TY - JOUR A1 - Flachenecker, Peter A1 - Bures, Anna Karoline A1 - Gawlik, Angeli A1 - Weiland, Ann-Christin A1 - Kuld, Sarah A1 - Gusowski, Klaus A1 - Streber, René A1 - Pfeifer, Klaus A1 - Tallner, Alexander T1 - Efficacy of an internet-based program to promote physical activity and exercise after inpatient rehabilitation in persons with multiple sclerosis: a randomized, single-blind, controlled study JF - International Journal of Environmental Research and Public Health N2 - Background: Multimodal rehabilitation improves fatigue and mobility in persons with multiple sclerosis (PwMS). Effects are transient and may be conserved by internet-based physical activity promotion programs. Objective: Evaluate the effects of internet-based physical activity and exercise promotion on fatigue, quality of life, and gait in PwMS after inpatient rehabilitation. Methods: PwMS (Expanded Disability Status Scale (EDSS) ≤ 6.0, fatigue: Würzburg Fatigue Inventory for Multiple Sclerosis (WEIMuS) ≥ 32) were randomized into an intervention group (IG) or a control group (CG). After rehabilitation, IG received 3 months of internet-based physical activity promotion, while CG received no intervention. Primary outcome: self-reported fatigue (WEIMuS). Secondary outcomes: quality of life (Multiple Sclerosis Impact Scale 29, MSIS-29), gait (2min/10m walking test, Tinetti score). Measurements: beginning (T0) and end (T1) of inpatient rehabilitation, 3 (T2) and 6 (T3) months afterwards. Results: 64 of 84 PwMS were analyzed (IG: 34, CG: 30). After rehabilitation, fatigue decreased in both groups. At T2 and T3, fatigue increased again in CG but was improved in IG (p < 0.001). MSIS-29 improved in both groups at T1 but remained improved at T2 and T3 only in IG. Gait improvements were more pronounced in IG at T2. Conclusions: The study provides Class II evidence that the effects of rehabilitation on fatigue, quality of life, and gait can be maintained for 3–6 months with an internet-based physical activity and exercise promotion program. KW - multiple sclerosis KW - rehabilitation KW - fatigue KW - quality of life KW - walking KW - physical activity KW - exercise KW - online systems KW - internet-based intervention KW - health behavior Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-207863 SN - 1660-4601 VL - 17 IS - 12 ER - TY - JOUR A1 - Gómez-Fernández, Paloma A1 - Lopez de Lapuente Portilla, Aitzkoa A1 - Astobiza, Ianire A1 - Mena, Jorge A1 - Urtasun, Andoni A1 - Altmann, Vivian A1 - Matesanz, Fuencisla A1 - Otaegui, David A1 - Urcelay, Elena A1 - Antigüedad, Alfredo A1 - Malhotra, Sunny A1 - Montalban, Xavier A1 - Castillo-Triviño, Tamara A1 - Espino-Paisán, Laura A1 - Aktas, Orhan A1 - Buttmann, Mathias A1 - Chan, Andrew A1 - Fontaine, Bertrand A1 - Gourraud, Pierre-Antoine A1 - Hecker, Michael A1 - Hoffjan, Sabine A1 - Kubisch, Christian A1 - Kümpfel, Tania A1 - Luessi, Felix A1 - Zettl, Uwe K. A1 - Zipp, Frauke A1 - Alloza, Iraide A1 - Comabella, Manuel A1 - Lill, Christina M. A1 - Vandenbroeck, Koen T1 - The rare IL22RA2 signal peptide coding variant rs28385692 decreases secretion of IL-22BP isoform-1, -2 and -3 and is associated with risk for multiple sclerosis JF - Cells N2 - The IL22RA2 locus is associated with risk for multiple sclerosis (MS) but causative variants are yet to be determined. In a single nucleotide polymorphism (SNP) screen of this locus in a Basque population, rs28385692, a rare coding variant substituting Leu for Pro at position 16 emerged significantly (p = 0.02). This variant is located in the signal peptide (SP) shared by the three secreted protein isoforms produced by IL22RA2 (IL-22 binding protein-1(IL-22BPi1), IL-22BPi2 and IL-22BPi3). Genotyping was extended to a Europe-wide case-control dataset and yielded high significance in the full dataset (p = 3.17 × 10\(^{-4}\)). Importantly, logistic regression analyses conditioning on the main known MS-associated SNP at this locus, rs17066096, revealed that this association was independent from the primary association signal in the full case-control dataset. In silico analysis predicted both disruption of the alpha helix of the H-region of the SP and decreased hydrophobicity of this region, ultimately affecting the SP cleavage site. We tested the effect of the p.Leu16Pro variant on the secretion of IL-22BPi1, IL-22BPi2 and IL-22BPi3 and observed that the Pro16 risk allele significantly lowers secretion levels of each of the isoforms to around 50%–60% in comparison to the Leu16 reference allele. Thus, our study suggests that genetically coded decreased levels of IL-22BP isoforms are associated with augmented risk for MS. KW - IL22RA2 KW - IL-22 binding protein isoform KW - mutation KW - signal peptide KW - multiple sclerosis KW - autoimmune Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-200769 SN - 2073-4409 VL - 9 IS - 1 ER - TY - JOUR A1 - Nguemeni, Carine A1 - Homola, György A. A1 - Nakchbandi, Luis A1 - Pham, Mirko A1 - Volkmann, Jens A1 - Zeller, Daniel T1 - A Single Session of Anodal Cerebellar Transcranial Direct Current Stimulation Does Not Induce Facilitation of Locomotor Consolidation in Patients With Multiple Sclerosis JF - Frontiers in Human Neuroscience N2 - Background: Multiple sclerosis (MS) may cause variable functional impairment. The discrepancy between functional impairment and brain imaging findings in patients with MS (PwMS) might be attributed to differential adaptive and consolidation capacities. Modulating those abilities could contribute to a favorable clinical course of the disease. Objectives: We examined the effect of cerebellar transcranial direct current stimulation (c-tDCS) on locomotor adaptation and consolidation in PwMS using a split-belt treadmill (SBT) paradigm. Methods: 40 PwMS and 30 matched healthy controls performed a locomotor adaptation task on a SBT. First, we assessed locomotor adaptation in PwMS. In a second investigation, this training was followed by cerebellar anodal tDCS applied immediately after the task ipsilateral to the fast leg (T0). The SBT paradigm was repeated 24 h (T1) and 78 h (T2) post-stimulation to evaluate consolidation. Results: The gait dynamics and adaptation on the SBT were comparable between PwMS and controls. We found no effects of offline cerebellar anodal tDCS on locomotor adaptation and consolidation. Participants who received the active stimulation showed the same retention index than sham-stimulated subjects at T1 (p = 0.33) and T2 (p = 0.46). Conclusion: Locomotor adaptation is preserved in people with mild-to-moderate MS. However, cerebellar anodal tDCS applied immediately post-training does not further enhance this ability. Future studies should define the neurobiological substrates of maintained plasticity in PwMS and how these substrates can be manipulated to improve compensation. Systematic assessments of methodological variables for cerebellar tDCS are urgently needed to increase the consistency and replicability of the results across experiments in various settings. KW - multiple sclerosis KW - cerebellar tDCS KW - split-belt treadmill KW - locomotor adaptation KW - consolidation Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-215291 SN - 1662-5161 VL - 14 ER -