TY - THES A1 - Scheibner, Ralf T1 - Thermoelectric Properties of Few-Electron Quantum Dots T1 - Thermoelektrische Eigenschaften von Quantenpunkten N2 - This thesis presents an experimental study of the thermoelectrical properties of semiconductor quantum dots (QD). The measurements give information about the interplay between first order tunneling and macroscopic quantum tunneling transport effects in the presence of thermal gradients by the direct comparison of the thermoelectric response and the energy spectrum of the QD. The aim of the thesis is to contribute to the understanding of the charge and spin transport in few-electron quantum dots with respect to potential applications in future quantum computing devices. It also gives new insight into the field of low temperature thermoelectricity. The investigated QDs were defined electrostatically in a two dimensional electron gas (2DEG) formed with a GaAs/(Al,Ga)As heterostructure by means of metallic gate electrodes on top of the heterostructure. Negative voltages with respect to the potential of the 2DEG applied to the gate electrodes were used to deplete the electron gas below them and to form an isolated island of electron gas in the 2DEG which contains a few ten electrons. This QD was electrically connected to the 2DEG via two tunneling barriers. A special electron heating technique was used to create a temperature difference between the two connecting reservoirs across the QD. The resulting thermoelectric voltage was used to study the charge and spin transport processes with respect to the discrete energy spectrum and the magnetic properties of the QD. Such a two dimensional island usually exhibits a discrete energy spectrum, which is comparable to that of atoms. At temperatures below a few degrees Kelvin, the electrostatic charging energy of the QDs exceeds the thermal activation energy of the electrons in the leads, and the transport of electrons through the QD is dominated by electron-electron interaction effects. The measurements clarify the overall line shape of thermopower oscillations and the observed fine structure as well as additional spin effects in the thermoelectrical transport. The observations demonstrate that it is possible to control and optimize the strength and direction of the electronic heat flow on the scale of a single impurity and create spin-correlated thermoelectric transport in nanostructures, where the experimenter has a close control of the exact transport conditions. The results support the assumption that the performance of thermoelectric devices can be enhanced by the adjustment of the QD energy levels and by exploiting the properties of the spin-correlated charge transport via localized, spin-degenerate impurity states. Within this context, spin entropy has been identified as a driving force for the thermoelectric transport in the spin-correlated transport regime in addition to the kinetic contributions. Fundamental considerations, which are based on simple model assumptions, suggest that spin entropy plays an important role in the presence of charge valence fluctuations in the QD. The presented model gives an adequate starting point for future quantitative analysis of the thermoelectricity in the spin-correlated transport regime. These future studies might cover the physics in the limit of single electron QDs or the physics of more complex structures such as QD molecules as well as QD chains. In particular, it should be noted that the experimental investigations of the thermopower of few-electron QDs address questions concerning the entropy transport and entropy production with respect to single-bit information processing operations. These questions are of fundamental physical interest due to their close connection to the problem of minimal energy requirements in communication, and thus ultimately to the so called "Maxwell's demon" with respect to the second law of thermodynamics. N2 - Diese Dissertation präsentiert eine experimentelle Studie über die thermoelektrischen Eigenschaften von Halbleiterquantenpunkten. Das thermoelektrische Verhalten der Quantenpunkte wird unter besonderer Berücksichtigung ihrer jeweiligen Energiespektren und magnetischen bzw Spin-Eigenschaften diskutiert. Die durchgeführten Messungen geben Aufschluss über das Zusammenspiel von Einzelelektronentunnelprozessen erster und höherer Ordnung unter dem Einfluss thermischer Gradienten. Somit trägt diese Dissertation zum Verständnis des Ladungs- und Spintransports in potentiellen, zukünftigen Bausteinen für die Quanteninformationsverarbeitung bei und ermöglicht neue Einblicke in das Themengebiet der Thermoelektrizität bei sehr tiefen Temperaturen. Die untersuchten Quantenpunkte wurden in einem zweidimensionalen Elektronengas (2DEG) mittels nanostrukturierter, metallischer "gates" erzeugt, die auf der Oberfläche einer GaAs/AlGaAs Heterostrukturoberfläche aufgebracht wurden. Durch das Anlegen negativer Spannungen in Bezug auf das Potential des 2DEGs, wurde das Elektronengas unter den gates verdrängt, so dass eine isolierte Insel entstand, die bis zu ca. 30 Elektronen zählte. Zwei Tunnelbarrieren dienten als elektrische Verbindung dieses Quantenpunkts zu den Zuleitungen. Unter Verwendung einer speziellen Stromheizungstechnik wurde eine Temperaturdifferenz zwischen den zwei Zuleitungsreservoirs über dem Quantenpunkt erzeugt. Die Untersuchung von Ladungs- und Spintransportprozessen erfolgte über den direkten Vergleich der resultierenden thermoelektrischen Spannung mit den jeweiligen Energiespektren der Quantenpunkte. Im Allgemeinen weist eine solche zweidimensionale Insel ein diskretes Energiespektrum auf, das vergleichbar mit dem einzelner Atome ist. Unterhalb einer Temperatur von wenigen Grad Kelvin, ist die elektrostatische Aufladungsenergie des Quantenpunkts größer als die thermische Anregungsenergie der Elektronen in den Zuleitungen. Als Folge bestimmen Elektron-Elektron-Wechselwirkungseffekte den Transport von Elektronen durch den Quantenpunkt. Die durchgeführten Messungen erklären den Verlauf der Thermokraft als Funktion des Quantenpunktpotentials einschließlich der aufgeprägten Feinstruktur sowie zusätzliche thermoelektrische Effekte, die von den Spin-Eigenschaften des Quantenpunkts hervorgerufen werden. Die Beobachtungen beweisen, dass es möglich ist Stärke und Richtung des elektronischen Wärmeflusses auf der Größenskala einzelner Verunreinigungen zu kontrollieren und gegebenenfalls zu optimieren sowie Spin-korrelierten thermoelektrischen Transport in künstlich hergestellten Nanostrukturen zu verwirklichen, welche eine gezielte Kontrolle der Transportbedingungen erlauben. Die Ergebnisse untermauern die Annahmen einer möglichen Verbesserung der Effizienz thermoelektrisch aktiver Materialien durch die Anpassung der energetischen Lage entsprechender Quantenpunktzustände und durch die Ausnutzung der thermoelektrischen Effekte im Spin-korrelierten Ladungstransport durch energetisch entartete, lokalisierte Zustände. In diesem Rahmen wurde erläutert, dass Spinentropie neben den kinetischen Beiträgen eine weitere treibende Kraft des thermoelektrischen Transports durch Quantenpunkte darstellt. Grundlegende Überlegungen, die auf einfachen Modellannahmen beruhen, lassen erwarten, dass die Beiträge der Spinentropie zum thermoelektischen Transport bei vorhandenen Fluktuationen der Anzahl der Ladungen auf dem Quantenpunkt eine signifikante Rolle spielen. Das vorgestellte Modell bietet hierzu einen geeigneten Ausgangspunkt für weitere quantitative Analysen der Thermoelektrizität im Spin-korrelierten Transportregime. Insbesondere sei darauf hingewiesen, dass die experimentelle Untersuchung der Thermokraft von Quantenpunktstrukturen, wie sie hier verwendet wurden, den Entropietransport und die Entropieerzeugung in Bezug zu Ein-Bit-Rechenoperationen setzen. Fragestellungen dieser Art sind von fundamentalem physikalischen Interesse aufgrund ihrer engen Verknüpfung mit der Frage nach dem minimalen Energieaufwand, der eine Kommunikation ermöglicht. Dieses Problem wird häufig mittels des so genannten Maxwell'schen Dämon diskutiert und hinterfragt in ihrem Ursprung den zweiten Hauptsatz der Thermodynamik. KW - Quantenpunkt KW - Thermokraft KW - Thermoelektrizität KW - Wärmeübertragung KW - Coulomb-Blockade KW - Resonanz-Tunneleffekt KW - Kondo-Effekt KW - Magnetowiderstand KW - Einzelelektronentransistor KW - Spinentropie KW - mesoskopisch KW - Quantentransport KW - single electron transistor KW - SET KW - thermopower KW - spin entropy KW - heat transfer KW - mesoscopic Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-26699 ER - TY - THES A1 - König, Markus T1 - Spin-related transport phenomena in HgTe-based quantum well structures T1 - Spin-bezogene Transportphänomene in HgTe-basierten Quantentrogstrukturen N2 - Within the scope of this thesis, spin related transport phenomena have been investigated in HgTe/HgCdTe quantum well structures. This material exhibits peculiar band structure properties, which result in a strong spin-orbit interaction of the Rashba type. An inverted band structure, i.e., a reversed ordering of the energy states in comparison to common semiconductors, is obtained for quantum well layers above a critical thickness. Furthermore, the band structure properties can be controlled in the experiments by moderate gate voltages. Most prominently, the type of carriers in HgTe quantum wells can be changed from n to p due to the narrow energy gap. Along with the inverted band structure, this unique transition is the basis for the demonstration of the Quantum Spin Hall state, which is characterized by the existence of two one-dimensional spin-polarized edge states propagating in opposite directions, while the Fermi level in the bulk is in the energy gap. Since elastic scattering is suppressed by time reversal symmetry, a quantized conductance for charge and spin transport is predicted. Our experiments provide the first experimental demonstration of the QSH state. For samples with characteristic dimensions below the inelastic mean free path, charge conductance close to the expected value of 2e^2/h has been observed. Strong indication for the edge state transport was found in the experiments as well. For large samples, potential fluctuations lead to the appearance of local n-conducting regions which are considered to be the dominant source of backscattering. When time reversal symmetry is broken in a magnetic field, elastic scattering becomes possible and conductance is significantly suppressed. The suppression relies on a dominant orbital effect in a perpendicular field and a smaller Zeeman-like effect present for any field direction. For large perpendicular fields, a re-entrant quantum Hall state appears. This unique property is directly related to the non-trivial QSH insulator state. While clear evidence for the properties of charge transport was provided, the spin properties could not be addressed. This might be the goal of future experiments. In another set of experiments, the intrinsic spin Hall effect was studied. Its investigation was motivated by the possibility to create and to detect pure spin currents and spin accumulation. A non-local charging attributed to the SHE has been observed in a p-type H-shaped structure with large SO interaction, providing the first purely electrical demonstration of the SHE in a semiconductor system. A possibly more direct way to study the spin Hall effects opens up when the spin properties of the QSH edge states are taken into account. Then, the QSH edge states can be used either as an injector or a detector of spin polarization, depending on the actual configuration of the device. The experimental results indicate the existence of both intrinsic SHE and the inverse SHE independently of each other. If a spin-polarized current is injected from the QSH states into a region with Rashba SO interaction, the precession of the spin can been observed via the SHE. Both the spin injection and precession might be used for the realization of a spin-FET similar to the one proposed by Datta and Das. Another approach for the realization of a spin-based FET relies on a spin-interference device, in which the transmission is controlled via the Aharonov-Casher phase and the Berry phase, both due to the SO interaction. In the presented experiments, ring structures with tuneable SO coupling were studied. A complex interference pattern is observed as a function of external magnetic field and gate voltage. The dependence on the Rashba splitting is attributed to the Aharonov-Casher phase, whereas effects due to the Berry phase remain unresolved. This interpretation is confirmed by theoretical calculations, where multi-channel transport through the device has been assumed in agreement with the experimental results. Thus, our experiments provide the first direct observation of the AC effect in semiconductor structures. In conclusion, HgTe quantum well structures have proven to be an excellent template for studying spin-related transport phenomena: The QSHE relies on the peculiar band structure of the material and the existence of both the SHE and the AC effect is a consequence of the substantial spin-orbit interaction. While convincing results have been obtained for the various effects, several questions can not be fully answered yet. Some of them may be addressed by more extensive studies on devices already available. Other issues, however, ask, e.g., for further advances in sample fabrication or new approaches by different measurements techniques. Thus, future experiments may provide new, compelling insights for both the effects discussed in this thesis and, more generally, other spin-orbit related transport properties. N2 - Im Rahmen dieser Arbeit wurden spin-bezogene Transportphänomene in HgTe/HgCdTe-Quantentrogstrukturen untersucht. Dieses Materialsystem weist besondere Bandstruktureigenschaften auf, die u.a. zu einer starken Rashba-Spin-Bahn-Wechselwirkung führen. Eine invertierte Bandstruktur, d.h. eine umgekehrte Anordnung der energetischen Zustände im Vergleich zu üblichen Halbleitern, ergibt sich für Quantentrogschichten oberhalb einer kritischen Dicke. Darüber hinaus können die Bandstruktur-Eigenschaften im Experiment mittels moderater Gatespannungen kontrolliert werden. Hervorzuheben ist, dass die Art der Ladungsträger im HgTe-Quantentrog aufgrund der geringen Bandlücke von n- nach p-Typ geändert werden kann. Dieser einzigartige Übergang bildet zusammen mit der invertierten Bandstruktur die Grundlage für den Nachweis der Quanten-Spin-Hall-Zustands, bei dem sich zwei eindimensionale spinpolarisierte Randkanäle in entgegen gesetzte Richtung ausbreiten, während die Fermi-Energie im Probeninneren in der Bandlücke liegt. Da elastische Streuprozesse aufgrund der Zeitumkehr-Invarianz verboten sind, ist der Leitwert für Ladungs- und Spintransport quantisiert. Unsere Messungen liefern den ersten experimentellen Nachweis des QSH-Zustands. Für Proben mit charakteristischen Abmessungen unterhalb der inelastischen freien Weglänge wurde ein Leitwert nahe des theoretisch erwarteten Wertes von 2e^2/h beobachtet. Die Experimente lieferten außerdem deutliche Anzeichen für den Randkanaltransport. In größeren Proben verursachen Potenzialfluktuationen lokale n-leitende Bereiche, die als Hauptursache für Rückstreuung angesehen werden können. Wird die Zeitumkehr-Invarianz im Magnetfeld gebrochen, können elastische Streuprozesse auftreten und der Leitwert sinkt deutlich. Die Ursache dafür sind ein dominanter orbitaler Effekt für senkrechte Felder sowie ein schwächerer Zeeman-ähnlicher Effekt für beliebige Feldrichtungen. Bei starken senkrechten Feldern kommt es zu einem Wieder-Eintritt in den Quanten-Hall-Zustands, was direkt mit dem nicht-trivialen isolierenden Zustand des QSH-Effekts verknüpft ist. Während die Messungen einige Eigenschaften des Ladungstransports deutlich belegen, können die Spineigenschaften nicht untersucht werden. Dies kann jedoch ein Ziel zukünftiger Messungen sein. Außerdem wurde der intrinsische Spin-Hall-Effekt untersucht, um die Erzeugung von Spinungleichgewichten und reinen Spinströmen nachzuweisen. Eine nicht-lokale Spannung, die auf den SHE zurückzuführen ist, wurde in einer p-leitenden H-förmigen Struktur beobachtet und liefert somit den ersten rein elektrischen Nachweis des SHE in einem Halbleiter-System. Ein direkterer Weg zur Untersuchung von Spin-Hall-Effekten ergibt sich, wenn die Spinpolarisation der QSH-Randkanäle berücksichtigt wird. Dabei können die QSH-Kanäle - abhängig von der Probenkonfiguration - eine Spinpolarisation wahlweise injizieren oder detektieren. Die experimentellen Ergebnisse weisen unabhängig voneinander den intrinsischen SHE und den inversen SHE nach. Wenn durch die QSH-Kanäle ein spin-polarisierter Strom in ein Gebiet mit Rashba-Spin-Bahn-Wechselwirkung injiziert