TY - THES A1 - Wangorsch, Gaby T1 - Mathematical modeling of cellular signal transduction T1 - Mathematische Modellierung der zellulären Signaltransduktion N2 - A subtly regulated and controlled course of cellular processes is essential for the healthy functioning not only of single cells, but also of organs being constituted thereof. In return, this entails the proper functioning of the whole organism. This implies a complex intra- and inter-cellular communication and signal processing that require equally multi-faceted methods to describe and investigate the underlying processes. Within the scope of this thesis, mathematical modeling of cellular signaling finds its application in the analysis of cellular processes and signaling cascades in different organisms. ... N2 - Das fein regulierte und kontrollierte Ablaufen zellulärer Prozesse ist essentiell für das gesunde Funktionieren einzelner Zellen, sowie der aus ihnen bestehenden Organe. Diese wiederum bedingen das Funktionieren des gesamten Organismus. Genauso vielschichtig wie die Kommunikation und Signalverarbeitung innerhalb und zwischen den Zellen, sind die Methoden um diese Vorgänge zu beschreiben und zu untersuchen. Die mathematische Modellierung zellulärer Signalverarbeitung findet im Rahmen dieser Arbeit Anwendung in der Analyse zellulärer Prozesse und Signalkaskaden in verschiedenen Organismen.... KW - Mathematische Modellierung KW - Thrombozyt KW - Systembiologie KW - Mathematische Modellierung KW - Mathematical modeling KW - platelets KW - signaling pathway KW - systems biology KW - Signaltransduktion Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-87746 ER - TY - THES A1 - Thangaraj Selvaraj, Bhuvaneish T1 - Role of CNTF-STAT3 signaling for microtubule dynamics inaxon growth and maintenance: Implications in motoneuron diseases T1 - Die Funktion des CNTF-STAT3 Signalweges für die Microtubuli Dynamik in Axonalem Wachstum und Axon Erhalt: Implikationen für Motoneuronenerkrankungen N2 - Neurotrophic factor signaling modulates differentiation, axon growth and maintenance, synaptic plasticity and regeneration of neurons after injury. Ciliary neurotrophic factor (CNTF), a Schwann cell derived neurotrophic factor, has an exclusive role in axon maintenance, sprouting and synaptic preservation. CNTF, but not GDNF, has been shown to alleviate motoneuron degeneration in pmn mutant mice carrying a missense mutation in Tbce gene, a model for Amyotrophic Lateral Sclerosis (ALS). This current study elucidates the distinct signaling mechanism by which CNTF rescues the axonal degeneration in pmn mutant mice. ... N2 - Neurotrophe Faktoren beeinflussendie die neuronale Differenzierung, das Wachstum und die Stabilisierung von Axonen sowie Synaptische Plastizität und die Regeneration von Neuronen nach Verletzung. Der von Schwannzellen synthetisierte neurotrophe Faktor Ciliary neurotrophic factor (CNTF) spielt eine wichtige Rolle bei der axonalen Erhaltung sowie bei der Induktion und Reduktion von axonalen Verzweigungen. Die Behandlung der pmn Mausmutante mit CNTF, aber nicht mit GDNF führt zu einem späteren Krankheitsbeginn und verminderten Fortschreiten der Motoneuronendegeneration. Diese Mausmutante, die eine Punktmutation im Tbce Gen trägt, dient als Modell für die Amyotrophe Lateralsklerose. Ziel der vorliegenden Arbeit war es, die zugrunde liegenden Signalkaskaden aufzudecken, die den CNTF-vermittelten Effekt auf den Krnakheitsverlauf bei der pmn Maus verursachen. ... KW - Ciliary neurotrophic factor KW - STAT KW - CNTF KW - STAT3 KW - Stathmin KW - Microtubules KW - Signaltransduktion KW - Motoneuron KW - Krankheit Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-76889 ER - TY - THES A1 - Schul, Daniela T1 - Spatio-temporal investigation and quantitative analysis of the BMP signaling pathway T1 - Raum-Zeitliche Untersuchung und quantitative Analyse des BMP-Signaltransduktionsweges N2 - Bone Morphogenetic Proteins (BMPs) are key regulators for a lot of diverse cellular processes. During embryonic development these