TY - JOUR A1 - Lauruschkat, Chris D. A1 - Etter, Sonja A1 - Schnack, Elisabeth A1 - Ebel, Frank A1 - Schäuble, Sascha A1 - Page, Lukas A1 - Rümens, Dana A1 - Dragan, Mariola A1 - Schlegel, Nicolas A1 - Panagiotou, Gianni A1 - Kniemeyer, Olaf A1 - Brakhage, Axel A. A1 - Einsele, Hermann A1 - Wurster, Sebastian A1 - Loeffler, Juergen T1 - Chronic occupational mold exposure drives expansion of Aspergillus-reactive type 1 and type 2 T-helper cell responses JF - Journal of Fungi N2 - Occupational mold exposure can lead to Aspergillus-associated allergic diseases including asthma and hypersensitivity pneumonitis. Elevated IL-17 levels or disbalanced T-helper (Th) cell expansion were previously linked to Aspergillus-associated allergic diseases, whereas alterations to the Th cell repertoire in healthy occupationally exposed subjects are scarcely studied. Therefore, we employed functional immunoassays to compare Th cell responses to A. fumigatus antigens in organic farmers, a cohort frequently exposed to environmental molds, and non-occupationally exposed controls. Organic farmers harbored significantly higher A. fumigatus-specific Th-cell frequencies than controls, with comparable expansion of Th1- and Th2-cell frequencies but only slightly elevated Th17-cell frequencies. Accordingly, Aspergillus antigen-induced Th1 and Th2 cytokine levels were strongly elevated, whereas induction of IL-17A was minimal. Additionally, increased levels of some innate immune cell-derived cytokines were found in samples from organic farmers. Antigen-induced cytokine release combined with Aspergillus-specific Th-cell frequencies resulted in high classification accuracy between organic farmers and controls. Aspf22, CatB, and CipC elicited the strongest differences in Th1 and Th2 responses between the two cohorts, suggesting these antigens as potential candidates for future bio-effect monitoring approaches. Overall, we found that occupationally exposed agricultural workers display a largely balanced co-expansion of Th1 and Th2 immunity with only minor changes in Th17 responses. KW - mold exposure KW - immunoassay KW - biomarker KW - Aspergillus KW - cytokines KW - inflammation KW - adaptive immunity KW - hypersensitivity Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-245202 SN - 2309-608X VL - 7 IS - 9 ER - TY - JOUR A1 - Lauruschkat, Chris D. A1 - Page, Lukas A1 - White, P. Lewis A1 - Etter, Sonja A1 - Davies, Helen E. A1 - Duckers, Jamie A1 - Ebel, Frank A1 - Schnack, Elisabeth A1 - Backx, Matthijs A1 - Dragan, Mariola A1 - Schlegel, Nicolas A1 - Kniemeyer, Olaf A1 - Brakhage, Axel A. A1 - Einsele, Hermann A1 - Loeffler, Juergen A1 - Wurster, Sebastian T1 - Development of a simple and robust whole blood assay with dual co-stimulation to quantify the release of T-cellular signature cytokines in response to Aspergillus fumigatus antigens JF - Journal of Fungi N2 - Deeper understanding of mold-induced cytokine signatures could promote advances in the diagnosis and treatment of invasive mycoses and mold-associated hypersensitivity syndromes. Currently, most T-cellular immunoassays in medical mycology require the isolation of mononuclear cells and have limited robustness and practicability, hampering their broader applicability in clinical practice. Therefore, we developed a simple, cost-efficient whole blood (WB) assay with dual α-CD28 and α-CD49d co-stimulation to quantify cytokine secretion in response to Aspergillus fumigatus antigens. Dual co-stimulation strongly enhanced A. fumigatus-induced release of T-cellular signature cytokines detectable by enzyme-linked immunosorbent assay (ELISA) or a multiplex cytokine assay. Furthermore, T-cell-dependent activation and cytokine response of innate immune cells was captured by the assay. The protocol consistently showed little technical variation and high robustness to pre-analytic delays of up to 8 h. Stimulation with an A. fumigatus lysate elicited at least 7-fold greater median concentrations of key T-helper cell signature cytokines, including IL-17 and the type 2 T-helper cell cytokines IL-4 and IL-5 in WB samples from patients with Aspergillus-associated lung pathologies versus patients with non-mold-related lung diseases, suggesting high discriminatory power of the assay. These results position WB-ELISA with dual co-stimulation as a simple, accurate, and robust immunoassay for translational