TY - THES A1 - Herter, Eva Kristine T1 - Characterization of direct Myc target genes in Drosophila melanogaster and Investigating the interaction of Chinmo and Myc T1 - Charakterisierung direkter Myc Zielgene in Drosophila melanogaster und Interaktionsanalyse der Proteine Chinmo und Myc N2 - The correct regulation of cell growth and proliferation is essential during normal animal development. Myc proteins function as transcription factors, being involved in the con-trol of many growth- and proliferation-associated genes and deregulation of Myc is one of the main driving factors of human malignancies. The first part of this thesis focuses on the identification of directly regulated Myc target genes in Drosophila melanogaster, by combining ChIPseq and RNAseq approaches. The analysis results in a core set of Myc target genes of less than 300 genes which are mainly involved in ribosome biogenesis. Among these genes we identify a novel class of Myc targets, the non-coding small nucleolar RNAs (snoRNAs). In vivo studies show that loss of snoRNAs not only impairs growth during normal development, but that overexpression of several snoRNAs can also enhance tumor development in a neu-ronal tumor model. Together the data show that Myc acts as a master regulator of ribo-some biogenesis and that Myc’s transforming effects in tumor development are at least partially mediated by the snoRNAs. In the second part of the thesis, the interaction of Myc and the Zf-protein Chinmo is described. Co-immunoprecipitations of the two proteins performed under endogenous and exogenous conditions show that they interact physically and that neither the two Zf-domains nor the BTB/POZ-domain of Chinmo are important for this interaction. Fur-thermore ChIP experiments and Myc dependent luciferase assays show that Chinmo and Myc share common target genes, and that Chinmo is presumably also involved in their regulation. While the exact way of how Myc and Chinmo genetically interact with each other still has to be investigated, we show that their interaction is important in a tumor model. Overexpression of the tumor-suppressors Ras and Chinmo leads to tu-mor formation in Drosophila larvae, which is drastically impaired upon loss of Myc. N2 - Die korrekte Regulation von Zellwachstum und Proliferation ist von entscheidender Bedeutung für die Entwicklung von Tieren. Myc-Proteine fungieren als Transkriptions-faktoren, die in die Funktionskontrolle vieler Gene eingebunden sind die eine Rolle bei Zellwachstum und Proliferation spielen. Fehlregulierung von Myc ist ein Hauptfaktor menschlicher Tumorbildung. Der erste Teil dieser Dissertation beschäftigt sich mit der Identifizierung direkt regulierter Myc Zielgene in Drosophila melanogaster durch Kombination von ChIPseq und RNAseq Analysen. Insgesamt wurde eine Hauptgruppe von weniger als 300 Myc Ziel-genen identifiziert, von denen der Großteil eine Funktion in der Ribosomen Biogenese hat. Unter diesen Genen haben wir eine neue Klasse an Myc Zielgenen identifiziert, die nicht-codierenden „small nucleolar RNAs“ (snoRNAs). In vivo Experimente zeigen, dass der Verlust der snoRNAs nicht nur das Wachstum während der natürlichen Ent-wicklung beeinträchtigt, sondern auch, dass Überexpression verschiedener snoRNAs die Tumorbildung in einem neuronalen Tumormodel begünstigt. Zusammenfassend zeigen die Daten, dass Myc maßgeblich Ribosomen Biogenese steuert und dass der transformierende Effekt, den Myc in der Tumorentwicklung inne hat, zumindest teilwei-se durch die snoRNAs gesteuert wird. Im zweiten Teil der Arbeit wird die Interaktion von Myc und dem Zink-Finger Protein Chinmo beschrieben. Co-Immunoprezipitationen der zwei Proteine die unter endogenen und exogenen Bedingungen durchgeführt wurden zeigen, dass sie physisch miteinander interagieren und dass weder Chinmos Zf-Domänen noch seine BTB/POZ-Domäne für diese Interaktion verantwortlich sind. ChIP-Versuche und Myc abhängige Luciferase-Assays zeigen weiterhin, dass