wird, kann die resultierende Spinpräzession mittels des SHE beobachtet werden. Sowohl die Spininjektion als auch die Präzession können zur Umsetzung eines Spin-FETs verwendet werden, wie er von Datta und Das vorgeschlagen wurde. Eine andere Herangehensweise zur Realisierung eines spin-basierten FETs beruht auf einem Spin-Interferenz-Bauteil, in dem die Transmission über Spin-Bahn-abhängige Phasen - die Aharonov-Casher-Phase und die Berry-Phase - gesteuert wird. Bei der Untersuchung von Ringstrukturen mit variabler Spin-Bahn-Wechselwirkung zeigt sich bei einer Variation des Magnetfeld und der Gate-Spannung ein komplexes Interferenzmuster. Die Abhängigkeit von der Rashba-Aufspaltung wird der Aharonov-Casher-Phase zugeschrieben, wohingegen Effekte aufgrund der Berry-Phase nicht nachgewiesen werden können. Diese Interpretation wird durch theoretische Berechnungen bestätigt, in denen Mehr-Kanal-Transport durch den Ring angenommen wurde. Somit liefern unsere Experimente den ersten direkten Nachweis des AC-Effektes in Halbleiterstrukturen. Insgesamt stellen die HgTe-Quantentröge ein als exzellentes System zur Untersuchung von spin-bezogenen Transportphänomenen dar: Der QSHE beruht auf der besonderen Bandstruktur; und sowohl der SHE als auch der AC-Effekt treten aufgrund der deutlichen Spin-Bahn-Wechselwirkung auf. Für alle Effekte wurden überzeugende Ergebnisse erzielt; allerdings konnten einige Fragen noch nicht vollständig beantwortet werden. Einige können möglicherweise mittels umfangreicherer Untersuchungen geklärt werden. Andere jedoch verlangen z.B. nach Fortschritten in der Probenherstellung oder anderen Untersuchungsmethoden. Daher können zukünftige Experimente weitere neue faszinierende Einblicke sowohl in die hier diskutierten Effekte als auch in andere Spin-Bahn-bezogene Transportphänomene bieten. KW - Spin-Bahn-Wechselwirkung KW - Quantenwell KW - Elektronischer Transport KW - Interferenz KW - Quanten-Hall-Effekt KW - Spin KW - Zwei-Sechs-Halbleiter KW - mesoskopischer Transport KW - Quanten-Spin-Hall-Effekt KW - Spin-Hall-Effekt KW - Aharonov-Casher-Effekt KW - mesoscopic transport KW - spin-orbit-interaction KW - narrow-gap semiconductor KW - quantum spin Hall effect KW - spin Hall effect KW - Aharonov-Casher phase Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-27301 ER - TY - THES A1 - Galmbacher, Matthias T1 - Lernen mit dynamisch-ikonischen Repräsentationen aufgezeigt an Inhalten zur Mechanik T1 - Learning from dynamic-iconic representations N2 - Im Physikunterricht wurde lange Zeit die Bedeutung quantitativer Zusammenhänge für das Physiklernen überbewertet, qualitative Zusammenhänge spielten dagegen eine eher untergeordnete Rolle. Dies führte dazu, dass das Wissen der Schüler zumeist ober­fläch­lich blieb und nicht auf neue Situationen angewendet werden konnte. TIMSS und Pisa offenbarten diese Schwierigkeiten. In den Abschlussberichten wurde kritisiert, dass die Schüler kaum in der Lage seien, Lernstoff zu transferieren oder pro­blem­lösend zu denken. Um physikalische Abläufe deuten und entsprechende Probleme lösen zu können, ist qua­litativ-konzeptuelles Wissen nötig. Dieses kann, wie Forschungs­ergebnisse belegen, am besten durch die konstruktivistisch motivierte Gestaltung von Lern­situationen sowie durch die Inte­gration externer Repräsentationen von Versuchs­aussagen in den Schul­unter­richt er­reicht werden. Eine konkrete Umsetzung dieser Bedingungen stellt der Ein­satz rechner­gestützter Experimente dar, der heutzutage ohne allzu großen technischen Aufwand rea­lisiert werden kann. Diese Experimente erleichtern es dem Lernenden, durch den direk­ten Umgang mit realen Abläufen, physikalische Konzepte zu erschließen und somit qua­litative Zusammenhänge zu verstehen. Während man lange Zeit von einer grundsätzlichen Lernwirksamkeit animierter Lern­um­gebungen ausging, zeigen dagegen neuere Untersuchungen eher Gegenteiliges auf. Schüler müssen offensichtlich erst lernen, wie mit multicodierten Re­prä­sentationen zu arbeiten ist. Die vorliegende Arbeit will einen Beitrag dazu leisten, he­raus­zufinden, wie lernwirksam sogenannte dynamisch-ikonische Repräsentationen (DIR) sind, die physikalische Größen vor dem Hintergrund konkreter Versuchsabläufe visuali­sieren. Dazu bearbeiteten im Rahmen einer DFG-Studie insgesamt 110 Schüler jeweils 16 Projekte, in denen mechanische Konzepte (Ort, Geschwindigkeit, Beschleu­nigung und Kraft) aufgegriffen wurden. Es zeigte sich, dass die Probanden mit den ein­ge­setzten DIR nicht erfolgreicher lernen konnten als ver­gleich­bare Schüler, die die gleichen Lerninhalte ohne die Unter­stützung der DIR erarbeiteten. Im Gegen­teil: Schüler mit einem geringen visuellen Vorstellungsvermögen schnitten aufgrund der Darbietung einer zusätzlichen Codierung schlechter ab als ihre Mit­schüler. Andererseits belegen Untersuchungen von Blaschke, dass solche Repräsen­ta­tionen in der Erarbeitungsphase einer neu entwickelten Unter­richts­kon­zep­tion auch und gerade von schwächeren Schülern konstruktiv zum Wissens­erwerb genutzt werden konnten. Es scheint also, dass die Lerner zunächst Hilfe beim Umgang mit neuartigen Re­prä­sen­ta­tions­formen benötigen, bevor sie diese für den weiteren Aufbau adäqua­ter physi­ka­lischer Modelle nutzen können. Eine experimentelle Unter­suchung mit Schü­lern der 10. Jahrgangsstufe bestätigte diese Vermutung. Hier lernten 24 Probanden in zwei Gruppen die mechanischen Konzepte zu Ort, Geschwin­dig­keit und Beschleunigung kennen, bevor sie im Unter­richt behandelt wurden. Während die Teil­nehmer der ersten Gruppe nur die Simulationen von Bewegungsabläufen und die zuge­hörigen Liniendiagramme sahen, wurden für die zweite Gruppe unterstützend DIR eingesetzt, die den Zusammenhang von Bewe­gungs­ablauf und Linien­diagramm veranschaulichen sollten. In beiden Gruppen war es den Probanden möglich, Fragen zu stellen und Hilfe von einem Tutor zu erhalten. Die Ergebnis­se zeigten auf, dass es den Schülern durch diese Maßnahme ermöglicht wurde, die DIR erfolgreich zum Wissens­er­werb einzusetzen und sig­nifikant besser abzuschneiden als die Teilnehmer in der Kon­troll­­gruppe. In einer weiteren Untersuchung wurde abschließend der Frage nachgegangen, ob DIR unter Anleitung eines Tutors eventuell bereits in der Unterstufe sinnvoll eingesetzt werden können. Ausgangspunkt dieser Überlegung war die Tatsache, dass mit der Einführung des neuen bayerischen G8-Lehrplans wesentliche Inhalte, die Bestand­teil der vorherigen Untersuchungen waren, aus dem Physik­unterricht der 11. Jgst. in die 7. Jahrgangsstufe verlegt wurden. So bot es sich an, mit den Inhalten auch die DIR in der Unterstufe ein­zusetzen. Die Un­tersuchungen einer quasiexperimentellen Feldstudie in zwei siebten Klassen belegten, dass die betrachte­ten Repräsentationen beim Aufbau entsprechender Kon­zepte keinesfalls hinderlich, sondern sogar förder­lich sein dürften. Denn die Schüler­gruppe, die mit Hilfe der DIR lernte, schnitt im direkten hypothesenprüfenden Vergleich mit der Kontrollklasse deutlich besser ab. Ein Kurztest, der die Nachhaltigkeit des Gelernten nach etwa einem Jahr überprüfen sollte, zeigte zudem auf, dass die Schüler der DIR-Gruppe die Konzepte, die unter Zuhilfenahme der DIR erarbeitet wurden, im Vergleich zu Schülern der Kontrollklasse und zu Schülern aus 11. Klassen insgesamt überraschend gut verstanden und behalten hatten. N2 - For a long time the significance of quantitative interrelations for the acquisition of physics has been overestimated in physics education while qualitative interrelations have been considered of less importance. This has resulted in the students’ knowledge most often remaining superficial and not suited to be adapted to new situations. TIMSS and Pisa have revealed these difficulties, criticizing the conventional physics education for de­manding too little transfer achievements and not preparing students to solve physical problems on their own by thinking constructively. To be able to solve physical problems and interpret physical processes, qualitative-con­ceptual knowledge is vital. According to results of the latest research this can be achieved most efficiently by creating constructivist learning situations as well as inte­grating external representations of conclusions from experiments. A concrete way to reach these envisaged aims is the application of PC-assisted experiments, which can be put in practise without an exceeding technical