TY - JOUR A1 - Arlt, Wiebke A1 - Biehl, Michael A1 - Taylor, Angela E. A1 - Hahner, Stefanie A1 - Libé, Rossella A1 - Hughes, Beverly A. A1 - Schneider, Petra A1 - Smith, David J. A1 - Stiekema, Han A1 - Krone, Nils A1 - Porfiri, Emilio A1 - Opocher, Giuseppe A1 - Bertherat, Jerôme A1 - Mantero, Franco A1 - Allolio, Bruno A1 - Terzolo, Massimo A1 - Nightingale, Peter A1 - Shackleton, Cedric H. L. A1 - Bertagna, Xavier A1 - Fassnacht, Martin A1 - Stewart, Paul M. T1 - Urine Steroid Metabolomics as a Biomarker Tool for Detecting Malignancy in Adrenal Tumors JF - The Journal of Clinical Endocrinology & Metabolism N2 - Context: Adrenal tumors have a prevalence of around 2% in the general population. Adrenocortical carcinoma (ACC) is rare but accounts for 2–11% of incidentally discovered adrenal masses. Differentiating ACC from adrenocortical adenoma (ACA) represents a diagnostic challenge in patients with adrenal incidentalomas, with tumor size, imaging, and even histology all providing unsatisfactory predictive values. Objective: Here we developed a novel steroid metabolomic approach, mass spectrometry-based steroid profiling followed by machine learning analysis, and examined its diagnostic value for the detection of adrenal malignancy. Design: Quantification of 32 distinct adrenal derived steroids was carried out by gas chromatography/mass spectrometry in 24-h urine samples from 102 ACA patients (age range 19–84 yr) and 45 ACC patients (20–80 yr). Underlying diagnosis was ascertained by histology and metastasis in ACC and by clinical follow-up [median duration 52 (range 26–201) months] without evidence of metastasis in ACA. Steroid excretion data were subjected to generalized matrix learning vector quantization (GMLVQ) to identify the most discriminative steroids. Results: Steroid profiling revealed a pattern of predominantly immature, early-stage steroidogenesis in ACC. GMLVQ analysis identified a subset of nine steroids that performed best in differentiating ACA from ACC. Receiver-operating characteristics analysis of GMLVQ results demonstrated sensitivity = specificity = 90% (area under the curve = 0.97) employing all 32 steroids and sensitivity = specificity = 88% (area under the curve = 0.96) when using only the nine most differentiating markers. Conclusions: Urine steroid metabolomics is a novel, highly sensitive, and specific biomarker tool for discriminating benign from malignant adrenal tumors, with obvious promise for the diagnostic work-up of patients with adrenal incidentalomas. KW - adrenal cortex hormones KW - urine KW - adrenal cortex neoplasms KW - mass spectrometry KW - metabolomics Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-154682 VL - 96 IS - 12 SP - 3775 EP - 3784 ER - TY - JOUR A1 - Fassnacht, Martin A1 - Johanssen, Sarah A1 - Allolio, Bruno T1 - Statements Cannot Be Substantiated : In Reply JF - Deutsches Ärzteblatt International N2 - No abstract available. KW - Medicine Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-142597 VL - 108 IS - 19 ER - TY - JOUR A1 - Fassnacht, Martin A1 - Sbiera, Silviu A1 - Dexneit, Thomas A1 - Reichardt, Sybille D. A1 - Michel, Kai D. A1 - van den Brandt, Jens A1 - Schmull, Sebastian A1 - Kraus, Luitgard A1 - Beyer, Melanie A1 - Mlynski, Robert A1 - Wortmann, Sebastian A1 - Allolio, Bruno A1 - Reichardt, Holger M. T1 - Influence of Short-Term Glucocorticoid Therapy on Regulatory T Cells In Vivo N2 - Background: Pre- and early clinical studies on patients with autoimmune diseases suggested that induction of regulatory T(Treg) cells may contribute to the immunosuppressive effects of glucocorticoids(GCs). Objective: We readdressed the influence of GC therapy on Treg cells in immunocompetent human subjects and naı¨ve mice. Methods: Mice were treated with increasing doses of intravenous dexamethasone followed by oral taper, and Treg cells in spleen and blood were analyzed by FACS. Sixteen patients with sudden hearing loss but without an inflammatory disease received high-dose intravenous prednisolone followed by stepwise dose reduction to low oral prednisolone. Peripheral blood Treg cells were analyzed prior and after a 14 day GC therapy based on different markers. Results: Repeated