Chinmo und Myc gemeinsame Zielgene besitzen und dass Chinmo darüber hinaus wahrscheinlich auch an ihrer Regulation beteiligt ist. Während der genaue Zusammenhang der genetischen Interaktionen von Myc und Chinmo noch ungewiss ist und weiterer Untersuchungen bedarf, kann gezeigt werden, dass die Interaktion der beiden Proteine in einem Tumormodel eine Rolle spielt. Die Tumorbildung die durch Überexpression des Tumorsuppressors Ras zusammen mit Chinmo hervorgerufen wird, wird durch den Verlust von Myc stark reduziert. KW - Myc KW - Drosophila melanogaster KW - Transcription KW - snoRNA KW - Ribosome KW - Growth KW - Taufliege KW - Transkription Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-122272 ER - TY - THES A1 - Schlichting, Matthias T1 - Light entrainment of the circadian clock: the importance of the visual system for adjusting Drosophila melanogaster´s activity pattern T1 - Lichtentrainment der inneren Uhr: Die Bedeutung des visuellen Systems für die Anpassung des Aktivitätsmusters von Drosophila melanogaster N2 - The change of day and night is one of the challenges all organisms are exposed to, as they have to adjust their physiology and behavior in an appropriate way. Therefore so called circadian clocks have evolved, which allow the organism to predict these cyclic changes of day and night. The underlying molecular mechanism is oscillating with its endogenous period of approximately 24 hours in constant conditions, but as soon as external stimuli, so called Zeitgebers, are present, the clocks adjust their period to exactly 24h, which is called entrainment. Studies in several species, including humans, animals and plants, showed that light is the most important Zeitgeber synchronizing physiology and behavior to the changes of day and night. Nevertheless also other stimuli, like changes in temperature, humidity or social interactions, are powerful Zeitgebers for entraining the clock. This thesis will focus on the question, how light influences the locomotor behavior of the fly in general, including a particular interest on the entrainment of the circadian clock. As a model organism Drosophila melanogaster was used. During the last years several research groups investigated the effect of light on the circadian clock and their results showed that several light input pathways to the clock contribute to wild-type behavior. Most of the studies focused on the photopigment Cryptochrome (CRY) which is expressed in about half of the 150 clock neurons in the fly. CRY is activated by light, degrades the clock protein Timeless (TIM) and hence entrains the clock to the light-dark (LD)-cycle resulting from changes of day and night. However, also flies lacking CRY are still able to entrain their clock mechanism as well as their activity-rest-rhythm to LD-cycles, clearly showing that the visual system of the fly also contributes to clock synchronization. The mechanism how light information from the visual system is transferred to the clock is so far still unknown. This is also true for so-called masking-effects which are changes in the behavior of the animal that are directly initiated by external stimuli and therefore independent of the circadian clock. These effects complement the behavior of the animals as they enable the fly to react quickly to changes in the environment even during the clock-controlled rest state. Both of these behavioral features were analyzed in more detail in this study. On the one hand, we investigated the influence of the compound eyes on the entrainment of the clock neurons and on the other hand, we tried to separate clock-controlled behavior from masking. To do so "nature-like" light conditions were simulated allowing the investigation of masking and entrainment within one experiment. The simulation of moonlight and twilight conditions caused significant changes in the locomotor behavior. Moonlit nights increased nocturnal activity levels and shifted the morning (M) and evening (E) activity bouts into the night. The opposite was true for the investigation of twilight, as the activity bouts were shifted into the day. The simulation of twilight and moonlight within the same experiment further showed that twilight appears to dominate over moonlight, which is in accordance to the assumption that twilight in nature is one of the key signals to synchronize the clock as the light intensity during early dawn rises similarly in every season. By investigating different mutants with impaired visual system we showed that the compound eyes are essential for the observed behavioral adaptations. The inner receptor cells (R7 and R8) are important for synchronizing the endogenous clock mechanism to the changes of day and night. In terms of masking, a complex interaction of all receptor cells seems to adjust the behavioral pattern, as only flies lacking photopigments in inner and outer receptor cells lacked all masking effects. However, not only the compound eyes seem to contribute to rhythmic activity in moonlit nights. CRY-mutant flies shift their E activity bout even more into the night than wild-type flies do. By applying Drosophila genetics we were able to narrow down this effect to only four CRY expressing clock neurons per hemisphere. This implies that the compound eyes and CRY in the clock neurons have antagonistic effects on the timing of the E activity bout. CRY advances activity into the day, whereas the compound eyes delay it. Therefore, wild-type behavior combines both effects and the two light inputs might enable the fly to time its activity to the appropriate time of day. But CRY expression is not restricted to the clock neurons as a previous study showed a rather broad distribution within the compound eyes. In order to investigate its function in the eyes we collaborated with Prof. Rodolfo Costa (University of Padova). In our first study we were able to show that CRY interacts with the phototransduction cascade and thereby influences visual behavior like phototaxis and optomotor response. Our second study showed that CRY in the eyes affects locomotor activity rhythms. It appears to contribute to light sensation without being a photopigment per se. Our results rather indicate that CRY keeps the components of the phototransduction cascade close to the cytoskeleton, as we identified a CRY-Actin interaction in vitro. It might therefore facilitate the transformation of light energy into electric signals. In a further collaboration with Prof. Orie Shafer (University of Michigan) we were able to shed light on the significance of the extraretinal Hofbauer-Buchner eyelet for clock synchronization. Excitation of the eyelet leads to Ca2+ and cAMP increases in specific clock neurons, consequently resulting in a shift of the flies´ rhythmic activity. Taken together, the experiments conducted in this thesis revealed new functions of different eye structures and CRY for fly behavior. We were furthermore able to show that masking complements the rhythmic behavior of the fly, which might help to adapt to natural conditions. N2 - Der Wechsel von Tag und Nacht stellt für viele Organismen eine große Herausforderung dar, da sie ihre Physiologie und auch das Verhalten den äußeren Gegebenheiten anpassen müssen. Um dieser Aufgabe gerecht zu werden, haben viele Organismen innere Uhren entwickelt, welche es ihnen erlauben, den Wechsel von Tag und Nacht vorherzusehen. Diesen inneren Uhren liegt ein molekularer Mechanismus zugrunde, welcher einen Rhythmus von etwa 24 Stunden generiert. Eine wichtige Eigenschaft dieser Uhren ist es, dass sie durch äußere Faktoren, so genannte Zeitgeber, an den Tag-Nacht-Wechsel angepasst werden können. Viele Studien an Mensch, Tier und Pflanze weisen darauf hin, dass Licht der wichtigste Zeitgeber ist, wobei auch Temperatur, Luftfeuchtigkeit oder soziale Interaktionen die innere Uhr an den Tag-Nacht-Wechsel anpassen können. Ziel dieser Arbeit ist es, die Auswirkung von Licht