proteins act as morphogens and play a crucial role particularly in organogenesis. BMPs have a direct impact on distinct cellular fates by means of concentration-gradients in the developing embryos. Using the diverse signaling input information within the embryo due to the gradient, the cells transduce the varying extracellular information into distinct gene expression profiles and cell fate decisions. Furthermore, BMP proteins bear important functions in adult organisms like tissue homeostasis or regeneration. In contrast to TGF-ß signaling, currently only little is known about how cells decode and quantify incoming BMP signals. There is poor knowledge about the quantitative relationships between signal input, transducing molecules, their states and location, and finally their ability to incorporate graded systemic inputs and produce qualitative responses. A key requirement for efficient pathway modulation is the complete comprehension of this signaling network on a quantitative level as the BMP signaling pathway, just like many other signaling pathways, is a major target for medicative interference. I therefore at first studied the subcellular distribution of Smad1, which is the main signal transducing protein of the BMP signaling pathway, in a quantitative manner and in response to various types and levels of stimuli in murine c2c12 cells. Results indicate that the subcellular localization of Smad1 is not dependent on the initial BMP input. Surprisingly, only the phospho-Smad1 level is proportionally associated to ligand concentration. Furthermore, the activated transducer proteins were entirely located in the nucleus. Besides the subcellular localization of Smad1, I have analyzed the gene expression profile induced by BMP signaling. Therefore, I examined two endogenous immediate early BMP targets as well as the expression of the stably transgenic Gaussia Luciferase. Interestingly, the results of these independent experimental setups and read-outs suggest oscillating target gene expression. The amplitudes of the oscillations showed a precise concentration-dependence for continuous and transient stimulation. Additionally, even short-time stimulation of 15’ activates oscillating gene-expression pulses that are detectable for at least 30h post-stimulation. Only treatment with a BMP type I receptor kinase inhibitor leads to the complete abolishment of the target gene expression. This indicated that target gene expression oscillations depend directly on BMP type I receptor kinase activity. N2 - Bone Morphogenetic Proteins (BMPs) stellen wichtige Regulatoren für eine Vielzahl von verschiedenen zellulären Prozessen dar. Während der Embryonalentwicklung agieren diese Proteine als Morphogene und spielen daher eine entscheidende Rolle für diesen Prozess, vor allem in der Organogenese. Durch Konzentrationsgradienten üben BMPs einen direkten Einfluss auf verschiedene zelluläre Schicksale im entwickelnden Embryo aus. Aufgrund dieser Gradienten gelangen vielfältige Signalinformationen zu den verschiedenen Zellen, welche die extrazelluläre Information in verschiedene Genexpressionsprofile und Zellschicksalsentscheidungen umwandeln. Darüber hinaus tragen BMPs wichtige Funktionen im erwachsenen Organismus, wie z.B. Gewebshomöostase oder -regeneration. Im Gegensatz zu dem verwandten TGF-ß Signaltransduktionsweg ist derzeit nur wenig über die zelluläre Übersetzung und Quantifizierung eingehender BMP-Signale bekannt. Es gibt wenige Kenntnisse über die quantitative Beziehung zwischen Signaleingang, Überträgerproteinen, ihren Zuständen sowie intrazellulären Positionen, und schließlich ihre Fähigkeit Signaleingänge systemisch zu integrieren und qualitative Antworten der Zelle zu produzieren. Eine wesentliche Voraussetzung für die effiziente Signaltransduktions-modulierung ist das vollständige Verständnis des Signalnetzwerkes auf einer quantitativen Ebene, da der BMP-Signalweg, wie auch viele andere Signalwege, ein wichtiges Ziel für medizinische Anwendungen und Medikamentenentwicklung