GC administration to mice for three days dose-dependently decreased the absolute numbers of Treg cells in blood (100 mg dexamethasone/kg body weight: 2.861.86104 cells/ml vs. 336116104 in control mice) and spleen (dexamethasone: 2.861.96105/spleen vs. 956226105/spleen in control mice), which slowly recovered after 14 days taper in spleen but not in blood. The relative frequency of FOXP3+ Treg cells amongst the CD4+ T cells also decreased in a dose dependent manner with the effect being more pronounced in blood than in spleen. The suppressive capacity of Treg cells was unaltered by GC treatment in vitro. In immunocompetent humans, GCs induced mild T cell lymphocytosis. However, it did not change the relative frequency of circulating Treg cells in a relevant manner, although there was some variation depending on the definition of the Treg cells (FOXP3+: 4.061.5% vs 3.461.5%*; AITR+: 0.660.4 vs 0.560.3%, CD127low: 4.061.3 vs 5.063.0%* and CTLA4+: 13.8611.5 vs 15.6612.5%; * p,0.05). Conclusion: Short-term GC therapy does not induce the hitherto supposed increase in circulating Treg cell frequency, neither in immunocompetent humans nor in mice. Thus, it is questionable that the clinical efficacy of GCs is achieved by modulating Treg cell numbers. KW - Medizin Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-74749 ER - TY - JOUR A1 - Sbiera, Silviu A1 - Dexneit, Thomas A1 - Reichardt, Sybille D. A1 - Michel, Kai D. A1 - van den Brandt, Jens A1 - Schmull, Sebastian A1 - Kraus, Luitgard A1 - Beyer, Melanie A1 - Mlynski, Robert A1 - Wortmann, Sebastian A1 - Allolio, Bruno A1 - Reichardt, Holger M. A1 - Fassnacht, Martin T1 - Influence of Short-Term Glucocorticoid Therapy on Regulatory T Cells \(In\) \(Vivo\) JF - PLoS One N2 - Background: Pre- and early clinical studies on patients with autoimmune diseases suggested that induction of regulatory T(T(reg)) cells may contribute to the immunosuppressive effects of glucocorticoids(GCs). Objective: We readdressed the influence of GC therapy on T(reg) cells in immunocompetent human subjects and naive mice. Methods: Mice were treated with increasing doses of intravenous dexamethasone followed by oral taper, and T(reg) cells in spleen and blood were analyzed by FACS. Sixteen patients with sudden hearing loss but without an inflammatory disease received high-dose intravenous prednisolone followed by stepwise dose reduction to low oral prednisolone. Peripheral blood T(reg) cells were analyzed prior and after a 14 day GC therapy based on different markers. Results: Repeated GC administration to mice for three days dose-dependently decreased the absolute numbers of T(reg) cells in blood (100 mg dexamethasone/kg body weight: 2.8 +/- 1.8 x 10(4) cells/ml vs. 33 +/- 11 x 10(4) in control mice) and spleen (dexamethasone: 2.8 +/- 1.9 x 10(5)/spleen vs. 95 +/- 22 x 10(5)/spleen in control mice), which slowly recovered after 14 days taper in spleen but not in blood. The relative frequency of FOXP3(+) T(reg) cells amongst the CD4(+) T cells also decreased in a dose dependent manner with the effect being more pronounced in blood than in spleen. The suppressive capacity of T(reg) cells was unaltered by GC treatment in vitro. In immunocompetent humans, GCs induced mild T cell lymphocytosis. However, it did not change the relative frequency of circulating T(reg) cells in a relevant manner, although there was some variation depending on the definition of the T(reg) cells (FOXP3(+): 4.0 +/- 1.5% vs 3.4 +/- 1.5%*; AITR(+): 0.660.4 vs 0.5 +/- 0.3%, CD127(low): 4.0 +/- 1.3 vs 5.0 +/- 3.0%* and CTLA4+: 13.8 +/- 11.5 vs 15.6 +/- 12.5%; * p < 0.05). Conclusion: Short-term GC therapy does not induce the hitherto supposed increase in circulating T(reg) cell frequency, neither in immunocompetent humans nor in mice. Thus, it is questionable that the clinical efficacy of GCs is achieved by modulating T(reg) cell numbers. KW - Systemic-Lupus-Erythematosus KW - Immunological Self-Tolerance KW - Multiple-Sclerosis KW - Suppressive Function KW - Autoimmune-Diseases KW - FoxP3 Expression KW - Dendritic Cells KW - Immune-System KW - Sex-Hormones KW - Antigen 4 Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-140822 VL - 6 IS - 9 ER -