TY - THES A1 - Wedel, Carolin T1 - The impact of DNA sequence and chromatin on transcription in \(Trypanosoma\) \(brucei\) T1 - Der Einfluss der DNA-Sequenz und der Chromatinstruktur auf die Transkription in \(Trypanosoma\) \(brucei\) N2 - For cellular viability, transcription is a fundamental process. Hereby, the DNA plays the most elemental and highly versatile role. It has long been known that promoters contain conserved and often well-defined motifs, which dictate the site of transcription initiation by providing binding sites for regulatory proteins. However, research within the last decade revealed that it is promoters lacking conserved promoter motifs and transcribing constitutively expressed genes that constitute the majority of promoters in eukaryotes. While the process of transcription initiation is well studied, whether defined DNA sequence motifs are required for the transcription of constitutively expressed genes in eukaryotes remains unknown. In the highly divergent protozoan parasite Trypanosoma brucei, most of the proteincoding genes are organized in large polycistronic transcription units. The genes within one polycistronic transcription unit are generally unrelated and transcribed by a common transcription start site for which no RNA polymerase II promoter motifs have been identified so far. Thus, it is assumed that transcription initiation is not regulated but how transcription is initiated in T. brucei is not known. This study aimed to investigate the requirement of DNA sequence motifs and chromatin structures for transcription initiation in an organism lacking transcriptional regulation. To this end, I performed a systematic analysis to investigate the dependence of transcription initiation on the DNA sequence. I was able to identify GT-rich promoter elements required for directional transcription initiation and targeted deposition of the histone variant H2A.Z, a conserved component during transcription initiation. Furthermore, nucleosome positioning data in this work provide evidence that sites of transcription initiation are rather characterized by broad regions of open and more accessible chromatin than narrow nucleosome depleted regions as it is the case in other eukaryotes. These findings highlight the importance of chromatin during transcription initiation. Polycistronic RNA in T. brucei is separated by adding an independently transcribed miniexon during trans-splicing. The data in this work suggest that nucleosome occupancy plays an important role during RNA maturation by slowing down the progressing polymerase and thereby facilitating the choice of the proper splice site during trans-splicing. Overall, this work investigated the role of the DNA sequence during transcription initiation and nucleosome positioning in a highly divergent eukaryote. Furthermore, the findings shed light on the conservation of the requirement of DNA motifs during transcription initiation and the regulatory potential of chromatin during RNA maturation. The findings improve the understanding of gene expression regulation in T. brucei, a eukaryotic parasite lacking transcriptional Regulation. N2 - Die Transkription ist ein entscheidender Prozess in der Zelle und die DNA-Sequenz nimmt hierbei eine elementare Rolle ein. Promotoren beinhalten spezifische und konservierte DNASequenzen und vermitteln den Start der Transkription durch die Rekrutierung spezifischer Proteine. Jedoch haben Forschungen im vergangenen Jahrzehnt gezeigt, dass die Mehrzahl der Promotoren in eukaryotischen Genomen keine konservierten Promotormotive aufweisen und häufig konstitutiv exprimierte Gene transkribieren. Obgleich der Prozess der Transkriptionsinitiation im Allgemeinen gut erforscht ist, konnte bisher nicht nachgewiesen werden, ob ein definiertes DNA-Motiv während der Transkription von konstitutiv exprimierten Genes erforderlich ist. In dem eukaryotischen und einzelligen Parasiten Trypanosoma brucei ist die Mehrzahl der proteinkodierenden Gene in lange polycistronische Transkriptionseinheiten arrangiert. Diese werden von einem gemeinsamen Transkriptionsstart durch die RNA Polymerase II transkribiert, allerdings konnten hier bisher keine Promotormotive identifiziert werden. Aus diesem Grund besteht die Annahme, dass Transkription keiner Regulation unterliegt. Allgemein ist der Prozess der Transkriptionsinitiation in T. brucei bisher nur wenig verstanden. Um den Zusammenhang zwischen DNA-Motiven und konstitutiver Genexpression näher zu untersuchen und Schlussfolgerungen über die DNA-Sequenz-Abhängigkeit