ist. Daher untersuchte ich zunächst die subzelluläre Verteilung der wichtigsten Signalweiterleitungsproteine des BMP-Signalweges, der Smad1-Proteine, auf quantitativer Ebene und deren Reaktion auf verschiedene Stimulierungsarten und BMP-Konzentrationsstufen in murinen c2c12-Zellen. Die Ergebnisse zeigen, dass die subzelluläre Lokalisation von Smad1 unabhängig von der BMP-Konzentration ist und nur das phospho-Smad1 Level proportional zur Konzentration des Liganden steigt. Darüber hinaus befanden sich die aktiven Überträgerproteine nach Stimulierungvollständig im Zellkern. Neben der subzellulären Lokalisation von Smad1, habe ich das Genexpressionsprofil von BMP-Zielgenen analysiert. Ich untersuchte zwei endogene und frühe BMP-Zielgene sowie die Expression der stabil transgenen Gaussia Luciferase. Interessanterweise deuten die Ergebnisse dieser zwei unabhängigen Versuchsaufbauten und Detektionsmethoden auf eine oszillierende Expression der Zielgene hin. Die Amplituden der Schwingungen zeigten eine deutliche Konzentrationsabhängigkeit bei kontinuierlicher und transienter Stimulation. Außerdem aktiviert eine Kurzzeitstimulierung von 15 Minuten ebenfalls ein oszillierendes Genexpressionsprofil, welches für mindestens 30 Stunden nach der Stimulierung nachweisbar ist. Nur die Behandlung mit einem BMP Typ-I-Rezeptorkinaseinhibitor führt zur vollständigen Aufhebung der Zielgenexpression. Infolgedessen sind die Oszillationen der Zielgenexpression direkt von der Aktivität der BMP Typ-I-Rezeptorkinase abhängig. KW - Knochen-Morphogenese-Proteine KW - Signaltransduktion KW - BMP-Signaltransduktionsweg KW - Analyse KW - BMP signaling pathway KW - analysis Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-84224 ER - TY - THES A1 - Dreykluft, Angela T1 - The PD-1/B7-H1 Pathway in a Transgenic Mouse Model for Spontaneous Autoimmune Neuroinflammation: Immunological Studies on Devic B7-H1-/- Mice T1 - Der PD-1/B7-H1 Signalweg in einem transgenen Mausmodell für spontane autoimmune Neuroinflammation: Immunologische Studien an Devic B7-H1-/- Mäusen N2 - Multiple sclerosis is an autoimmune disease of the central nervous system characterized by inflammatory, demyelinating lesions and neuronal death. Formerly regarded as a variant of MS, neuromyelitis optica (NMO)/Devic’s disease is now recognized as a distinct neurological disorder exhibiting characteristic inflammatory and demyelinated foci in the optic nerves and the spinal cord sparing the brain. With the introduction of the double-transgenic “Devic mouse” model featuring spontaneous, adjuvant-free incidence of autoimmune neuroinflammation due to the interaction of transgenic MOG-specific T and B cells, a promising tool was found for the analysis of factors triggering or preventing autoimmunity. The co-inhibitory molecule B7-H1 has been proposed to contribute to the maintenance of peripheral tolerance and to confine autoimmune inflammatory damage via the PD-1/B7-H1 pathway. Compared to Devic B7-H1+/+ mice, Devic B7-H1-/- mice developed clinical symptoms with a remarkably higher incidence rate and faster kinetics emphasized by deteriorated disease courses and a nearly quadrupled mortality rate. Remarkably enlarged immune-cell accumulation in the CNS of Devic B7-H1-/- mice, in particular of activated MOG-specific CD4+ T cells, correlated with the more severe clinical features. Our studies showed that the CNS not only was the major site of myelin-specific CD4+ T-cell activation but also that B7-H1 expression within the target organ significantly influenced T-cell activation and differentiation levels. Analysis at disease maximum revealed augmented accumulation of MOG-specific CD4+ T cells in the peripheral lymphoid organs of Devic B7-H1-/- mice partly due to increased T-cell proliferation rates. Transgenic MOG-specific B cells of Devic B7-H1-/- mice activated MOG-specific CD4+ T cells more efficiently than B cells of Devic B7-H1+/+ mice. This observation indicated a relevant immune-modulating role of B7-H1 on APCs (antigen-presenting cells) in