TY - JOUR A1 - Gryszel, Maciej A1 - Schlossarek, Tim A1 - Würthner, Frank A1 - Natali, Mirco A1 - Głowacki, Eric Daniel T1 - Water‐soluble cationic perylene diimide dyes as stable photocatalysts for H\(_2\)O\(_2\) evolution JF - ChemPhotoChem N2 - Photocatalytic generation of hydrogen peroxide, H\(_2\)O\(_2\), has gained increasing attention in recent years, with applications ranging from solar energy conversion to biophysical research. While semiconducting solid‐state materials are normally regarded as the workhorse for photogeneration of H\(_2\)O\(_2\), an intriguing alternative for on‐demand H\(_2\)O\(_2\) is the use of photocatalytic organic dyes. Herein we report the use of water‐soluble dyes based on perylene diimide molecules which behave as true molecular catalysts for the light‐induced conversion of dissolved oxygen to hydrogen peroxide. In particular, we address how to obtain visible‐light photocatalysts which are stable with respect to aggregation and photochemical degradation. We report on the factors affecting efficiency and stability, including variable electron donors, oxygen partial pressure, pH, and molecular catalyst structure. The result is a perylene diimide derivative with unprecedented peroxide evolution performance using a broad range of organic donor molecules and operating in a wide pH range. KW - hydrogen peroxide KW - oxygen reduction reaction KW - perylene KW - photocatalysis KW - dyes/pigments Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-370250 SN - 2367-0932 VL - 7 IS - 9 ER - TY - JOUR A1 - Gil-Sepulcre, Marcos A1 - Lindner, Joachim O. A1 - Schindler, Dorothee A1 - Velasco, Lucía A1 - Moonshiram, Dooshaye A1 - Rüdiger, Olaf A1 - DeBeer, Serena A1 - Stepanenko, Vladimir A1 - Solano, Eduardo A1 - Würthner, Frank A1 - Llobet, Antoni T1 - Surface-promoted evolution of Ru-bda coordination oligomers boosts the efficiency of water oxidation molecular anodes JF - Journal of the American Chemical Society N2 - A new Ru oligomer of formula {[Ru-\(^{II}\)(bda-\(\kappa\)-N\(^2\)O\(^2\))(4,4'-bpy)]\(_{10}\)(4,4'-bpy)}, 10 (bda is [2,2'-bipyridine]-6,6'-dicarbox-ylate and 4,4'-bpy is 4,4'-bipyridine), was synthesized and thoroughly characterized with spectroscopic, X-ray, and electrochemical techniques. This oligomer exhibits strong affinity for graphitic materials through CH-\(\pi\) interactions and thus easily anchors on multiwalled carbon nanotubes (CNT), generating the molecular hybrid material 10@CNT. The latter acts as a water oxidation catalyst and converts to a new species, 10'(H\(_2\)O)\(_2\)@CNT, during the electrochemical oxygen evolution process involving solvation and ligand reorganization facilitated by the interactions of molecular Ru catalyst and the surface. This heterogeneous system has been shown to be a powerful and robust molecular hybrid anode for electrocatalytic water oxidation into molecular oxygen, achieving current densities in the range of 200 mA/cm\(^2\) at pH 7 under an applied potential of 1.45 V vs NHE. The remarkable long-term stability of this hybrid material during turnover is rationalized based on the supramolecular interaction of the catalyst with the graphitic surface. KW - electrodes KW - ligands KW - oligomers KW - surface interactions KW - water oxidation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-351514 VL - 143 IS - 30 ER - TY - JOUR A1 - Kraus, Michael A1 - Grimm, Clemens A1 - Seibel, Jürgen T1 - Reversibility of a Point Mutation Induced Domain Shift: Expanding the Conformational Space of a Sucrose Phosphorylase JF - Scientific Reports N2 - Despite their popularity as enzyme engineering targets structural information about Sucrose Phosphorylases remains scarce. We recently clarified that the Q345F variant of Bifidobacterium adolescentis Sucrose Phosphorylase is able to accept large polyphenolic substrates like resveratrol via a domain shift. Here we present a crystal structure of this variant in a conformation suitable for the accommodation of the donor substrate