TY - JOUR A1 - Doryab, Ali A1 - Taskin, Mehmet Berat A1 - Stahlhut, Philipp A1 - Schröppel, Andreas A1 - Orak, Sezer A1 - Voss, Carola A1 - Ahluwalia, Arti A1 - Rehberg, Markus A1 - Hilgendorff, Anne A1 - Stöger, Tobias A1 - Groll, Jürgen A1 - Schmid, Otmar T1 - A Bioinspired in vitro Lung Model to Study Particokinetics of Nano-/Microparticles Under Cyclic Stretch and Air-Liquid Interface Conditions JF - Frontiers in Bioengineering and Biotechnology N2 - Evolution has endowed the lung with exceptional design providing a large surface area for gas exchange area (ca. 100 m\(^{2}\)) in a relatively small tissue volume (ca. 6 L). This is possible due to a complex tissue architecture that has resulted in one of the most challenging organs to be recreated in the lab. The need for realistic and robust in vitro lung models becomes even more evident as causal therapies, especially for chronic respiratory diseases, are lacking. Here, we describe the Cyclic In VItro Cell-stretch (CIVIC) “breathing” lung bioreactor for pulmonary epithelial cells at the air-liquid interface (ALI) experiencing cyclic stretch while monitoring stretch-related parameters (amplitude, frequency, and membrane elastic modulus) under real-time conditions. The previously described biomimetic copolymeric BETA membrane (5 μm thick, bioactive, porous, and elastic) was attempted to be improved for even more biomimetic permeability, elasticity (elastic modulus and stretchability), and bioactivity by changing its chemical composition. This biphasic membrane supports both the initial formation of a tight monolayer of pulmonary epithelial cells (A549 and 16HBE14o\(^{-}\)) under submerged conditions and the subsequent cell-stretch experiments at the ALI without preconditioning of the membrane. The newly manufactured versions of the BETA membrane did not improve the characteristics of the previously determined optimum BETA membrane (9.35% PCL and 6.34% gelatin [w/v solvent]). Hence, the optimum BETA membrane was used to investigate quantitatively the role of physiologic cyclic mechanical stretch (10% linear stretch; 0.33 Hz: light exercise conditions) on size-dependent cellular uptake and transepithelial transport of nanoparticles (100 nm) and microparticles (1,000 nm) for alveolar epithelial cells (A549) under ALI conditions. Our results show that physiologic stretch enhances cellular uptake of 100 nm nanoparticles across the epithelial cell barrier, but the barrier becomes permeable for both nano- and micron-sized particles (100 and 1,000 nm). This suggests that currently used static in vitro assays may underestimate cellular uptake and transbarrier transport of nanoparticles in the lung. KW - lung cell model KW - cyclic stretch KW - ALI culture KW - bioinspired membrane KW - particle study Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-223830 SN - 2296-4185 VL - 9 ER - TY - JOUR A1 - Shan, Junwen A1 - Böck, Thomas A1 - Keller, Thorsten A1 - Forster, Leonard A1 - Blunk, Torsten A1 - Groll, Jürgen A1 - Teßmar, Jörg T1 - TEMPO/TCC as a Chemo Selective Alternative for the Oxidation of Hyaluronic Acid JF - Molecules N2 - Hyaluronic acid (HA)-based hydrogels are very commonly applied as cell carriers for different approaches in regenerative medicine. HA itself is a well-studied biomolecule that originates from the physiological extracellular matrix (ECM) of mammalians and, due to its acidic polysaccharide structure, offers many different possibilities for suitable chemical modifications which are necessary to control, for example, network formation. Most of these chemical modifications are performed using the free acid function of the polymer and, additionally, lead to an undesirable breakdown of the biopolymer’s backbone. An alternative modification of the vicinal diol of the glucuronic acid is oxidation with sodium periodate to generate dialdehydes via a ring opening mechanism that can subsequently be further modified or crosslinked via Schiff base chemistry. Since this oxidation causes a structural destruction of the polysaccharide backbone, it was our intention to study a novel synthesis protocol