this mouse model. We also assumed altered thymic selection processes to be involved in increased peripheral CD4+ T-cell numbers of Devic B7-H1-/- mice as we found more thymocytes expressing the transgenic MOG-specific T-cell receptor (TCR). Moreover, preliminary in vitro experiments hinted on an enhanced survival of TCRMOG-transgenic CD4+ T cells of Devic B7-H1-/- mice; a mechanism that might as well have led to higher peripheral T-cell accumulation. Elevated levels of MOG-specific CD4+ T cells in the periphery of Devic B7-H1-/- mice could have entailed the higher quantities in the CNS. However, mechanisms such as CNS-specific proliferation and/or apoptosis/survival could also have contributed. This should be addressed in future investigations. Judging from in vitro migration assays and adoptive transfer experiments on RAG-1-/- recipient mice, migratory behavior of MOG-specific CD4+ T cells of Devic B7-H1+/+ and Devic B7-H1-/- mice seemed not to differ. However, enhanced expression of the transmigration-relevant integrin LFA-1 on CD4+ T cells in young symptom-free Devic B7-H1-/- mice might hint on temporally differently pronounced transmigration capacities during the disease course. Moreover, we attributed the earlier conversion of CD4+ T cells into Th1 effector cells in Devic B7-H1-/- mice during the initiation phase to the lack of co-inhibitory signaling via PD-1/B7-H1 possibly leading to an accelerated disease onset. Full blown autoimmune inflammatory processes could have masked these slight effects of B7-H1 in the clinical phase. Accordingly, at peak of the disease, Th1 and Th17 effector functions of peripheral CD4+ T cells were comparable in both mouse groups. Moreover, judging from titers of MOG-specific IgG1 and IgM antibodies, alterations in humoral immunity were not detected. Therefore, clinical differences could not be explained by altered T-cell or B-cell effector functions at disease maximum. B7-H1 rather seemed to take inhibitory effect in the periphery during the initiation phase only and consistently within the target organ by parenchymal expression. Our observations indicate that B7-H1 plays a relevant role in the regulation of T-cell responses in this mouse model for spontaneous CNS autoimmunity. By exerting immune-modulating effects in the preclinical as well as the clinical phase of the disease, B7-H1 contributed to the confinement of the immunopathological tissue damage in Devic B7-H1+/+ mice mirrored by later disease onsets and lower disease scores. As a model for spontaneous autoimmunity featuring a close to 100 % incidence rate, the Devic B7-H1-/- mouse may prove instrumental in clarifying disease-triggering and -limiting factors and in validating novel therapeutic approaches in the field of autoimmune neuroinflammation, in particular the human Devic’s disease. N2 - Multiple Sklerose ist eine Autoimmunerkrankung des zentralen Nervensystems, die durch entzündliche, demyelinisierende Läsionen und neuronalen Tod gekennzeichnet ist. Einst als Variante der MS betrachtet, gilt die Neuromyelitis optica (NMO) / Devic-Krankheit heute als eigenständige neurologische Erkrankung, bei der charakteristische Läsionen in den Sehnerven und im Rückenmark jedoch nicht im Gehirn auftreten. Mit der Einführung des doppelt-transgenen "Devic Maus"-Modells, bei dem es zur spontanen, Adjuvans-freien Inzidenz von autoimmuner Neuroinflammation durch Expression transgener MOG-spezifischer T- und B-Zellen kommt, wurde ein vielversprechendes Werkzeug für die Analyse von Faktoren gefunden, die Autoimmunität auslösen bzw. hemmen können. Das ko-inhibitorische Molekül B7-H1 trägt über den PD-1/B7-H1 Signalweg vermeintlich zur Aufrechterhaltung peripherer Toleranz bei. Devic B7-H1-/ - Mäuse entwickelten im Vergleich zu Devic B7-H1+/ + Mäusen Symptome, die mit deutlich höherer Inzidenz und schnellerer Kinetik einhergingen, unterstrichen von verstärkten Krankheitsverläufen und einer nahezu vervierfachten Sterblichkeit. Die verstärkte Akkumulierung von Immunzellen im ZNS, insbesondere