auf das Lauf-verhalten und die innere Uhr genauer zu beleuchten, wozu der Modellorganismus Drosophila melanogaster herangezogen wird. Zahlreiche Forschergruppen haben sich bereits mit der Synchronisation der inneren Uhr durch Licht beschäftigt, wobei klar hervorgeht, dass die Taufliege verschiedene Möglichkeiten hat, Lichtinformationen für die Synchronisation der Uhr zu verwenden. Der wohl am besten untersuchte Prozess ist die Synchronisation durch das Pigment Cryptochrom. Dieses Molekül ist in etwa der Hälfte der Uhrneuronen exprimiert und greift direkt in den molekularen Uhrmechanismus ein, wodurch dieser an den Tag-Nacht-Wechsel angepasst werden kann. Schaltet man jedoch das Gen für dieses Molekül aus so zeigt sich, dass die Tiere dennoch dazu in der Lage sind sich an den Licht-Dunkel-Wechsel anzupassen. Dies bedeutet, dass die visuellen Organe Informationen an die innere Uhr weiterleiten können, wobei der Mechanismus dafür noch nicht vollständig entschlüsselt werden konnte. Selbiges trifft auf sogenannte Maskierungseffekte zu: Maskierung beschreibt eine Veränderung des Verhaltensmusters, welches nicht durch die innere Uhr gesteuert, sondern direkt durch äußere Reize hervorgerufen wird. Diese direkten Effekte komplettieren das Verhalten der Tiere, da sie dadurch selbst zu endogen ungünstigen Zeiten adäquat auf äußere Reize reagieren können. In dieser Arbeit wird sich beider Phänomene angenommen: Zum einen soll die Bedeutung des visuellen Systems für die Synchronisation der inneren Uhr genauer untersucht, und zum anderen soll uhrgesteuertes Verhalten von Maskierung getrennt werden. Zu diesem Zweck wurden Lichtbedingungen simuliert, die den natürlichen ähnelten und die Untersuchung beider lichtabhängiger Effekte ermöglichten. Die Untersuchung von Dämmerung und Mondlicht zeigte deutlich, dass diese starke Veränderungen im Lauf-Verhalten hervorrufen. Die Simulation von Mondlicht bewirkte einen Anstieg der Nachtaktivität und ein Verschieben der Aktivitätsmaxima der Fliege in die Nacht. Das Gegenteil war bei Dämmerungssimulation zu beobachten, da die Tiere mehr Aktivität in den Tag legten. Bei gleichzeitiger Simulation von Mondlicht und Dämmerungsphasen zeigte sich, dass die Dämmerung ein stärkerer Zeitgeber ist als Mondlicht ist. Dieses Ergebnis geht einher mit der Annahme, dass die Dämmerung ein wichtiges Signal für die Synchronisation der inneren Uhr ist, da der Anstieg der Lichtintensität am frühen Morgen unabhängig von der Jahreszeit sehr ähnlich ist. Die Untersuchung von verschiedensten Mutanten konnte zudem zeigen, dass die Komplexaugen der Fliege von größter Bedeutung für die beobachteten Veränderungen im Verhaltensmuster und die Anpassung der inneren Uhr an "natürliche" Lichtbedingungen sind. Dabei stellte sich heraus, dass vor allem die inneren Rezeptorzellen wichtig für die Synchronisation der inneren Uhr und somit uhrgesteuerter Verhaltensänderungen sind. Für Maskierungseffekte scheint eine komplexe Interaktion von mehreren Rezeptorzellen für die Anpassung an Dämmerungs- und Mondlichtbedingungen vorzuliegen, da diese nur bei Mehrfachmutationen verschiedener Rhodopsine, den lichtabsorbierenden Molekülen der Fliege, verschwanden. Jedoch scheinen nicht nur die Komplexaugen das rhythmische Verhalten in Mondlichtnächten zu beeinflussen. Wird das Gen für Cryptochrom, dem Photorezeptor der inneren Uhr, ausgeschaltet, verschieben die Tiere ihre Abendaktivität noch stärker in die Nacht als es bereits beim Wildtyp der Fall ist. Durch verschiedene genetische Manipulationen konnten wir den Grund dieses Verhaltens auf die Expression von Cryptochrom in nur vier Uhrneuronen pro Hemisphäre zurückverfolgen. Zugleich zeigten unsere Ergebnisse, dass die Komplexaugen und Cryptochrom entgegengesetzte Wirkung auf das Timing der Abendaktivität haben. Während die Komplexaugen die Abendaktivität in die Nacht hinein schieben, bewirkt Cryptochrom, dass die Aktivität noch während des Tages stattfindet. Dies bedeutet, dass das