frequently applied to selectively oxidize the C6 hydroxyl group of saccharides. On the basis of this TEMPO/TCC oxidation, we studied an alternative hydrogel platform based on oxidized HA crosslinked using adipic acid dihydrazide as the crosslinker. KW - hyaluronic acid KW - oxidation KW - hydrogel formation KW - Schiff base chemistry Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-248362 SN - 1420-3049 VL - 26 IS - 19 ER - TY - JOUR A1 - Dogan, Leyla A1 - Scheuring, Ruben A1 - Wagner, Nicole A1 - Ueda, Yuichiro A1 - Schmidt, Sven A1 - Wörsdörfer, Philipp A1 - Groll, Jürgen A1 - Ergün, Süleyman T1 - Human iPSC-derived mesodermal progenitor cells preserve their vasculogenesis potential after extrusion and form hierarchically organized blood vessels JF - Biofabrication N2 - Post-fabrication formation of a proper vasculature remains an unresolved challenge in bioprinting. Established strategies focus on the supply of the fabricated structure with nutrients and oxygen and either rely on the mere formation of a channel system using fugitive inks or additionally use mature endothelial cells and/or peri-endothelial cells such as smooth muscle cells for the formation of blood vessels in vitro. Functional vessels, however, exhibit a hierarchical organization and multilayered wall structure that is important for their function. Human induced pluripotent stem cell-derived mesodermal progenitor cells (hiMPCs) have been shown to possess the capacity to form blood vessels in vitro, but have so far not been assessed for their applicability in bioprinting processes. Here, we demonstrate that hiMPCs, after formulation into an alginate/collagen type I bioink and subsequent extrusion, retain their ability to give rise to the formation of complex vessels that display a hierarchical network in a process that mimics the embryonic steps of vessel formation during vasculogenesis. Histological evaluations at different time points of extrusion revealed the initial formation of spheres, followed by lumen formation and further structural maturation as evidenced by building a multilayered vessel wall and a vascular network. These findings are supported by immunostainings for endothelial and peri-endothelial cell markers as well as electron microscopic analyses at the ultrastructural level. Moreover, endothelial cells in capillary-like vessel structures deposited a basement membrane-like matrix at the basal side between the vessel wall and the alginate-collagen matrix. After transplantation of the printed constructs into the chicken chorioallantoic membrane (CAM) the printed vessels connected to the CAM blood vessels and get perfused in vivo. These results evidence the applicability and great potential of hiMPCs for the bioprinting of vascular structures mimicking the basic morphogenetic steps of de novo vessel formation during embryogenesis. KW - vascular biofabrication KW - human iPSC-derived mesodermal cells (hiMPCs) KW - extrusion of hiMPC-containing bioinks alginate + collagen type I KW - multilayered vessel wall with intimate, media and adventitia KW - vascular network and hierarchical organized vessels KW - electron microscopy KW - serial block face EM Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-254046 VL - 13 IS - 4 ER - TY - JOUR A1 - Götz, Lisa-Marie A1 - Holeczek, Katharina A1 - Groll, Jürgen A1 - Jüngst, Tomasz A1 - Gbureck, Uwe T1 - Extrusion-Based 3D Printing of Calcium Magnesium Phosphate Cement Pastes for Degradable Bone Implants JF - Materials N2 - This study aimed to develop printable calcium magnesium phosphate pastes that harden by immersion in ammonium phosphate solution post-printing. Besides the main mineral compound, biocompatible ceramic, magnesium oxide and hydroxypropylmethylcellulose (HPMC) were the crucial components. Two pastes with different powder to liquid ratios of 1.35 g/mL and 1.93 g/mL were characterized regarding their rheological properties. Here, ageing over the course of 24 h showed an increase in viscosity and extrusion force, which was attributed to structural changes in HPMC as well as the formation of magnesium hydroxide by hydration of MgO. The pastes enabled printing of porous scaffolds with good dimensional stability and enabled a setting reaction to struvite when immersed in ammonium phosphate solution. Mechanical performance under compression was approx. 