von aktivierten MOG-spezifischen CD4+ T-Zellen, korrelierte mit den schwerwiegenderen klinischen Merkmalen. Unsere Untersuchungen zeigten nicht nur, dass die Aktivierung von myelin-spezifischen CD4+ T-Zellen hauptsächlich im ZNS stattfand, sondern auch, dass im Zielorgan exprimiertes B7-H1 maßgeblich den T-Zell-Aktivierungs- und -Differenzierungsgrad beeinflusste. Analysen am Krankheitsmaximum zeigten eine verstärkte Akkumulierung von MOG-spezifischen CD4+ T-Zellen in den Lymphorganen von Devic B7-H1-/- Mäusen, die wir teils auf erhöhte T-Zell-Proliferation zurückzuführten. Transgene MOG-spezifische B-Zellen der Devic B7-H1-/- Mäuse aktivierten effizienter als B-Zellen der Devic B7-H1+/+ Mäuse MOG-spezifische CD4+ T-Zellen. Dies deutet auf eine wichtige immunmodulierende Rolle von B7-H1 auf Antigen-präsentierenden Zellen in diesem Mausmodell hin. Veränderte Selektionsprozesse im Thymus trugen wohlmöglich zu den höheren CD4+ T-Zellzahlen in der Peripherie bei. Vorläufige in vitro Experimente deuteten auf ein verbessertes Überleben von TCRMOG-transgenen CD4+ T-Zellen aus Devic B7-H1-/- Mäusen hin. Eine erhöhte Anzahl von peripheren MOG-spezifischen CD4+ T-Zellen könnte zu den größeren Mengen im ZNS von Devic B7-H1-/- Mäusen geführt haben. Jedoch sind zusätzliche Mechanismen wie ZNS-spezifische Proliferation und/oder Apoptose bzw. Überleben denkbar. Dies sollte in zukünftigen Untersuchungen genauer analysiert werden. Anhand von in vitro-Migrationsassays und Adoptiver Transfer-Experimenten in RAG-1-/- Mäusen schlossen wir, dass das Migrationsverhalten von MOG-spezifischen CD4+ T-Zellen von Devic B7-H1-/- Mäusen nicht verändert war. Allerdings deutet die verstärkte Expression des transmigrationsrelevanten Intergins LFA-1 auf CD4+ T-Zellen in jungen, symptomfreien Devic B7-H1-/- Mäusen auf im Krankheitsverlauf zeitlich verschieden ausgeprägte Transmigrationskapazitäten hin. Die frühere Differenzierung von peripheren CD4+ T-Zellen in Th1-Effektorzellen in Devic B7-H1-/- Mäusen während der Initiationsphase schrieben wir der fehlenden inhibierenden Wirkung des PD-1/B7-H1 Signalwegs zu, was den früheren Krankheitsbeginn bedingt haben könnte. Stark ausgeprägte autoimmune Entzündungsreaktionen am Krankheitsmaximum maskierten jedoch wahrscheinlich diese schwachen Effekte von B7-H1. Dies wurde durch die Tatsache untermauert, dass am Krankheitsmaximum Th1- und Th17-Effektorfunktionen von peripheren CD4+ T-Zellen in beiden Mausgruppen vergleichbar ausgeprägt waren. Des Weiteren bestanden am Krankheitsmaximum keine Unterschiede in der humoralen Immunität. Die beobachteten klinischen Unterschiede waren demnach nicht durch veränderte periphere T-Zell- oder B-Zell-Effektorfunktionen in dieser Krankheitsphase erklärbar. Vielmehr scheint B7-H1 in der Peripherie ausschließlich während der Initiationsphase der Krankheit und fortwährend im Zielorgan durch seine parenchymale Expression immuninhibierend zu wirken. Unsere Beobachtungen zeigen, dass B7-H1 eine relevante Rolle bei der Immunregulierung im vorliegenden Mausmodell für spontane ZNS-Autoimmunität spielt. Durch immunmodulierende Effekte in der präklinischen sowie der klinischen Phase der Krankheit trug B7-H1 zu der Begrenzung der immunpathologischen Gewebeschädigung in Devic B7-H1+/+ Mäusen bei, sichtbar an einem späteren Krankheitsbeginn und leichteren -verlauf. Als Tiermodell für spontane ZNS-Autoimmunität mit nahezu 100 %iger Inzidenz könnte sich die Devic B7-H1-/- Maus als hilfreich bei der Klärung krankheitsauslösender und -limitierender Faktoren erweisen sowie bei der Validierung neuer therapeutischer Ansätze im Bereich der autoimmunen Neuroinflammation, insbesondere der Devic-Krankheit im Menschen. KW - Autoimmunität KW - Zentralnervensystem KW - Neuroinflammation KW - B7-H1 KW - Ko-inhibitorischer Signalweg KW - Devic Maus KW - autoimmunity KW - neuroinflammation KW - B7-H1 KW - co-inhibitory signalling KW - Devic mice KW - Maus KW - Entzündung KW - Signaltransduktion Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-83288 ER -