wildtypische Verhalten eine Mischung aus beiden Lichteingängen ist und sich die Tiere somit ideal an die äußeren Gegebenheiten anpassen können. Cryptochrom wird jedoch nicht nur in den Uhrneuronen, sondern unter anderem auch in den Komplexaugen der Tiere exprimiert. Um die Funktion in den Augen genauer zu untersuchen, konnten wir in Kollaboration mit Prof. Rodolfo Costa (University of Padova) zunächst zeigen, dass CRY mit der Phototransduktionskaskade über das Protein INAD interagiert und dadurch visuelles Verhalten, wie zum Beispiel Phototaxis oder die optomotorische Antwort, beeinflussen kann. In weiteren Experimenten konnten wir zudem zeigen, dass CRY in den Augen die lokomotorische Aktivität der Fliegen beeinflusst. Dabei trägt es zur Wahrnehmung von Licht bei, ohne jedoch per se ein Photopigment zu sein. Vielmehr scheint CRY die Phototransduktion dahingehend zu verändern, dass es den Phototransduktionskomplex an das Cytoskelett innerhalb der Rhabdomere bindet und somit die Umwandlung von Lichtenergie in elektrische Signale erleichtert. Zusammen mit Prof. Orie Shafer (University of Michigan) ist es uns zudem gelungen, die Rolle des extraretinalen Hofbauer-Buchner-Äugleins für die Synchronisation der Uhr genauer zu beleuchten. Die Anregung des Äugleins führte dabei zu einem Anstieg der Ca2+ und cAMP Mengen in bestimmten Uhrneuronen und dies bewirkte eine Phasenverschiebung des Verhaltens der Taufliege. Somit konnten in dieser Arbeit neue Erkenntnisse über die Funktionen von Cryptochrom und verschiedener Augenstrukturen für das Verhalten der Fliege gewonnen werden. Dabei konnten die Bedeutungen der inneren Uhr sowie von Maskierungseffekten für das Verhalten der Tiere in der Natur herausgearbeitet werden. KW - Taufliege KW - Moonlight KW - Rhodopsin KW - Tagesrhythmus KW - Twilight KW - Compound eyes KW - Biologische Uhr KW - Zeitgeber KW - Licht KW - Cryptochrom KW - Drosophila KW - Circadian Rhythms Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-114457 ER - TY - THES A1 - Grebler, Rudi T1 - Untersuchung der Rolle von Rhodopsin 7 und Cryptochrom im Sehprozess von Drosophila melanogaster T1 - Investigation of Rhodopsin 7 and Cryptochrome in Drosophila melanogaster vision N2 - Ausgangspunkt für die Detektion von Licht ist im gesamten Tierreich die Absorption von Photonen durch photorezeptive Proteine, die sogenannten Opsine und in geringerem Ausmaß die Typ 1 Cryptochrome. Die Taufliege Drosophila melanogaster besitzt sechs eingehend charakterisierte, auch als Rhodopsine bezeichnete Opsine (Rh1-Rh6) und ein Cryptochrom (CRY). Neben den Ocellen und den Hofbauer-Buchner Äuglein werden die Rhodopsine in erster Linie in den Photorezeptorzellen der Komplexaugen, den Hauptorganen der Lichtperzeption exprimiert, wo sie der Vermittlung der visuellen Wahrnehmung dienen. Basierend auf Sequenzvergleichen wurde im Jahr 2000 ein neues Protein namens Rh7 zur Gruppe der Drosophila Opsine hinzugefügt. Bis heute fehlt allerdings jeglicher experimentelle Beleg für die photorezeptive Funktion dieses Proteins. Im Gegensatz dazu wird Cryptochrom in erster Linie in einigen Uhrneuronen des Drosophila Gehirns exprimiert, wo es diesen Neuronen die Fähigkeit zur Lichtdetektion verleiht und das Photoentrainment der inneren Uhr lenkt. Neueren Untersuchungen zu folge spielt CRY allerdings auch bei der visuellen Wahrnehmung der Augen eine Rolle. Die vorliegende Arbeit zielte nun darauf ab die potentielle Funktion von Rh7 als neuen Photorezeptor in Drosophila sowie die Rolle von CRY bei der visuellen Lichtperzeption zu untersuchen. Die Aufnahmen der Elektroretinogramme (ERGs) von transgenen Fliegen, die Rh7 anstelle von oder zusammen mit dem dominanten Photorezeptor Rh1 in den Komplexaugen exprimieren, zeigen, dass Rh7 die Phototransduktionskaskade bei Belichtung mit Weißlicht nicht aktivieren kann. Die Abwesenheit von Rh7 sorgt allerdings trotzdem für eine Beeinträchtigung der lichtinduzierten Antwort der Rezeptorzellen im