effort. These experiments enable the stu­dents - by being directly confronted with a realistic process - to get insight into physical concepts and thus to understand qualitative interrelations. For a long time a basic learning efficiency of animated learning environments was as­sumed, more recent research, however, has rather pointed in the opposite direction. Ob­viously students must first learn how to work with multi-coded representations. This pa­per is intended to contribute to the exploration of the efficiency of the so-called dynamic-iconic representations (DIR), which visualize physical values against the background of concrete test procedures. For this purpose 110 students have covered 16 projects each within a DFG study, in which mechanical concepts (place, velocity, acceleration and force) are dealt with and developed further. As it turned out, students working with the dynamic-iconic represen­tations did not learn more efficiently than those working without the assistance of the dynamic-iconic representations. On the contrary: students with a less distinct visual-spa­tial ability did worse than their fellow-students, obviously due to the presentation of yet another encoding. On the other hand research by Blaschke has proven that such representations can be used constructively to gain knowledge especially by the inefficient students during the acquisition stages of a (newly-developed) teaching conception. Consequently, it seems that students must first receive some sort of assistance with handling novel forms of representation before being able to use them for getting to know about the further construction of physical models. An experimental study with partici­pants from tenth-grade high school classes has confirmed this assumption. Another study dealt with the question as to whether dynamic-iconic representations can already be applied expediently in the lower grade. It was performed because significant contents of the physics year 11 curriculum had been moved to year 7 with the introduc­tion of the new Bavarian G8 (eight-year high school) curriculum. Thus it seemed advis­able to apply the dynamic-iconic representations along with the contents in the lower grade. The research done in a quasi experimental field study has shown that the representations in question are by no means obstructive, but in parts conducive to the students’ ability to develop corresponding conceptions. This can be seen from the fact that the group of stu­dents learning with the assistance of dynamic-iconic representations did indeed con­siderably better than the ‘control group’. With its results this paper is supposed to contribute to a better understanding of the ap­plication of multimedia learning environments. The medium alone cannot induce mea­ningful learning processes – these processes must be well-structured and start as soon as possible, so that they can teach the students to deal with the different encodings sen­sibly. I am convinced that this is the only way the various possibilities our current IT age offers us with its multimedia worlds or multi-coded learning environments can be used efficiently. KW - Multimedia KW - Graphische Darstellung KW - Repräsentation KW - Computerunterstütztes Lernen KW - Computersimulation KW - Computer KW - Physikunterricht KW - Natur und Technik KW - Codierung KW - Mechanik KW - Newton KW - Isaac KW - Kraft KW - Kraftmessung KW - Didaktik KW - Dynamisch-ikonische Repräsentation KW - G8 Bayern KW - Natur und Technikunterricht KW - dynamic-iconic representation KW - learning KW - physics KW - mechanic Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-29271 ER - TY - THES A1 - Mahapatra, Suddhasatta T1 - Formation and Properties of Epitaxial CdSe/ZnSe Quantum Dots : Conventional Molecular Beam Epitaxy and Related Techniques T1 - Bildung und Eigenschaften Epitaxischer CdSe/ZnSe-Quantenpunkte : Molekularstrahlepitaxie und Verwandte Methoden N2 - Albeit of high technological import, epitaxial self-assembly of CdSe/ZnSe QDs is non-trivial and still not clearly understood. The origin and attributes of these QDs are significantly different from those of their III-V and group-IV counterparts. For III-V and group-IV heterosystems, QD-formation is assigned to the Stranski Krastanow (SK) transition, wherein elastic relaxation of misfit strain leads to the formation of coherent three-dimensional (3D) islands, from a supercritically strained two-dimensional (2D) epilayer. Unfortunately, this phenomenon is inconspicuous for the CdSe/ZnSe heterosystem. Well-defined 3D islands are not readily formed in conventional molecular beam epitaxial (MBE) growth of CdSe on ZnSe. Consequently, several alternative approaches have been adopted to induce/enhance formation of QDs. This thesis systematically investigates three such alternative approaches, along with conventional MBE, with emphasis on the formation-mechanism of QDs, and optimization of their morphological and optical attributes. It is shown here that no distinct 3D islands are formed in MBE growth of CdSe on ZnSe. The surface of the CdSe layer represents a rough 2D layer, characterized by a dense array of shallow (<1nm) abutting mounds. In capped samples, the CdSe deposit forms an inhomogeneous CdZnSe quantum well (QW)-like structure. This ternary QW consists of local Cd-rich inclusions, which confine excitons three-dimensionally, and act as QDs. The density of such QDs is very high (~ 1012 cm-2). The QDs defined by the composition inhomogeneities of the CdZnSe QW presumably originate from the shallow mounds of the uncapped CdSe surface. By a technique wherein a CdSe layer is grown at a low temperature (TG = 230 °C) and subsequently annealed at a significantly higher temperature (TA =310 °C), tiny but distinct 3D islands are formed. In this work, the mechanism underlying the formation of these islands is reported. While the CdSe deposit forms a quasi-two-dimensional (quasi-2D) layer at TG = 230 °C, subsequent annealing at TA = 310 °C results in a thermally activated “up-climb” of adatoms onto two-dimensional clusters (or precursors) and concomitant nucleation of 3D islands. The areal density of QDs, achieved by this technique, is at least a decade lower than that typical for conventional MBE growth. It is demonstrated that further reduction is possible by delaying the temperature ramp-up to TA. In the second technique, formation of distinct islands is demonstrated by deposition of amorphous selenium (a-Se) onto a 2D CdSe epilayer at room temperature and its subsequent desorption at a higher temperature (TD = 230 °C). Albeit the self-assembled islands are large, they are severely truncated during subsequent capping with ZnSe, presumably due to segregation of Cd and Zn-alloying of the islands. The segregation phenomenon is analyzed in this work and correlated to the optical properties of the QDs. Additionally, very distinct vertical correlation of QDs in QD-superlattices, wherein the first QD-layer is grown by this technique and the subsequent ones by migration enhanced epitaxy (MEE), is reported. The process steps of the third variant technique, developed in course of this work, are very similar to those of the previous one-the only alteration being the substitution of selenium with tellurium as the cap-forming-material. This leads not only to large alteration of the morphological and optical attributes of the QDs, but also to formation of unique self-assembled island-patterns. Oriented dashes, straight and buckled chains of islands, and aligned island-pairs are formed, depending on the thickness of the Te-cap layer. The islands are partially alloyed with Te and emit luminescence at very low energies (down to 1.7 eV at room temperature). The Te cap layer undergoes (poly)crystallization during temperature ramp-up (from room temperature to TD) for desorption. Here, it is shown that the self-assembled patterns of the island-ensembles are determined by the pattern of the grain boundaries of the polycrystalline Te layer. Based on an understanding of the mechanism of pattern formation, a simple and “clean” method for controlled positioning of individual QDs and QD-based extended nanostructures, is proposed in this work. The studies carried out in the framework of this thesis provide not only a deeper insight into the microscopic processes governing the heteroepitaxial self-assembly of CdSe/ZnSe(001) QDs, but also concrete approaches to