8–20 MPa as a monolithic structure and 1.6–3.0 MPa for printed macroporous scaffolds, depending on parameters such as powder to liquid ratio, ageing time, strand thickness and distance. KW - magnesium phosphate cement KW - extrusion-based 3D printing KW - degradable implant Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-246110 SN - 1996-1944 VL - 14 IS - 18 ER - TY - JOUR A1 - Mechau, Jannik A1 - Frank, Andreas A1 - Bakirci, Ezgi A1 - Gumbel, Simon A1 - Jungst, Tomasz A1 - Giesa, Reiner A1 - Groll, Jürgen A1 - Dalton, Paul D. A1 - Schmidt, Hans‐Werner T1 - Hydrophilic (AB)\(_{n}\) Segmented Copolymers for Melt Extrusion‐Based Additive Manufacturing JF - Macromolecular Chemistry and Physics N2 - Several manufacturing technologies beneficially involve processing from the melt, including extrusion‐based printing, electrospinning, and electrohydrodynamic jetting. In this study, (AB)\(_{n}\) segmented copolymers are tailored for melt‐processing to form physically crosslinked hydrogels after swelling. The copolymers are composed of hydrophilic poly(ethylene glycol)‐based segments and hydrophobic bisurea segments, which form physical crosslinks via hydrogen bonds. The degree of polymerization was adjusted to match the melt viscosity to the different melt‐processing techniques. Using extrusion‐based printing, a width of approximately 260 µm is printed into 3D constructs, with excellent interlayer bonding at fiber junctions, due to hydrogen bonding between the layers. For melt electrospinning, much thinner fibers in the range of about 1–15 µm are obtained and produced in a typical nonwoven morphology. With melt electrowriting, fibers are deposited in a controlled way to well‐defined 3D constructs. In this case, multiple fiber layers fuse together enabling constructs with line width in the range of 70 to 160 µm. If exposed to water the printed constructs swell and form physically crosslinked hydrogels that slowly disintegrate, which is a feature for soluble inks within biofabrication strategies. In this context, cytotoxicity tests confirm the viability of cells and thus demonstrating biocompatibility of this class of copolymers. KW - 3D printing KW - (AB)\(_{n}\) segmented copolymers KW - biocompatibility KW - melt electrowriting Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-224513 VL - 222 IS - 1 ER - TY - JOUR A1 - Doryab, Ali A1 - Taskin, Mehmet Berat A1 - Stahlhut, Philipp A1 - Schröppel, Andreas A1 - Wagner, Darcy E. A1 - Groll, Jürgen A1 - Schmid, Otmar T1 - A Biomimetic, Copolymeric Membrane for Cell‐Stretch Experiments with Pulmonary Epithelial Cells at the Air‐Liquid Interface JF - Advanced Functional Materials N2 - Chronic respiratory diseases are among the leading causes of death worldwide, but only symptomatic therapies are available for terminal illness. This in part reflects a lack of biomimetic in vitro models that can imitate the complex environment and physiology of the lung. Here, a copolymeric membrane consisting of poly(ε‐)caprolactone and gelatin with tunable properties, resembling the main characteristics of the alveolar basement membrane is introduced. The thin bioinspired membrane (≤5 μm) is stretchable (up to 25% linear strain) with appropriate surface wettability and porosity for culturing lung epithelial cells under air–liquid interface conditions. The unique biphasic concept of this membrane provides optimum characteristics for initial cell growth (phase I) and then switch to biomimetic properties for cyclic cell‐stretch experiments (phase II). It is showed that physiologic cyclic mechanical stretch improves formation of F‐actin cytoskeleton filaments and tight junctions while non‐physiologic over‐stretch induces cell apoptosis, activates inflammatory response (IL‐8), and impairs epithelial barrier integrity. It is also demonstrated that cyclic physiologic stretch can enhance the cellular uptake