applications, encouraging further evaluation as a platform to monitor host immunity to opportunistic pathogens. KW - immunoassay KW - biomarker KW - Aspergillus KW - cytokines KW - inflammation KW - adaptive immunity Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-241025 SN - 2309-608X VL - 7 IS - 6 ER - TY - JOUR A1 - Page, Lukas A1 - Wallstabe, Julia A1 - Lother, Jasmin A1 - Bauser, Maximilian A1 - Kniemeyer, Olaf A1 - Strobel, Lea A1 - Voltersen, Vera A1 - Teutschbein, Janka A1 - Hortschansky, Peter A1 - Morton, Charles Oliver A1 - Brakhage, Axel A. A1 - Topp, Max A1 - Einsele, Hermann A1 - Wurster, Sebastian A1 - Loeffler, Juergen T1 - CcpA- and Shm2-Pulsed Myeloid Dendritic Cells Induce T-Cell Activation and Enhance the Neutrophilic Oxidative Burst Response to Aspergillus fumigatus JF - Frontiers in Immunology N2 - Aspergillus fumigatus causes life-threatening opportunistic infections in immunocompromised patients. As therapeutic outcomes of invasive aspergillosis (IA) are often unsatisfactory, the development of targeted immunotherapy remains an important goal. Linking the innate and adaptive immune system, dendritic cells are pivotal in anti-Aspergillus defense and have generated interest as a potential immunotherapeutic approach in IA. While monocyte-derived dendritic cells (moDCs) require ex vivo differentiation, antigen-pulsed primary myeloid dendritic cells (mDCs) may present a more immediate platform for immunotherapy. To that end, we compared the response patterns and cellular interactions of human primary mDCs and moDCs pulsed with an A. fumigatus lysate and two A. fumigatus proteins (CcpA and Shm2) in a serum-free, GMP-compliant medium. CcpA and Shm2 triggered significant upregulation of maturation markers in mDCs and, to a lesser extent, moDCs. Furthermore, both A. fumigatus proteins elicited the release of an array of key pro-inflammatory cytokines including TNF-α, IL-1β, IL-6, IL-8, and CCL3 from both DC populations. Compared to moDCs, CcpA- and Shm2-pulsed mDCs exhibited greater expression of MHC class II antigens and stimulated stronger proliferation and IFN-γ secretion from autologous CD4\(^+\) and CD8\(^+\) T-cells. Moreover, supernatants of CcpA- and Shm2-pulsed mDCs significantly enhanced the oxidative burst in allogeneic neutrophils co-cultured with A. fumigatus germ tubes. Taken together, our in vitro data suggest that ex vivo CcpA- and Shm2-pulsed primary mDCs have the potential to be developed into an immunotherapeutic approach to tackle IA. KW - antigens KW - dendritic cells KW - cytokines KW - host defense KW - immunotherapy KW - Aspergillus Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-239493 SN - 1664-3224 VL - 12 ER - TY - JOUR A1 - Springer, Jan A1 - Held, Jürgen A1 - Mengoli, Carlo A1 - Schlegel, Paul Gerhardt A1 - Gamon, Florian A1 - Träger, Johannes A1 - Kurzai, Oliver A1 - Einsele, Hermann A1 - Loeffler, Juergen A1 - Eyrich, Matthias T1 - Diagnostic performance of (1→3)-β-D-glucan alone and in combination with aspergillus PCR and galactomannan in serum of pediatric patients after allogeneic hematopoietic stem cell transplantation JF - Journal of Fungi N2 - Data on biomarker-assisted diagnosis of invasive aspergillosis (IA) in pediatric patients is scarce. Therefore, we conducted a cohort study over two years including 404 serum specimens of 26 pediatric patients after allogeneic hematopoietic stem cell transplantation (alloSCT). Sera were tested prospectively twice weekly for Aspergillus-specific DNA, galactomannan (GM), and retrospectively for (1→3)-β-D-glucan (BDG). Three probable IA and two possible invasive fungal disease (IFD) cases were identified using the European Organization for Research and Treatment of Cancer and the Mycoses Study Group (EORTC/MSGERC) 2019 consensus definitions. Sensitivity and specificity for diagnosis of probable IA and possible IFD was 80% (95% confidential interval (CI): 28–99%) and 55% (95% CI: 32–77%) for BDG, 40% (95% CI: 5–85%) and 100% (95% CI: 83–100%) for GM, and 60% (95% CI: 15–95%) and 95% (95% CI: 75–100%) for Aspergillus-specific real-time PCR. However, sensitivities have to be interpreted with great caution due to the limited number of IA cases. Interestingly, the low specificity of BDG was largely caused by false-positive BDG results that clustered around the date of alloSCT. The following strategies were able to increase BDG specificity: two consecutive positive BDG tests for diagnosis (specificity 80% (95% CI: 56–94%)); using an optimized cutoff value of 306 pg/mL (specificity 90% (95% CI: 68–99%)) and testing BDG only after the acute posttransplant phase. In summary, BDG can help to diagnose IA in pediatric alloSCT recipients. However, due to the poor specificity either an increased cutoff value should be utilized or BDG results should be confirmed by an alternative Aspergillus assay. KW - beta-D-glucan KW - galactomannan KW - real-time PCR KW - Aspergillus KW - pediatric Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-234179 SN - 2309-608X VL - 7 IS - 3 ER - TY - JOUR A1 - White, P. Lewis A1 - Springer, Jan A1 - Wise, Matt P. A1 - Einsele, Hermann A1 - Löffler, Claudia A1 - Seif, Michelle A1 - Prommersberger, Sabrina A1 - Backx, Matthijs A1 - Löffler, Jürgen T1 - A clinical case of COVID-19-associated pulmonary aspergillosis (CAPA), illustrating the challenges in diagnosis (despite overwhelming mycological evidence) JF - Journal of Fungi N2 - The COVID-19 pandemic has resulted in large numbers of patients requiring critical care management. With the established association between severe respiratory virus infection and invasive pulmonary aspergillosis (7.6% for COVID-19-associated pulmonary aspergillosis (CAPA)), the pandemic places a significant number of patients at potential risk from secondary invasive fungal disease. We described a case of CAPA with substantial supporting mycological evidence, highlighting the need to employ strategic diagnostic algorithms and weighted definitions to improve the accuracy in diagnosing CAPA. KW - COVID-19 KW - CAPA KW - diagnostics KW - Aspergillus Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-302438 SN - 2309-608X VL - 8 IS - 1 ER - TY - JOUR A1 - Tappe, Beeke A1 - Lauruschkat, Chris D. A1 - Strobel, Lea A1 - Pantaleón García, Jezreel A1 - Kurzai, Oliver A1 - Rebhan, Silke A1 - Kraus, Sabrina A1 - Pfeuffer-Jovic, Elena A1 - Bussemer, Lydia A1 - Possler, Lotte A1 - Held, Matthias A1 - Hünniger, Kerstin A1 - Kniemeyer, Olaf A1 - Schäuble, Sascha A1 - Brakhage, Axel A. A1 - Panagiotou, Gianni A1 - White, P. Lewis A1 - Einsele, Hermann A1 - Löffler, Jürgen A1 - Wurster, Sebastian T1 - COVID-19 patients share common, corticosteroid-independent features of impaired host immunity to pathogenic molds JF - Frontiers in Immunology N2 - Patients suffering from coronavirus disease-2019 (COVID-19) are susceptible to deadly secondary fungal infections such as COVID-19-associated pulmonary aspergillosis and COVID-19-associated mucormycosis. Despite this clinical observation, direct experimental evidence for severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2)-driven alterations of antifungal immunity is scarce. Using an ex-vivo whole blood stimulation assay, we challenged blood from twelve COVID-19 patients with Aspergillus fumigatus and Rhizopus arrhizus antigens and studied the expression of activation, maturation, and exhaustion markers, as well as cytokine secretion. Compared to healthy controls, T-helper cells from COVID-19 patients displayed increased expression levels of the exhaustion marker PD-1 and weakened A. fumigatus- and R. arrhizus-induced activation. While baseline secretion of proinflammatory cytokines was massively elevated, whole blood from COVID-19 patients elicited diminished release of T-cellular (e.g., IFN-γ, IL-2) and innate immune cell-derived (e.g., CXCL9, CXCL10) cytokines in response to A. fumigatus and R. arrhizus antigens. Additionally, samples from COVID-19 patients showed deficient granulocyte activation by mold antigens and reduced fungal killing capacity of neutrophils. These features of weakened anti-mold immune responses were largely decoupled from COVID-19 severity, the time elapsed since diagnosis of COVID-19, and recent corticosteroid uptake, suggesting that impaired anti-mold defense is a common denominator of the underlying SARS-CoV-2 infection. Taken together, these results expand our understanding of the immune predisposition to post-viral mold infections and could inform future studies of immunotherapeutic strategies to prevent and treat fungal superinfections in COVID-19 patients. KW - COVID-19 KW - immune impairment KW - T cells KW - granulocytes KW - Aspergillus KW - Rhizopus Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-283558 SN - 1664-3224 VL - 13 ER -