der Transkriptionsinitiation zu ziehen, habe ich eine systematische Analyse in T. brucei durchgeführt. Ich konnte GT-reiche Promotorelemente innerhalb dieser Regionen identifizieren, die sowohl eine gerichtete Transkriptionsinitiation, als auch den gezielten Einbau der Histonvariante H2A.Z in Nukleosomen nahe der Transkriptionsstartstelle vermittelt haben. Des Weiteren zeigten Nukleosomenpositionierungsdaten, dass in Trypanosomen die Transkripitonsstartstellen nicht die charakteristische, nukleosomendepletierte Region, wie für andere Organismen beschrieben, sondern eine offene Chromatinstruktur enthalten. Zusätzlich konnte ich zeigen, dass die Chromatinstruktur eine wichtige Rolle während der mRNAProzessierung spielt. In T. brucei wird die polycistronische pre-mRNA durch das Anfügen eines Miniexons während des sogenannten trans-Splicens in individuelle mRNAs aufgetrennt. Die Daten dieser Arbeit belegen, dass die Anreicherung von Nukleosomen eine Verlangsamung der transkribierenden Polymerase bewirken und sie somit die richtige Wahl der Splicestelle gewährleisten. Zusammenfassend wurde in dieser Arbeit die Rolle der DNA Sequenz während der Transkriptionsinitiation und Nukleosomenpositionierung in einem divergenten Eukaryoten untersucht. Die Erkenntnisse bringen mehr Licht in die Konservierung der Notwendigkeit eines DNA-Motivs während der Transkriptionsinitiation und das regulatorische Potential der Chromatinstruktur während der RNA-Reifung. Zudem verbessern sie das Verständnis der Genexpressionsregulation in T. brucei, einem eukaryotischen Parasiten, der ohne transkriptionelle Regulation überlebt. KW - Transkription KW - Chromatin KW - Trypanosoma brucei KW - Genexpression KW - Epigenetik KW - RNA polymerase II KW - splicing KW - nuclesosome positioning Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-173438 ER - TY - THES A1 - Langjahr [verh. Held], Melissa T1 - Systemische Expression von Zytokinen bei schmerzhaften und schmerzlosen Polyneuropathien T1 - Systemic expression of cytokines in painful and painless polyneuropathies N2 - Die Pathophysiologie der PNP wie auch die Entstehung der oft assoziierten neuropathischen Schmerzen ist unklar. Gleichzeitig gibt es bislang keine geeigneten Biomarker, die die oft komplizierte Differentialdiagnose vereinfachen können. Einige Tiermodelle und klinische Studien lieferten bereits Hinweise auf die entscheidende Rolle pro- und anti-inflammatorischer Zytokine in diesen Prozessen. Ziel unserer Studie war es, die systemische Genexpression pro- und anti-inflammatorischer Zytokine in einer großen Kohorte von Patienten mit PNP verschiedener Ätiologie zu charakterisieren. Insgesamt konnten 111 PNP-Patienten und 38 gesunde Kontrollpersonen prospektiv rekrutiert werden. Nach Isolation von PBMC aus Blutproben von 97 Patienten wurde die Genexpression der pro-inflammatorischen Zytokine TNF, IL1, IL2, IL6, IL8 und der anti-inflammatorischen Zytokine IL4 und IL10 mittels qRT-PCR bestimmt. Bei 47 Patienten und 12 Kontrollen wurde zudem die IL6-, IL-8- und TNF-Zytokinproduktion von PBMC in vitro nach Stimulation durch LPS mittels ELISA untersucht. Hauptbefund war ein pro-inflammatorisches Zytokinprofil der PNP-Patienten mit höherer Genexpression von IL1, IL2, IL8 und TNF im Vergleich zu den gesunden Kontrollen. Im Falle der entzündlichen Neuropathien konnte zudem eine niedrigere Genexpression von IL10 im Vergleich zu Gesunden nachgewiesen werden. Sowohl schmerzhafte als auch schmerzlose Verlaufsformen wiesen ein pro-inflammatorisches Zytokingenexpressionsprofil im Vergleich zu Gesunden auf, das bei schmerzhaften PNP deutlich mehr beteiligte pro-inflammatorische Zytokine umfasste; relevante Unterschiede zwischen den PNP-Patienten mit und ohne Schmerz sowie der diagnostischen Subgruppen fanden sich nicht. Eine niedrigere Stimulationsschwelle der PBMC lag bei PNP-Patienten im Vergleich zu Gesunden nicht vor. Insgesamt erscheint die Rolle einzelner Zytokine als systemische Biomarker für die Differenzierung verschiedener PNP-Formen bzw. bezüglich neuropathischen Schmerzes aufgrund einer niedrigen Spezifität deutlich eingeschränkt. Dennoch sprechen unsere Ergebnisse für eine mögliche Rolle eines pro-inflammatorischen Milieus bei der Entstehung bzw. des Verlaufes verschiedener entzündlicher und nicht-entzündlicher Neuropathien und neuropathischen Schmerzes. N2 - Distinct cytokine expression patterns have been reported in biomaterial of patients with polyneuropathies (PNP). We investigated gene expression profiles of pro- and anti-inflammatory