sucrose in excellent agreement with the wild type structure. Remarkably, this conformation does not feature the previously observed domain shift which is therefore reversible and part of a dynamic process rather than a static phenomenon. This crystallographic snapshot completes our understanding of the catalytic cycle of this useful variant and will allow for a more rational design of further generations of Sucrose Phosphorylase variants. KW - biocatalysis KW - X-ray crystallography Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-224845 VL - 8 ER - TY - JOUR A1 - Hoernes, Thomas Philipp A1 - Faserl, Klaus A1 - Juen, Michael Andreas A1 - Kremser, Johannes A1 - Gasser, Catherina A1 - Fuchs, Elisabeth A1 - Shi, Xinying A1 - Siewert, Aaron A1 - Lindner, Herbert A1 - Kreutz, Christoph A1 - Micura, Ronald A1 - Joseph, Simpson A1 - Höbartner, Claudia A1 - Westhof, Eric A1 - Hüttenhofer, Alexander A1 - Erlacher, Matthias David T1 - Translation of non-standard codon nucleotides reveals minimal requirements for codon-anticodon interactions JF - Nature Communications N2 - The precise interplay between the mRNA codon and the tRNA anticodon is crucial for ensuring efficient and accurate translation by the ribosome. The insertion of RNA nucleobase derivatives in the mRNA allowed us to modulate the stability of the codon-anticodon interaction in the decoding site of bacterial and eukaryotic ribosomes, allowing an in-depth analysis of codon recognition. We found the hydrogen bond between the N1 of purines and the N3 of pyrimidines to be sufficient for decoding of the first two codon nucleotides, whereas adequate stacking between the RNA bases is critical at the wobble position. Inosine, found in eukaryotic mRNAs, is an important example of destabilization of the codon-anticodon interaction. Whereas single inosines are efficiently translated, multiple inosines, e.g., in the serotonin receptor 5-HT2C mRNA, inhibit translation. Thus, our results indicate that despite the robustness of the decoding process, its tolerance toward the weakening of codon-anticodon interactions is limited. KW - chemical modification KW - nucleic acids KW - ribozymes KW - RNA Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-321067 VL - 9 ER - TY - JOUR A1 - Herbst, Stefanie A1 - Soberats, Bartolome A1 - Leowanawat, Pawaret A1 - Stolte, Matthias A1 - Lehmann, Matthias A1 - Würthner, Frank T1 - Self-assembly of multi-stranded perylene dye J-aggregates in columnar liquid-crystalline phases JF - Nature Communications N2 - Many discoid dyes self-assemble into columnar liquid-crystalline (LC) phases with packing arrangements that are undesired for photonic applications due to H-type exciton coupling. Here, we report a series of crystalline and LC perylene bisimides (PBIs) self-assembling into single or multi-stranded (two, three, and four strands) aggregates with predominant J-type exciton coupling. These differences in the supramolecular packing and optical properties are achieved by molecular design variations of tetra-bay phenoxy-dendronized PBIs with two N–H groups at the imide positions. The self-assembly is driven by hydrogen bonding, slipped π–π stacking, nanosegregation, and steric requirements of the peripheral building blocks. We could determine the impact of the packing motifs on the spectroscopic properties and demonstrate different J- and H-type coupling contributions between the chromophores. Our findings on structure–property relationships and strong J-couplings in bulk LC materials open a new avenue in the molecular engineering of PBI J-aggregates with prospective applications in photonics. KW - liquid crystals KW - self-assembly Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-319914 VL - 9 ER - TY - JOUR A1 - He, Tao A1 - Wu, Yanfei A1 - D'Avino, Gabriele A1 - Schmidt, Elliot A1 - Stolte, Matthias A1 - Cornil, Jérôme A1 - Beljonne, David A1 - Ruden, P. Paul A1 - Würthner, Frank A1 - Frisbie, C. Daniel T1 - Crystal step edges can trap electrons on the