achieve, optimize, and control several technologically-important features of QD-ensembles. Reduction and control of QD-areal-density, pronounced vertical correlation of distinctly-defined QDs in QD-superlattices, and self-assembly of QD-based extended structures, as demonstrated in this work, might turn out to be beneficial for envisioned applications in information-, and communication-technologies. N2 - Trotz ihrer großen technologischen Bedeutung ist die epitaktische Selbstorganisation von CdSe/ZnSe QDs noch immer nicht vollständig verstanden. Die Ursachen und Merkmale dieser QDs unterscheiden sich deutlich von ihren III-V- und IV-IV-Gegenstücken. Für III-V- und IV-IV-Heterosysteme wird die QD-Formation dem Stranski-Krastanow-(SK)-Übergang zugeordnet, bei dem, ausgehend von einer hochverspannten zweidimensionalen (2D) Epitaxieschicht, die elastische Relaxation von durch Gitterfehlanpassung hervorgerufener Verspannung zur Formation von dreidimensionalen (3D) Inseln führt. Im Falle des CdSe/ZnSe-Heterosystems ist es unklar, ob das SK-Modell die Formation von QDs zutreffend beschreibt. Beim Wachstum durch Molekularstrahlepitaxie (engl.: molecular beam epitaxy, MBE) von CdSe auf ZnSe kommt es nicht zur Bildung von 3D-Inseln, wie es für die meisten III-V- und IV-IV-Heterosysteme charakteristisch ist. Infolgedessen wurden mehrere alternative Herangehensweisen eingesetzt, um die Formation der QDs anzuregen bzw. zu verbessern. Diese Doktorarbeit beschreibt die systematische Untersuchung dreier solcher alternativer Ansätze im Zusammenspiel mit konventioneller MBE. Der Schwerpunkt liegt auf dem Formationsmechanismus der QDs und Optimierung ihrer morphologischen und optischen Eigenschaften. Beim MBE-Wachstum von CdSe auf ZnSe findet keine Bildung ausgeprägter, dreidimensionaler Inseln statt. Die Oberfläche der CdSe-Schicht stellt eine rauhe 2D-Schicht dar, gekennzeichnet durch eine dichte Anordung flacher, aneinander angrenzender Hügel. In bedeckten Proben bildet die CdSe-Ablagerung eine inhomogene CdZnSe-quantentrog-ähnliche (engl.: quantum well, QW) Struktur . Dieser ternäre QW enthält lokale Cd-reiche Einschlüsse, die die Bewegung von Exzitonen in drei Dimensionen einschränken und als QDs fungieren. Die Dichte solcher QDs ist sehr hoch (~ 1012 cm-2). Diese durch die Inhomogenität des CdZnSe-QW definierten QDs haben ihren Ursprung in den flachen Hügeln der unbedeckten CdSe-Oberfläche. Mit einer Methode, bei der man eine CdSe-Schicht bei niedriger Temperatur (TG = 230 °C) wachsen lässt und anschießend bei höherer Temperatur (TA = 310 °C) tempert, kommt es zur Bildung winziger, aber ausgeprägter, 3D-Inseln. In dieser Arbeit wird der Mechanismus, der der Bildung dieser Inseln zugrunde liegt, beschrieben. Während die CdSe-Ablagerung eine quasi-zweidimensionale (quasi-2D) Schicht bei TG = 230 °C bildet, führt das darauf folgende Tempern bei TA = 310 °C zu einem thermisch aktivierten „up-climb“ von Adatomen auf zweidimensionale Cluster (oder Vorgänger, engl.: precursor), bei gleichzeitiger Nukleation von 3D-Inseln. Die Flächendichte von QDs, die mit dieser Methode erreicht werden kann, ist mindestens eine Größenordung geringer als es für konventionelles MBE-Wachstum typisch ist. Eine weitere Verringerung ist möglich, indem der Temperaturanstieg auf TA verzögert wird. In einer zweiten Variante wird die Bildung großer und ausgeprägter Inseln durch Aufbringen einer amorphen Selenschicht (α-Se) auf eine 2D-CdSe-Epischicht bei Raumtemperatur und anschließender Desorption bei höherer Temperatur (TD = 230 °C) demonstriert. Obwohl die selbstorganisierten Inseln groß sind, werden sie durch nachträgliches Bedecken mit ZnSe stark abgeflacht, was durch Segregation von Cd und Legieren der Inseln mit Zn hervorgerufen wird. Das Segregationsphänomen sowie sein Zusammenhang mit den optischen Eigenschaften der QDs wird in dieser Arbeit untersucht. Weiterhin wird vertikale Korrelation von QDs in QD-Übergittern beschrieben, in welchen die erste QD-Schicht mit dieser Methode wachsen gelassen wurde. Darauf folgende Schichten werden duch „migration enhanced epitaxy“ (MEE) aufgebracht. Die Prozessschritte der dritten Variante sind denen der eben beschriebenen sehr ähnlich. Die einzige Abwandlung besteht in der Substitution von Selen mit Tellur als bedeckendes Material. Diese Variation führt nicht nur zu beträchtlicher Veränderung der morphologischen und optischen Eigenschaften der QDs, sondern auch zur Bildung einzigartiger Muster von selbstorganisierten Inseln. Abhängig von der Dicke der Tellurbedeckung kommt es zur Bildung orientierter „dashes“, gerader und gebogener Ketten von Inseln und ausgerichteter Inselpaare. Die Inseln sind teilwese mit Tellur legiert und strahlen Lumineszenz in einem sehr niedrigen Energiebereich ab (bis hinunter zu 1,7 eV bei Raumtemperatur). Im Gegensatz zur α-Se-Bedeckung kommt es in der Te-Schicht während der Temperaturerhöhung (von Raumtemperatur zu TD) zur Polykristallisierung. Es wird gezeigt, dass die selbstorganisierten Muster der Inseln durch die Verteilung der Korngrenzen der polykristallinen Te-Schicht bestimmt werden. Basierend auf dem Verständnis des Mechanismus der Musterbildung wird hier eine einfache und „saubere“ Methode für die kontrollierte Positionierung individueller QDs und QD-basierter, ausgedehnter Nanostrukturen vorgeschlagen. KW - Nanostruktur KW - Molekularstrahlepitaxie KW - Quantenpunkt KW - Würzburg / Sonderforschungsbereich II-VI-Halbleiter KW - Kraftmikroskopie KW - Selbstorganisation KW - Nanostructures KW - Self-organization KW - Molecular beam Epitaxy KW - CdSe KW - ZnSe KW - AFM KW - Luminescence Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-32831 ER - TY - THES A1 - Pracht, Eberhard T1 - Entwicklung und Optimierung von Bildgebungssequenzen für die 1H-Magnetresonanztomographie der Lunge N2 - No abstract available KW - NMR-Tomographie KW - Bildgebendes Verfahren KW - NMR-Bildgebung KW - Sequenzentwicklung KW - Lungenfunktion KW - Imaging KW - Magnetic Resonance KW - Lung Function Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-26398 ER - TY - THES A1 - Forster, Frank T1 - Eigenschaften und Modifikation zweidimensionaler Elektronenzustände auf Edelmetallen T1 - Properties and Modification of Two-Dimensional Electronic States on Noble Metals N2 - Im Rahmen dieser Arbeit werden Untersuchungen an zweidimensionalen elektronischen Strukturen von (111)-orientierten Edelmetalloberflächen und deren Beeinflussung durch verschiedene Adsorbate präsentiert. Das Hauptaugenmerk liegt hierbei auf den an Oberflächen lokalisierten Shockley-Zuständen von Cu, Ag und Au, deren Banddispersion (Bindungsenergie, Bandmasse und Spin-Bahn-Aufspaltung) sich als sensible Sonde für Oberflächenmodifikationen durch Adsorptionprozesse herausstellt. Winkelaufgelöste Photoelektronenspektroskopie erlaubt hierbei den experimentellen Zugang zu bereits feinen Veränderungen der elektronischen Bandstruktur dieser zweidimensionalen Systeme. Verschiedene Mechanismen, die sich an Oberflächen und Adsorbat/Substrat-Grenzflächen abspielen wirken sich in unterschiedlicher Weise auf den Shockley-Zustand aus und werden anhand von geeigneten Modelladsorbatsystemen untersucht. Die experimentellen Ergebnisse werden mit geeigneten Modellen, wie dem Phasenakkumulationsmodell und dem Modell fast freier Elektronen, und teilweise mit ab initio-Rechnungen gemäß der Dichtefunktionaltheorie verglichen, was eine Einbettung der Resultate in einen gemeinsamen Kontext erlaubt. So wird der Einfluss der Adsorption von Submonolagen von Na auf den Au-Oberflächenzustand im Hinblick auf die signifikante Austrittsarbeitsänderung der Oberfläche untersucht. Eine systematische Studie der Physisorption von Edelgasen zeigt die Auswirkung der repulsiven Wechselwirkung von Adsorbat und Substrat auf die Elektronen im Oberflächenzustandsband. Eine schrittweise Bedeckung der Oberfläche von Cu und Au(111) mit Ag-Monolagen bedingt eine graduelle Veränderung des Oberflächenpotenzials und verursacht einen zunehmende Ag-Charakter des Shockley-Zustands. Für N ≥ 7 ML dicke, lagenweise wachsende Ag-Schichten auf Au(111) werden im Experiment neue zweidimensionale elektronische Strukturen beobachtet, die den Quantentrogzuständen des Ag-Films zugeordnet werden. Inwiefern sie innerhalb der Ag-Schicht lokalisiert sind oder sich noch zu einem wesentlichen Anteil im Substrat befinden, zeigt die Untersuchung ihrer energetischen und räumlichen Evolution