Komplexauge. So zeigen die Intensitäts-Response Kurven der ERG Rezeptorpotentialamplitude von rh7 Knockout-Fliegen unter Weißlicht niedriger und mittlerer Intensität nach einer anfänglichen Dunkeladaptation von 15min eine insgesamt, im Vergleich zur Kontrolle erhöhte Rezeptorpotentialamplitude. Der Verlauf dieser Kurven deutet außerdem darauf hin, dass die Zunahme der Rezeptorpotentialamplitude mit steigender Lichtintensität größer wird. Zudem zeigt das Aktionsspektrum für die Rezeptorpotentialamplitude der rh7 Knockout-Fliegen, dass diese Empfindlichkeitszunahme im gesamten Bereich von 370-648nm auftritt. Diese Beeinträchtigung scheint jedoch zu fehlen, wenn die Fliegen vor Experimentbeginn nur 1min dunkeladaptiert wurden, oder wenn intensives Blaulicht zur Belichtung verwendet wird. Des weiteren ist auch das 4s nach Ende des Lichtpulses im ERG gemessene Nachpotential bei fehlendem Rh7 reduziert. Zusammengenommen deuten diese Ergebnisse darauf hin, dass Rh7, wenn auch nicht als Photorezeptor, bei Belichtung mit Weißlicht niedriger und mittlerer Intensität die Lichtantwort in den Rezeptorzellen des Komplexauges in Abhängigkeit von Intensität und Adaptationszustand beeinflusst und dass dieser Einfluss scheinbar nicht durch Licht eines eng begrenzten Wellenlängenbereichs induziert wird. Des weiteren legt die Untersuchung des ERG Nachpotentials nahe, dass Rh7 möglicherweise für eine normale Beendigung der Lichtantwort benötigt wird. Die allgemeine Funktion von Rh7 als Photorezeptor in Drosophila sowie die Eigenschaften der endogenen Funktion von Rh7 werden diskutiert. Unabhängig davon wird in der vorliegenden Arbeit auch gezeigt, dass Fliegen ohne CRY zwar nach 15-minütiger, nicht jedoch nach 1-minütiger Dunkeladaptation bei Belichtung mit Weißlicht niedriger Intensität eine insgesamt geringere ERG Rezeptorpotentialamplitude aufweisen. Dies könnte auf eine Beeinträchtigung der Dunkeladaptationsprozesse bei Abwesenheit von CRY hindeuten. N2 - Throughout the animal kingdom light detection is based on the absorption of photons by photoreceptive proteins, the so called opsins and to a minor degree the type 1 cryptochromes. The fruit fly Drosophila melanogaster possesses six well characterized opsins, also referred to as rhodopsins (Rh1-Rh6) and one cryptochrome (CRY). Besides the ocelli and the Hofbauer-Buchner eyelet, the rhodopsins are predominantly expressed in the photoreceptor cells of the compound eye, the major light receptive organ of the fly, where they mediate visual perception. Based on sequence comparisons a new protein, called Rh7, was added to the group of Drosophila opsins in the year 2000. But to date there is no experimental evidence for the photoreceptive function of this protein. By contrast cryptochrome is predominantly expressed in some clock neurons of the Drosophila brain, where it confers light sensitivity to these neurons and guides the photoentrainment of the endogenous clock. But recent publications also envisage a role for CRY in visual perception. The present thesis now aimed to investigate the putative function of Rh7 as a new photoreceptor in Drosophila as well as the role of CRY in visual perception. Recordings of the electroretinogram (ERG) of transgenic flies, that express Rh7 instead of or together with the major photoreceptor Rh1 in the compound eye, show that Rh7 can not activate the phototransduction cascade under white-light. Nevertheless, the absence of Rh7 impairs the light induced response of the receptor cells in the compound eye. Thus, the irradiance-response curves for the ERG receptor potential of rh7 knockout-flies show an overall increased amplitude of the receptor potential compared to controls upon illumination with white-light in the low- and mid-intensity range and after an initial dark adaptation of 15min. The curve shape also indicates that the gain in amplitude gets bigger with increasing light intensity. In addition the action spectrum for the receptor potential of