surfaces of n-type organic semiconductors JF - Nature Communications N2 - Understanding relationships between microstructure and electrical transport is an important goal for the materials science of organic semiconductors. Combining high-resolution surface potential mapping by scanning Kelvin probe microscopy (SKPM) with systematic field effect transport measurements, we show that step edges can trap electrons on the surfaces of single crystal organic semiconductors. n-type organic semiconductor crystals exhibiting positive step edge surface potentials display threshold voltages that increase and carrier mobilities that decrease with increasing step density, characteristic of trapping, whereas crystals that do not have positive step edge surface potentials do not have strongly step density dependent transport. A device model and microelectrostatics calculations suggest that trapping can be intrinsic to step edges for crystals of molecules with polar substituents. The results provide a unique example of a specific microstructure–charge trapping relationship and highlight the utility of surface potential imaging in combination with transport measurements as a productive strategy for uncovering microscopic structure–property relationships in organic semiconductors. KW - electronic and spintronic devices KW - electronic devices KW - scanning probe microscopy Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-227957 VL - 9 ER - TY - JOUR A1 - Dostál, Jakub A1 - Fennel, Franziska A1 - Koch, Federico A1 - Herbst, Stefanie A1 - Würthner, Frank A1 - Brixner, Tobias T1 - Direct observation of exciton–exciton interactions JF - Nature Communications N2 - Natural light harvesting as well as optoelectronic and photovoltaic devices depend on efficient transport of energy following photoexcitation. Using common spectroscopic methods, however, it is challenging to discriminate one-exciton dynamics from multi-exciton interactions that arise when more than one excitation is present in the system. Here we introduce a coherent two-dimensional spectroscopic method that provides a signal only in case that the presence of one exciton influences the behavior of another one. Exemplarily, we monitor exciton diffusion by annihilation in a perylene bisimide-based J-aggregate. We determine quantitatively the exciton diffusion constant from exciton–exciton-interaction 2D spectra and reconstruct the annihilation-free dynamics for large pump powers. The latter enables for ultrafast spectroscopy at much higher intensities than conventionally possible and thus improves signal-to-noise ratios for multichromophore systems; the former recovers spatio–temporal dynamics for a broad range of phenomena in which exciton interactions are present. KW - energy transfer KW - self-assembly KW - optical spectroscopy Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-226271 VL - 9 ER - TY - JOUR A1 - Schneider, Tilman A1 - Seebauer, Florian A1 - Beuerle, Florian A1 - Würthner, Frank T1 - A monodisperse, end‐capped Ru(bda) oligomer with outstanding performance in heterogeneous electrochemical water oxidation JF - Advanced Materials Technologies N2 - AbstractWater oxidation catalysis is a key step for sustainable fuel production by water splitting into hydrogen and oxygen. The synthesis of a novel coordination oligomer based on four Ru(bda) (bda = 2,2′‐bipyridine‐6,6′‐dicarboxylate) centers, three 4,4′‐bipyridine (4,4′‐bpy) linkers, and two 4‐picoline (4‐pic) end caps is reported. The monodispersity of this tetranuclear compound is characterized by NMR techniques. Heterogeneous electrochemical water oxidation after immobilization on multi‐walled carbon nanotubes (MWCNTs) shows catalytic performance unprecedented for this compound class, with a turnover frequency (TOF) of 133 s\(^{−1}\) and a turnover number (TON) of 4.89 × 10\(^6\), at a current density of 43.8 mA cm\(^{−2}\) and a potential of 1.45 V versus normal hydrogen electrode (NHE). KW - water oxidation catalysis KW - coordination