cytokines in peripheral blood mononuclear cells (PBMC) of patients with neuropathies of different etiologies. We prospectively studied 111 patients with neuropathies and compared data between diagnostic subgroups and healthy controls. Gene expression of a panel of pro- and anti-inflammatory cytokines was analyzed (interleukin-1 [IL-1], IL-2, IL-6, IL-8, and tumor necrosis factor-alpha [TNF], IL-4 and IL-10) in PBMC samples of 97 patients and 38 healthy controls. Furthermore, protein levels of IL-6, IL-8, and TNF were measured in supernatant of PBMC stimulated with lipopolysaccharide (LPS). PNP were associated with higher PBMC gene expression of IL-1 (p<0.05), IL-2 (p<0.05), IL-8 (p<0.001), and TNF (p<0.01) compared to healthy controls. Inflammatory neuropathies were associated with higher gene expression of IL-8 (p<0.001) and TNF (p<0.05) and lower gene expression of IL-10 (p<0.05) compared to healthy controls. More pro-inflammatory cytokines were elevated in painful neuropathy (IL-1, IL-2 [p<0.05], IL-8 [p<0.001] and TNF [p<0.05]) than in painless neuropathy (IL-8 [p<0.01] and TNF [p<0.01]) compared to healthy controls. Disease duration positively correlated with IL-6 gene expression (p<0.01). Supernatant protein levels of IL-6, IL-8, and TNF did not differ between groups. Conclusion: Systemic gene expression of pro-inflammatory cytokines is increased in patients with neuropathies and may be influenced by the presence of neuropathic pain. KW - Polyneuropathie KW - Cytokine KW - Genexpression KW - peripheral neuropathy KW - neuropathic pain KW - cytokine KW - gene expression KW - peripheral blood mononuclear cells KW - Neuropathischer Schmerz KW - Zytokine KW - Periphere mononukleäre Zellen Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-154445 ER - TY - THES A1 - Bedenk, Kristina T1 - Biochemische und strukturelle Charakterisierung der Genexpressionsmaschinerie des Vaccinia Virus T1 - The biochemical and structural characterization of the gene expression machinery of the Vaccinia virus N2 - Die Familie der Pockenviren zeichnet sich durch ein komplexes DNA Genom aus und hat großes medizinisches Potential. Am eindrucksvollsten ist dies für das Vaccinia-Virus (VACV) belegt, welches nicht nur als Pocken-Impfstoff eingesetzt wird, sondern auch als onkolytisches Virus in der Tumorbiologie. VACV hat einen außergewöhnlichen Replikationszyklus, welcher ausschließlich im Zytoplasma der Wirtszelle stattfindet. Somit ist die gesamte virale Genexpressionsmaschinerie völlig unabhängig von kernvermittelten Reaktionen des Wirts und somit auch aus Sicht der Grundlagenforschung von größtem Interesse. Die Schlüsselkomponente der viralen Genexpression ist die makromolekulare DNA-abhängige RNA Polymerase (vvRPO), deren Untereinheiten allesamt Virus-kodiert sind. Zwar wurden in den letzten Jahren Protokolle zur biochemischen und funktionellen Charakterisierung der vvRPO etabliert, ein detailliertes Wissen über deren Zusammenlagerung in vivo und die räumlichen und zeitlichen Interaktionen mit den Transkriptions- bzw. Prozessierungsfaktoren sind aber weitgehend unbekannt. Diese Arbeit umfasst Untersuchungen zur strukturellen und funktionellen Charakterisierung der vvRPO und seiner assoziierten Faktoren. Grundlage hierfür war die Etablierung eines Reinigungsprotokolls mithilfe eines neu konstruierten rekombinanten VACV (GLV-1h439). Diese Strategie erlaubte es hoch-molekulare native vvRPO Komplexe zu isolieren. Ein transkriptions-inaktiver Komplex (Komplex I) mit einer kalkulierten Masse von 575 kDa bestand aus den acht Untereinheiten des vvRPO Holoenzyms und den Polymerase-assoziierten Faktoren RAP94 und D6. Ein zweiter, transkriptionell aktiver Komplex (Komplex II) mit einer Masse von 803 kDa enthielt, neben dem Holoenzym der vvRPO, noch weitere Faktoren, die primär die Erkennung der DNA-Matrize und die Prozessierung der naszierenden RNA vermitteln. Hierbei handelt es sich um RAP94, das virale Capping Enzym bestehend aus den zwei Untereinheiten D1 und D12, A7 und dem Terminationsfaktor NPH I. Interessanterweise enthielt dieser Komplex zusätzlich mit E11 eine bislang unbekannte weitere Protein-Komponente, sowie tRNAGln und tRNAArg. Der isolierte Kompelx II ist daher ein Ribonukleoprotein (RNP). Die Verfügbarkeit von hoch-reinen vvRPO Komplexen erlaubte es erstmals deren strukturelle Architektur zu untersuchen. Hierfür wurden drei experimentelle Ansätze, die klassische Röntgenstrukturanalyse, die Kryo-Elektronenmikroskopie (Kryo-EM) und Quervernetzungssstudien miteinander