mit der Ag-Schichtdicke N. Dazu wurden neben der Bindungsenergie auch die Photoemissionsintensität der Quantentrogzustände vermessen, die Aussagen über die Lokalisierung erlauben, welche mit Ergebnissen aus Dichtefunktionalrechnungen verglichen werden. Schließlich wird anhand der Xe-Adsorption auf unterschiedlich dicken Ag-Filmen auf Cu und Au(111) gezeigt, dass der Oberflächenzustand nicht nur als Sonde für Adsorptionsmechanismen dient, sondern selbst das Adsorptionsverhalten maßgeblich mitbestimmt. Ein Erklärungsmodell wird vorgestellt, welches neben der durch die Bandstruktur bestimmte Zustandsdichte auch die Lokalisierung der Ladungsdichte an der Oberfläche berücksichtigt, um ein Maß für die Stärke der repulsiven Wechselwirkung zu beschreiben, die Edelgasadsorbate auf den Oberflächen erfahren. N2 - In this thesis investigations on two-dimensional electronic structures of (111)-noble metal surfaces and the influence of various adsorbates upon them is presented. It will chiefly focus on the surface-localized Shockley states of Cu, Ag and Au and their band dispersion (binding energy, band mass, and spin-orbit splitting) which turns out to be a sensitive probe for surface modifications induced by adsorption processes. Angular resolved photoelectron spectroscopy enables the observation of even subtle changes in the electronic band structure of these two dimensional systems. Different mechanisms taking place at surfaces and the substrate/adsorbate interfaces influence the Shockley state in a different manner and will be analyzed using suitable adsorbate model systems. The experimental results are matched with appropriate theoretical models like the phase accumulation model and the nearly-free electron model and - if possible - with ab initio calculations based on density functional theory. This allows for the integration of the results into a stringent overall picture. The influence of sub-monolayer adsorption of Na upon the surface state regarding the significant change in surface work function is determined. A systematic study of the physisorption of noble gases shows the effect of the repulsive adsorbate-substrate interaction upon the electrons of the surface state. A step-by-step coverage of the Cu and Au(111) surfaces by monolayers of Ag creates a gradual change in the surface potential and causes the surface state to become increasingly Ag-like. For N ≥ 7 ML thick and layer-by-layer growing Ag films on Au(111), new two-dimensional electronic structures can be observed, which are attributed to the quantum well states of the Ag adsorbate. The question whether they are localized within the Ag-layer or substantially within the substrate is resolved by the investigation of their energetic and spatial evolution with increasing Ag-film thicknesses N. For this, beside the binding energy analysis, the photoemission intensity of the quantum well states was determined, giving information about their localization which can be compared with results of density functional calculations. Finally, by the example of Xe adsorption upon Ag layers of various thicknesses on Cu and Au(111), it is shown that besides probing adsorption processes, the surface states itself substantially determine adsorption characteristics. An explanatory model is introduced, which considers both the electronic density of states and the spatial localization of the surface state for describing a measure of the strength of the repulsive interaction between substrate and rare-gas adsorbates. KW - Winkelaufgelöste Photoelektronenspektroskopie KW - Adsorbate KW - niederdimensionale Elektronensysteme KW - Angular Resolved Photoelectron Spectroscopy KW - Adsorbates KW - Low-Dimensional Electron Systems Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-23460 ER - TY - THES A1 - Pappert, Katrin T1 - Anisotropies in (Ga,Mn)As - Measurement, Control and Application in Novel Devices T1 - Anisotropien in (Ga,Mn)As - Messung, Kontrolle und Anwendung in neuartigen Bauelementen N2 - Ferromagnetic semiconductors (FS) promise the integration of magnetic memory functionalities and semiconductor information processing into the same material system. The prototypical FS (Ga,Mn)As has become the focus of semiconductor spintronics research over the past years. The spin-orbit mediated coupling of magnetic and semiconductor properties in this material gives rise to many novel transport-related phenomena which can be harnessed for device applications. In this thesis we address challenges faced in the development of an all-semiconductor memory architecture. A starting point for information storage in FS is the knowledge of their detailed magnetic anisotropy. The first part of this thesis concentrates on the investigation of the magnetization behaviour in compressively strained (Ga,Mn)As by electrical means. The angle between current and magnetization is monitored in magnetoresistance(MR) measurements along many in-plane directions using the Anisotropic MR(AMR) or Planar Hall effect(PHE). It is shown, that a full angular set of such measurements displayed in a color coded resistance polar plot can be used to identify and quantitatively determine the symmetry components of the magnetic anisotropy of (Ga,Mn)As at 4 K. We compile such "anisotropy fingerprints" for many (Ga,Mn)As layers from Wuerzburg and other laboratories and find the presence of three symmetry terms in all layers. The biaxial anisotropy term with easy axes along the [100] and [010] crystal direction dominates the magnetic behaviour. An additional uniaxial term with an anisotropy constant of ~10% of the biaxial one has its easy axis along either of the two <110> directions. A second contribution of uniaxial symmetry with easy axis along one of the biaxial easy axes has a strength of only ~1% of the biaxial anisotropy and is therefore barely visible in standard SQUID measurements. An all-electrical writing scheme would be desirable for commercialization. We report on a current assisted magnetization manipulation experiment in a lateral (Ga,Mn)As nanodevice at 4 K (far below Tc). Reading out the large resistance signal from DW that are confined in nanoconstrictions, we demonstrate the current assisted magnetization switching of a small central island through a hole mediated spin transfer from the adjacent leads. One possible non-perturbative read-out scheme for FS memory devices could be the recently discovered Tunneling Anisotropic MagnetoResistance (TAMR) effect. Here we clarify the origin of the large amplification of the TAMR amplitude in a device with an epitaxial GaAs tunnel barrier at low temperatures. We prove with the help of density of states spectroscopy that a thin (Ga,Mn)As injector layer undergoes a metal insulator transition upon a change of the magnetization direction in the layer plane. The two states can be distinguished by their typical power law behaviour in the measured conductance vs voltage tunneling spectra. While all hereto demonstrated (Ga,Mn)As devices inherited their anisotropic magnetic properties from their parent FS layer, more sophisticated FS architectures will require locally defined FS elements of different magnetic anisotropy on the same wafer. We show that shape anisotropy is not applicable in FS because of their low volume magnetization. We present a method to lithographically engineer the magnetic anisotropy of (Ga,Mn)As by submicron patterning. Anisotropic strain relaxation in submicron bar structures (nanobars) and the related deformation of the crystal lattice introduce a new uniaxial anisotropy term in the energy equation. We demonstrate by both SQUID and transport investigations that this lithographically induced uniaxial anisotropy overwrites the intrinsic biaxial anisotropy at all temperatures up to Tc. The final section of the thesis combines all the above into a novel device scheme. We use anisotropy engineering to fabricate two orthogonal, magnetically uniaxial, nanobars which are electrically connected through a constriction. We find that the constriction resistance depends on the relative orientation of the nanobar magnetizations, which can be written by an in-plane magnetic field. This effect can be explained with the AMR effect in connection with the field line patterns in the respective states. The device offers a novel non-volatile information storage scheme and a corresponding non-perturbative read-out method. The read out signal is