der Ausbruch aus dem Phagosom. Nur so können sich im dritten Schritt die Bakterien intrazellulär vermehren und die Zelle töten. Daher wurde der Einfluss der identifizierten Faktoren auf diese beiden entscheidenden Prozesse untersucht. Der Ausbruch wurde unter Screenkonditionen indirekt über die intrazelluläre Vermehrung bestimmt. Es konnten drei Inhibitoren (JNKII, Methyl-beta-cyclodeytrin, 9-Phenantrol) identifiziert werden, die die bakterielle Invasion vermindern. Darüber hinaus wurden 16 Proteine (unter anderem CAPN2, CAPN4 und PIK3CG) gefunden, deren Herunterregulation durch siRNAs, eine signifikant reduzierte Invasion zur Folge hatten. Sieben siRNAs (FPR2, CAPN4, JUN, LYN, HRAS, AKT1, ITGAM) waren in der Lage die intrazelluläre Vermehrung signifikant zu verringern. In nachfolgenden Versuchen konnte gezeigt werden, dass der IP3-Rezeptorinhibitor 2-APB, der Calpaininhibitor Calpeptin und der Proteasominhibitor MG-132 den Ausbruch aus dem Phagosom, sowie die darauffolgenden Ereignisse (intrazelluläre Vermehrung und Wirtszelltod) inhibieren können. In diesem Zusammenhang wurden die Einflüsse von Calpainen, Calcium, dem Proteasom sowie dem mitochondrialen Membranpotentialverlust im Zellkulturmodell im Detail weiter untersucht. So konnte eine gegensätzliche Rolle von Calpain 1 und 2 bei der S. aureus Invasion festgestellt werden. Die intrazelluläre calciumabhängige Signalweiterleitung spielt eine bedeutende Rolle bei der S. aureus Infektion, da ihre Inhibition eine normale Infektion verhindert. Das mitochondriale Membranpotential (MMP) sinkt während einer S. aureus infektion, ist aber nicht für den Zelltod verantwortlich. Das Sinken des MMPs kann mit einem Inhibitor, der den mitochondrialen Na+/Ca2+ Austausch verhindert, signifikant reduziert werden. Zusammenfassend zeigt diese Arbeit, dass die menschliche Wirtszelle selbst relevant zu den verschiedenen Schritten der Staphylokokkeninfektion beiträgt, und nicht einfach, wie häufig angenommen, von porenbildenden bakteriellen Toxinen zerstört wird. Entsprechend konnten einzelne Wirtszellproteine identifiziert werden, die entweder zur bakteriellen Invasion oder zum phagosomalen Ausbruch und somit zum induzierten Wirtszelltod beitragen. Überdies konnte gezeigt werden, dass Inhibitoren, die diese Wirtszellproteine hemmen, die Wirtszellen zu unterschiedlichen Zeitpunkten vor einer S. aureus Infektion schützen können. Folglich liefert diese Arbeit wertvolle Hinweise für neue Behandlungsmöglichkeiten von S. aureus Infektionen, die auf der Manipulation von Wirtszellsignalkaskaden beruhen. KW - Staphylococcus aureus KW - Wirtszelle KW - RNS-Interferenz KW - Host cell death KW - RNAi KW - 2-APB KW - intracellular replication KW - calpain KW - Human Host KW - Inhibitor Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-114300 ER -