kombiniert. Die Strukturen der Komplexe I und II haben eine Auflösung von 11-12 Å, wobei auffällig war, dass beide eine markante strukturelle Ähnlichkeit zur eukaryotischen RNA Polymerase II aufwiesen. Darüber hinaus gelang es zusätzliche Bereiche im Komplex II zu definieren, welche die Polymerase-assoziierten Prozessierungsfaktoren beherbergen. Zudem konnte die atomare Struktur von E11, mittels Röntgenstrukturanalyse bei einer Auflösung von 1,9 Å, gelöst werden. Das E11 Protein besitzt ein neuartiges Faltungsmuster und weist einen intensiven Dimerisierungskontakt auf, welcher sich über vier ß-Faltblätter ausbildet. Die im Rahmen dieser Arbeit erhaltenen Daten legen die Grundlage für ein detailliertes Verständnis der räumlichen Organisation der viralen Transkriptonsmaschinerie. Darüber hinaus werden sie funktionelle Studien ermöglichen, welche die Rolle der einzelnen Proteine, sowie der tRNAs bei der mRNA Synthese klären helfen. N2 - Poxviruses comprise a diverse family of complex DNA-genome viruses with great medical potenial. This is exemplified by vaccinia virus, which not only served as a vaccine against smallpox but is also used as a promising tool in viral anti-cancer therapies. A key feature that distinguishes the poxvirus family from other DNA viruses is their replication cycle, which is confined to the cytoplasm. This results in a high level of independence from the host cell, which supports transcription and replication events only in the nucleus. Accordingly, virus specific, rather than host cell enzymes mediate most processes including DNA replication and mRNA synthesis. The key component of viral gene expression is the DNA-dependent RNA polymerase (vvRPO), which constitutes the virus-encoded macromolecular machine ensuring viral mRNA synthesis. Although this enzyme has been studied in some details in the past years, neither its mode of assembly in vivo nor its spatio-temporal association with transcription and processing factors has been understood in detail. In this thesis I present work that focuses on the structural and functional characterization of vvRPO and its associated factors. To gain insights into the structure and the assembly of the VACV transcription system we established an efficient purification protocol by generating recombinant virus strains expressing tagged subunits of vvRPO (GLV-1h439). These recombinant virus strains enabled the isolation of high molecular weight vvRPO complexes. Complex I, which was transcriptionally inactive in vitro displayed a calculated mass of about 575 kDa, consisted of eight subunits of the vvRPO holoenzym and two additional polymerase-associated factors termed RAP94 and D6. A second, transcriptionally active complex (complex II) with a mass of 803 kDa, was related to the first one. It consisted apart from the factors of the holoenzyme already found in complex I additional factors that mediate primarily binding of the polymerase to its DNA template and the processing of nascent RNA. These factors comprise the viral capping enzyme (D1, D12), A7 and the termination factor NPH I. Interestingly, complex II contained in addition the viral protein E11, thus far not connected to viral transcription als well as tRNAGln, tRNAArg). Complex II is hence a ribonucleoprotein (RNP). The availability of highly pure vvRPO complexes allowed for the first time to investigate their structure. To this end, three experimental approaches, the classic X-ray crystallography, cryo-electron microscopy (cryo-EM) and chemical crosslinking were combined. Structures of both polymerase complexes were obtained at a resolution of 11-12 Å and revealed a striking structural similarity to eukaryotic RNA polymerase II. Moreover, it was possible to allocate positions in the structure of complex II that are likely to harbour the polymerase-associated processing factors. In addition we were able to solve atomic structure of E11 by X-ray crystallography at a resolution of 1.9 Å. Interestingly, the structure of E11 showed a novel folding pattern that forms a dimer, which is mostly composed of four ß-sheets. These studies provide the basis for a detailed investigation of the architecture of the viral transcriptional machinery. Furthermore, the pave the way for functional studies aimed at elucidating the function of individual proteins and tRNA in the generation of viral mRNA. KW - Vaccinia-Virus KW - Vaccinia-Virus KW - Genexpressionsmaschinerie KW - RNA-Polymerase KW - Struktur KW - Genexpression Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-135538 ER -