shown to increase drastically in samples with partly depleted constriction region. This could be shown to originate in a magnetization direction driven metal insulator transition of the material in the constriction region. N2 - Ferromagnetische Halbleiter (FS) versprechen die Integration von magnetischen Eigenschaften für Speicheranwendungen und halbleitenden Eigenschaften zur Informationsverarbeitung innerhalb des selben Materialsystems. (Ga,Mn)As ist als Modellsystem in den letzten Jahren in den Fokus der Halbleiterspintronik gerückt. Die Kopplung der magnetischen und elektrischen Eigenschaften über die Spin-Bahn-Wechselwirkung ist die Ursache vieler neuer Transportphänomene. Sie sind Grundlage neuartiger Anwendungen und Bauteildesigns. In dieser Arbeit beschäftigen wir uns mit den Herausforderungen, die die Entwicklung einer halbleitenden Speicherarchitektur mit sich bringt. Die Kenntnis der magnetischen Anisotropie ist die Grundlage für die magnetische Informationsspeicherung. Der erste Teil der Arbeit beschäftigt sich deshalb mit der Untersuchung des Verhaltens der Magnetisierung in kompressiv verspannten (Ga,Mn)As Schichten durch elektrische Messungen. Bei Magnetfeld-Scans entlang vieler Richtungen in der Schichtebene wird der von Strom und Magnetisierung eingeschlossene Winkel mittels des Anisotropen Magnetowiderstandseffektes(AMR) oder des Planaren Hall Effektes(PHE) beobachtet. Eine winkelabhängige Reihe solcher Messungen, dargestellt in einem farbkodierten Widerstandspolardiagramm, wird zur Identifizierung und quantitativen Bestimmung der Symmetriekomponenten der magnetischen Anisotropie bei 4 K verwendet. Solche „Anisotropiefingerabdrücke" von vielen (Ga,Mn)As Schichten aus Würzburg und anderen Laboratorien bestätigen das Vorhandensein von drei Anisotropiekomponenten bei 4 K. Der vierzählige Anteil mit weichen Achsen entlang der [100] und [010] Kristallrichtung dominiert die magnetischen Eigenschaften. Ein weiterer Anteil, mit zweizähliger Symmetrie, typische Anisotropiekonstante ~10% der vierzähligen, hat seine weiche Achse entlang einer <110> Richtungen. Eine zweite zweizählige Komponente mit weicher Achse entlang [100] oder [010] wird wegen seiner kleinen Anisotropiekonstante (1% der vierzähligen) in SQUID Messungen oft übersehen. Elektrisches Schreiben wäre für kommerzielle Anwendungen interessant. Wir demonstrieren strominduziertes Magnetisierungsschalten in einer lateralen (Ga,Mn)As Struktur bei 4 K. Wir lesen den großen Widerstand aus, der durch das geometrische Confinement von Domänenwänden in Verengungen entsteht. Das stromunterstützte Umschalten der Magnetisierung einer kleinen Insel durch ladungsträger-übermittelten Spin-Transfer von den größeren Zuleitungen kann nachgewiesen werden. Eine Moeglichkeit zur nichtzerstörenden Messung des Magnetisierungszustandes eines Halbleiterspeicherelementes ist die Nutzung des Anisotropen Tunnelmagnetowiderstandseffekts (TAMR). Hier wird der Ursprung der großen Verstärkung des Effektes in einer Struktur mit epitaktisch gewachsenener Tunnelbarriere bei niedrigen Temperaturen untersucht und erklärt. Es wird gezeigt, dass eine dünne (Ga,Mn)As Injektorschicht vom metallischen in den isolierenden Zustand übergeht, wenn die Magnetisierungsrichtung in der Schichtebene gedreht wird. Zustände auf der metallischen Seite des MIT können leicht von Zuständen auf der isolierenden Seite am Anstieg der Tunnelleitfähigkeitskennlinie unterschieden werden. Um den Anforderungen von komplexeren Architekturen und Designs gerecht zu werden, wird hier eine Methode eingeführt, um erstmals die magnetische Anisotropie in (Ga,Mn)As lokal zu kontrollieren. Typische (Ga,Mn)As Strukturen habe eine vernachlässigbar kleine Formanisotropie. Die neuartige Methode zur lokalen Einstellung der magnetischen Anisotropie, beruht auf der Mikrostrukturierung und der damit verbundenen anisotropen Relaxation des Kristallgitters. SQUID- und Transportmessungen demonstrieren die uniaxiale magnetische Anisotropie der lithographisch definierten Submikrometer-Streifen (Nanobars), die im gesamten Temperaturbereich von 4 K bis zu Tc die magnetischen Eigenschaften der Strukturen bestimmt. Im letzten Teil der Arbeit nutzen wir die Anisotropiekontrolle zum Design eines nicht-flüchtigen ferromagnetischen Halbleiter-Speicherelementes. Zwei senkrecht zueinander angeordnete, magnetisch uniaxiale Nanobars sind an einer Ecke über eine Verengung elektrisch verbunden. Die relative Orientierung ihrer Magnetisierungsvektoren wird durch ein Magnetfeld eingestellt. Der geschriebene Magnetisierungszustand bleibt bei ausgeschaltetem Feld erhalten und ist durch die Messung des elektrischen Widerstandes der Verengung auslesbar. Feldlinienbilder der verschiedenen magnetischen Zustände in Kombination mit dem AMR Effekt können dieses Verhalten erklären. Das Auslesesignal, also der Widerstandsunterschied zwischen den Zuständen, kann bedeutend verstärkt werden, indem eine Struktur mit teilweise verarmter Verengung verwendet wird. Wie in der TAMR Struktur, ist die Verstärkung auf einen Metall-Isolator-Uebergang beim Drehen der Magnetisierung zurückzuführen. KW - Anisotropie KW - Magnetoelektronik KW - Ferromagnetikum KW - Halbleiter KW - Spintronik KW - "(Ga KW - Mn)As" KW - Anisotropie KW - Bauelemente KW - Datenspeicher KW - Spintronics KW - "(Ga KW - Mn)As" KW - Anisotropy KW - devices KW - memory Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-23370 ER - TY - THES A1 - Schmitt, Stefan T1 - Adsorbatinduzierte richtungsabhängige Facettierung und selbstorganisierte Domänen-Musterbildung auf vizinalen Ag(111)-Oberflächen T1 - Adsorbate-induced facetting reconstruction and self-organized domain patterning of vicinal Ag(111) surfaces N2 - Die vorliegende Arbeit beschäftigt sich mit den strukturellen Aspekten einer adsorbat-induzierten Facettierung von vizinalen Ag(111)-Oberflächen. Bei dem Adsorbat handelte es sich um das organische Molekül Perylen-3,4,9,10-Tetracarbonsäure-Dianhydrid (PTCDA). Die Experimente wurden unter Ultrahochvakuum-Bedingungen durchgeführt, die Charakterisierung erfolgte hauptsächlich mit den Messmethoden Rastertunnelmikroskopie (STM) und niederenergetische Elektronenbeugung (LEED). Das planare Farbstoffmolekül PTCDA adsorbiert präferentiell an den Stufenkanten der verwendeten 8.5° Ag(111)-Vizinaloberflächen und induziert bei geeigneten Präparationsbedingungen eine Rekonstruktion in stark gestufte Facettenflächen und in stufenfreie (111)-Terrassen. Die beobachteten Facetten sind für das System PTCDA/Ag charakteristisch und stellen durch eine molekulare Überstruktur richtungsselektiv stabilisierte Ag-Kristallebenen dar. Durch die Variation der Stufenrichtung der Startoberfläche wurde eine Vielzahl von Facettentypen erhalten und nach Miller indiziert. In ihrer Gesamtheit erlauben sie einen Rückschluss auf das Aussehen der Gleichgewichtskristallform eines mit PTCDA bedeckten Ag-Kristalles und damit auf das richtungsabhängige Benetzungsverhalten von Ag. Aus der Sicht des Substrates bewirkt das Adsorbat eine massive Erhöhung der Steifheit der Stufen. Die durch eine molekulare Überstruktur stabilisierten Facettenflächen übernehmen die in der Kristallstruktur des Substrates angelegten Stufenrichtungen. Die gefundene Ausbildung von zwei typischen Facettensteigungen ist jedoch nicht durch die Ag-Kristallstruktur motivierbar. Die Facettierung wurde im Rahmen einer speziellen Adaption des Konzepts der Thermodynamik auf ebene gestufte Oberflächen als Orientierungsphasenseparation beschrieben. Dieses Konzept erlaubt eine korrekte Beschreibung der beobachteten lokalen Phänomene und zeigt zudem auf, dass das molekulare Gas, welches in den Messungen nicht erfasst wurde, eine wichtige Rolle bei der Rekonstruktion spielt. Es ergaben sich wichtige Indizien für die Existenz einer kritischen Inselgröße für PTCDA auf Ag(111). Es wurde eine vollständige strukturelle Analyse aller stabilen molekularen Überstrukturen auf vizinalen Ag(111)-Oberflächen durchgeführt. Es wurden insgesamt 16 solcher Überstrukturen gefunden, von denen bisher nur 3 Strukturen bekannt und veröffentlicht waren. Dichte und Kommensurabilität der Facettenüberstrukturen sind systematisch vom Stufentyp der Oberfläche abhängig. Die Frage nach dem Ursprung der beiden charakteristischen Facettensteigungen ist mit der Existenz von zwei Typen von Überstrukturgrenzen verknüpft. Die Grenze bestimmt die Lage der fischgrätartigen Überstruktur zu den