of nanoparticles. Since this membrane offers considerable advantages over currently used membranes, it may lead the way to more biomimetic in vitro models of the lung for translation of in vitro response studies into clinical outcome. KW - alveolar‐capillary barrier KW - cyclic mechanical stretch KW - hybrid polymers KW - in vitro cell‐stretch model KW - tunable ultra‐thin biphasic membrane Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-225645 VL - 31 IS - 10 ER - TY - JOUR A1 - Horder, Hannes A1 - Guaza Lasheras, Mar A1 - Grummel, Nadine A1 - Nadernezhad, Ali A1 - Herbig, Johannes A1 - Ergün, Süleyman A1 - Teßmar, Jörg A1 - Groll, Jürgen A1 - Fabry, Ben A1 - Bauer-Kreisel, Petra A1 - Blunk, Torsten T1 - Bioprinting and differentiation of adipose-derived stromal cell spheroids for a 3D breast cancer-adipose tissue model JF - Cells N2 - Biofabrication, including printing technologies, has emerged as a powerful approach to the design of disease models, such as in cancer research. In breast cancer, adipose tissue has been acknowledged as an important part of the tumor microenvironment favoring tumor progression. Therefore, in this study, a 3D-printed breast cancer model for facilitating investigations into cancer cell-adipocyte interaction was developed. First, we focused on the printability of human adipose-derived stromal cell (ASC) spheroids in an extrusion-based bioprinting setup and the adipogenic differentiation within printed spheroids into adipose microtissues. The printing process was optimized in terms of spheroid viability and homogeneous spheroid distribution in a hyaluronic acid-based bioink. Adipogenic differentiation after printing was demonstrated by lipid accumulation, expression of adipogenic marker genes, and an adipogenic ECM profile. Subsequently, a breast cancer cell (MDA-MB-231) compartment was printed onto the adipose tissue constructs. After nine days of co-culture, we observed a cancer cell-induced reduction of the lipid content and a remodeling of the ECM within the adipose tissues, with increased fibronectin, collagen I and collagen VI expression. Together, our data demonstrate that 3D-printed breast cancer-adipose tissue models can recapitulate important aspects of the complex cell–cell and cell–matrix interplay within the tumor-stroma microenvironment KW - adipose-derived stromal cells KW - adipose tissue KW - bioprinting KW - breast cancer model KW - extracellular matrix KW - hyaluronic acid KW - spheroids Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-236496 VL - 10 IS - 4 ER - TY - JOUR A1 - Hu, Chen A1 - Hahn, Lukas A1 - Yang, Mengshi A1 - Altmann, Alexander A1 - Stahlhut, Philipp A1 - Groll, Jürgen A1 - Luxenhofer, Robert T1 - Improving printability of a thermoresponsive hydrogel biomaterial ink by nanoclay addition JF - Journal of Materials Science N2 - As a promising biofabrication technology, extrusion-based bioprinting has gained significant attention in the last decade and major advances have been made in the development of bioinks. However, suitable synthetic and stimuli-responsive bioinks are underrepresented in this context. In this work, we described a hybrid system of nanoclay Laponite XLG and thermoresponsive block copolymer poly(2-methyl-2-oxazoline)-b-poly(2-n-propyl-2-oxazine) (PMeOx-b-PnPrOzi) as a novel biomaterial ink and discussed its critical properties relevant for extrusion-based bioprinting, including viscoelastic properties and printability. The hybrid hydrogel retains the thermogelling properties but is strengthened by the added clay (over 5 kPa of storage modulus and 240 Pa of yield stress). Importantly, the shear-thinning character is further enhanced, which, in combination with very rapid viscosity recovery (~ 1 s) and structure recovery (~ 10 s), is highly beneficial for extrusion-based 3D printing. Accordingly, various 3D patterns could be printed with markedly enhanced resolution and shape fidelity compared to the biomaterial ink without added clay. KW - printability KW - thermoresponsive hydrogel Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-234894 SN - 0022-2461 VL - 56 ER -