oligomers KW - electrocatalysis KW - heterogeneous catalysis KW - renew-able fuels KW - ruthenium bda complexes KW - water splitting Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-363133 SN - 2365-709X VL - 9 IS - 11 ER - TY - JOUR A1 - Brünnert, Daniela A1 - Seupel, Raina A1 - Goyal, Pankaj A1 - Bach, Matthias A1 - Schraud, Heike A1 - Kirner, Stefanie A1 - Köster, Eva A1 - Feineis, Doris A1 - Bargou, Ralf C. A1 - Schlosser, Andreas A1 - Bringmann, Gerhard A1 - Chatterjee, Manik T1 - Ancistrocladinium A induces apoptosis in proteasome inhibitor-resistant multiple myeloma cells: a promising therapeutic agent candidate JF - Pharmaceuticals N2 - The N,C-coupled naphthylisoquinoline alkaloid ancistrocladinium A belongs to a novel class of natural products with potent antiprotozoal activity. Its effects on tumor cells, however, have not yet been explored. We demonstrate the antitumor activity of ancistrocladinium A in multiple myeloma (MM), a yet incurable blood cancer that represents a model disease for adaptation to proteotoxic stress. Viability assays showed a potent apoptosis-inducing effect of ancistrocladinium A in MM cell lines, including those with proteasome inhibitor (PI) resistance, and in primary MM cells, but not in non-malignant blood cells. Concomitant treatment with the PI carfilzomib or the histone deacetylase inhibitor panobinostat strongly enhanced the ancistrocladinium A-induced apoptosis. Mass spectrometry with biotinylated ancistrocladinium A revealed significant enrichment of RNA-splicing-associated proteins. Affected RNA-splicing-associated pathways included genes involved in proteotoxic stress response, such as PSMB5-associated genes and the heat shock proteins HSP90 and HSP70. Furthermore, we found strong induction of ATF4 and the ATM/H2AX pathway, both of which are critically involved in the integrated cellular response following proteotoxic and oxidative stress. Taken together, our data indicate that ancistrocladinium A targets cellular stress regulation in MM and improves the therapeutic response to PIs or overcomes PI resistance, and thus may represent a promising potential therapeutic agent. KW - multiple myeloma KW - ancistrocladinium A KW - naphthylisoquinoline alkaloids KW - proteasome inhibitor resistance KW - RNA splicing KW - cellular stress response KW - proteasome subunit beta type-5 (PSMB5) KW - activating transcription factor 4 (ATF4) KW - ataxia teleagiectasia mutated (ATM) KW - H2A histone family member X (H2AX) Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-362887 SN - 1424-8247 VL - 16 IS - 8 ER - TY - JOUR A1 - Kirchner, Philipp H. A1 - Schramm, Louis A1 - Ivanova, Svetlana A1 - Shoyama, Kazutaka A1 - Würthner, Frank A1 - Beuerle, Florian T1 - A water-stable boronate ester cage JF - Journal of the American Chemical Society N2 - The reversible condensation of catechols and boronic acids to boronate esters is a paradigm reaction in dynamic covalent chemistry. However, facile backward hydrolysis is detrimental for stability and has so far prevented applications for boronate-based materials. Here, we introduce cubic boronate ester cages 6 derived from hexahydroxy tribenzotriquinacenes and phenylene diboronic acids with ortho-t-butyl substituents. Due to steric shielding, dynamic exchange at the Lewis acidic boron sites is feasible only under acid or base catalysis but fully prevented at neutral conditions. For the first time, boronate ester cages 6 tolerate substantial amounts of water or alcohols both in solution and solid state. The unprecedented applicability of these materials under ambient and aqueous conditions is showcased by efficient encapsulation and on-demand release of β-carotene dyes and heterogeneous water oxidation catalysis after the encapsulation of ruthenium catalysts. KW - absorption KW - hydrocarbons KW - materials KW - organic compounds KW - stability KW - boronate esters Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-361245 SN - 0002-7863 VL - 146 IS - 8 ER -