Stufenkanten und die Länge und die Breite des Moleküls die beiden charakteristischen Stufenabstände. Letzteres geschieht vermöge einer lokalen Wechselwirkung der PTCDA-Moleküle mit den Stufen. Die Überstrukturgrenzen erweisen sich als wichtiges Element der Rekonstruktion. Es wurden außerdem die Abhängigkeiten der verschiedenen, aneinander angrenzenden Überstrukturen aufgezeigt. Auf den (111)-Terrassen fanden sich 3 metastabile Ausnahme-Strukturen, welche einen vertieften Einblick in die komplexe Bildungskinetik der bisher bekannten stabilen (111)-Struktur erlauben. Die Facetten bilden zusammen mit den benachbarten (111)-Terrassen regelmäßige, einem Reflexionsgitter ähnliche Muster mit einer Strukturweite von 5 bis 75nm. Die beobachteten Strukturweiten erreichen bei ausgedehntem Tempern typische Maximalwerte. STM-Messungen zeigen den Einfluss einer langreichweitigen Wechselwirkung zwischen den Facetten, vermittelt über elastische Eigenschaften des Substrates. Die Muster können als selbstorganisierte Zweiphasensysteme im thermodynamischen Gleichgewicht erklärt werden. Die Facetten wirken wie repulsiv wechselwirkende Defekte in einem elastischen Medium. Die Eignung dieser Muster als Templat wurde in Kooperation mit einer anderen Arbeitsgruppe am Beispiel der selektiven Deposition von Eisen belegt. N2 - This thesis investigates structural aspects of adsorbate-induced facetting of vicinal Ag(111) surfaces. It is mainly based on scanning tunneling microscope (STM) and low energy electron diffraction (LEED) experiments performed under UHV conditions. The planar dye-molecule perylene-3,4,9,10-tetracarboxilicacid-dianhydride (PTCDA) adsorbes preferentially at the step edges of the 8.5° Ag(111) vicinal surfaces used in the experiments. It causes a facetting reconstruction by the formation of (111) terraces and facets with a high step density. A variation of the step direction of the unreconstructed start surface revealed the existence of a variety of different facet types. Each of them is stabilized by a typical molecular superstructure. The facets observed are independent of the details of reconstruction and therefore characteristic for PTCDA on Ag. They can be used to predict the equilibrium crystal shape of PTCDA-covered Ag and the anisotropic wetting behavior of a Ag crystal. From the viewpoint of the substrate, the adsorbate superstructure causes a pronounced increase of the stiffness of the facet planes, but creates only steps with ''native'' directions. Moreover, two distinct preferential inclinations of facets were observed, which can only be explained by the selective influence of the adsorbate superstructure. In terms of thermodynamics, the facetting reconstruction can be described as an orientational phase separation, adapted to the constraints of planar surfaces. This concept is capable of explaining the local facetting phenomena. The formalism used predicts an important role of nucleation kinetics. This aspect is taken into account by introducing an additional phase of mobile molecules (2D molecular gas), which cannot be measured directly. Furthermore, strong arguments for the appearance of a critical island size for the PTCDA/Ag(111) superstructure were found. This work presents structural information of all stable superstructures of PTCDA on vicinal Ag(111) surfaces. Altogether 16 such superstructures were found, 3 of which had been observed and published before. Density and commensurability were found to systematically depend on the step-structure. The two preferred inclinations of facets are related to two characteristic types of domain boundaries of the herringbone superstructure to the adjacent (111)-terrace. Within the superstructure, local bonding of either one molecular species adhering perpendicular or one adhering parallel to the step-edge decides about the inclination of the surface. Consequently, the superstructure domain boundaries have profound influence on the details of the reconstruction. Additionally, under certain preparation conditions the (111) superstructure controls the facetting reconstruction. On the (111) terraces, small islands of metastable superstructures were found. A comparison with the well known stable (111) structure allows insight into the complex nucleation kinetics of this structure. Facets and (111) terraces form a regular grating-like domain pattern with a variable structural width of 5 to 75nm. This width saturates upon prolonged annealing. STM measurements show direct evidence for a long-range interaction between facet edges, causing a deformation of the surface between two facets. The domain patterns can be interpreted as two interacting phases in thermodynamic equilibrium and facets as interacting defects on an elastic surface. In cooperation with another group grating-like domain patterns on the nanometer-scale were used as a template for selective Fe adsorption. KW - Adsorbat KW - Perylendianhydrid KW - Überstruktur KW - Silber KW - Festkörperoberfläche KW - Selbstorganisation KW - Ag KW - Vizinal KW - Rekonstruktion KW - Molekül KW - Facette KW - Ag KW - vicinal KW - reconstruction KW - molecule KW - facet Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-25088 ER - TY - THES A1 - Selle, Reimer Andreas T1 - Adaptive Polarization Pulse Shaping and Modeling of Light-Matter Interactions with Neural Networks T1 - Adaptive Polarisationspulsformung und Modellierung von Licht-Materie-Wechselwirkungen mit Neuronalen Netzwerken N2 - The technique of ultrafast polarization shaping is applied to a model quantum system, the potassium dimer. The polarization dependence of the multiphoton ionization dynamics in this molecule is first investigated in pump–probe experiments, and it is then more generally addressed and exploited in an adaptive quantum control experiment utilizing near–IR polarization–shaped laser pulses. The extension of these polarization shaping techniques to the UV spectral range is presented, and methods for the generation and characterization of polarization–shaped laser pulses in the UV are introduced. Systematic scans of double–pulse sequences are introduced for the investigation and interpretation of control mechanisms. This concept is first introduced and illustrated for an optical demonstration experiment, and it is then applied for the analysis of the intrapulse dumping mechanism that is observed in the excitation of a large dye molecule in solution with ultrashort laser pulses. Shaped laser pulses are employed as a means for obtaining copious amounts of data on light–matter interactions. Neural networks are introduced as a novel tool for generating computer–based models for these interactions from the accumulated data. The viability of this approach is first tested for second harmonic generation (SHG) and molecular fluorescence processes. Neural networks are then utilized for modeling the far more complex coherent strong–field dynamics of potassium atoms. N2 - Die Technik der ultraschnellen Polarisationspulsformung wird auf ein Modell-Quantensystem, das Kalium-Dimer angewandt. Die Polarisationsabhängigkeit der Ionisationsdynamik wird zunächst mit Anrege-Abfrage-Experimenten untersucht, und anschließend in einem adaptiven Optimierungsexperiment mit polarisationsgeformten Nahinfrarot-Laserpulsen ausgenutzt. Die Polarisationspulsformungstechnik wird auf den ultravioletten Spektralbereich erweitert, und es werden Methoden zur Erzeugung und Charakterisierung von polarisationsgeformten UV-Pulsen vorgestellt. Systematische Abtastungen von Doppelpulsfolgen werden für die Untersuchung und Interpretation von Kontrollmechanismen vorgestellt. Geformte Laserpulse werden verwendet, um umfangreiche Daten über die Licht-Materie Wechselwirkung zu sammeln. Neuronale Netzwerke werden erstmals dazu verwendet, um aus den Daten numerische Modelle für die Wechselwirkung von Licht und Materie zu erzeugen. Die Durchführbarkeit dieses Ansatzes wird zunächst an SHG und Fluoreszenzprozessen demonstriert. Neuronale Netzwerke werden desweiteren dazu verwendet, um die weitaus komplexere Dynamik von Kaliumatomen in starken elektromagnetischen Feldern zu modellieren. KW - Lasertechnologie KW - Impulslaser KW - Optimale Kontrolle KW - Pulsformung KW - Neuronale Netzwerke KW - adaptive Optimierung KW - Polarisation KW - pulse shaping KW - neural networks KW - adaptive optimization KW - polarization Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-25596 ER -