rh7 knockout-flies demonstrates that this increase in sensitivity covers the whole range from 370-648nm. However this impairment seems to be absent when flies were only allowed to dark adapt for 1min before the experiment or when intense blue light is used for illumination. Moreover also the ERG afterpotential measured 4s after lights-off is reduced in absence of Rh7. Taken together these results indicate that Rh7, even though it might not work as a photoreceptor under white-light, alters the light response of the receptor cells in the compound eyes under low- and mid-intense white-light in an intensity and adaptation dependent manner and that this alteration seems not to be caused by light of a limited spectral range. Furthermore the analysis of the ERG afterpotential indicates that Rh7 may also be required for normal light response termination. The general function of Rh7 as a photoreceptor in Drosophila as well as the characteristics of the endogenous function of Rh7 are discussed. Independently the present thesis also demonstrates that flies lacking CRY show a decreased ERG receptor potential amplitude upon illumination with low-intensity white-light when 15min but not when 1min of dark adaptation preceded the recording. This may indicate an impairment of the dark adaptation process without cryptochrome. KW - Taufliege KW - Rhodopsin 7 KW - Rhodopsin KW - Cryptochrom KW - Drosophila Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-114466 ER - TY - THES A1 - Dusik, Verena T1 - Immunhistochemische und funktionelle Charakterisierung der Mitogen-aktivierten Proteinkinase p38 in der inneren Uhr von Drosophila melanogaster T1 - Immunhistochemical and functional characterisation of the mitogen-activated protein kinase p38 in the endogenous clock of Drosophila melanogaster N2 - Circadianes und Stress-System sind zwei physiologische Systeme, die dem Organismus helfen sich an Veränderungen ihrer Umwelt anzupassen. Während letzteres spontane und schnelle Antworten auf akute, unvorhersehbare Umweltreize liefert, sagt das circadiane System täglich wiederkehrende Ereignisse vorher and bereitet den Organismus so vorzeitig auf diese nahende Umweltveränderung vor. Dennoch, trotz dieser unterschiedlichen Reaktionsmechanismen agieren beide Systeme nicht komplett autonom. Studien der vergangen Jahre belegen vielmehr eine Interaktion beider Systeme. So postulieren sie zum einem Unterschiede in der Stressantwort in Abhängigkeit von der Tageszeit zu der der Reiz auftritt und weisen zugleich auf eine Zunahme von gestörten biologischen Tagesrhythmen, wie zum Beispiel Schlafstörungen, in Folge von unkontrollierten oder exzessiven Stress hin. Ebenso liefern kürzlich durchgeführte Studien an Vertebraten und Pilzen Hinweise, dass mit p38, eine Stress-aktivierte Kinase, an der Signalweiterleitung zur inneren Uhr beteiligt ist (Hayashi et al., 2003), sogar durch dieses endogene Zeitmesssystem reguliert wird (Vitalini et al., 2007; Lamb et al., 2011) und deuten damit erstmals eine mögliche Verbindung zwischen Stress-induzierten und regulären rhythmischen Anpassungen des Organismus an Umweltveränderungen an. Molekulare und zelluläre Mechanismen dieser Verknüpfung sind bisher noch nicht bekannt. Während die Rolle von p38 MAPK bei der Stress- und Immunantwort in Drosophila melanogaster gut charakterisiert ist, wurden Expression und Funktion von p38 in der inneren Uhr hingegen bislang nicht untersucht. Die hier vorliegende Arbeit hatte daher zum Ziel mittels immunhistochemischer, verhaltensphysiologischer und molekularer Methoden eine mögliche Rolle der Stress-aktivierten Kinase im circadianen System der Fliege aufzudecken. Antikörperfärbungen sowie Studien mit Reporterlinien zeigen deutliche Färbesignale in den s-LNv, l-LNv und DN1a und erbringen erstmals einen Nachweis für p38 Expression in den Uhrneuronen der Fliege. Ebenso scheint die Aktivität von p38 MAPK in den DN1a uhrgesteuert zu sein. So liegt p38 vermehrt in seiner aktiven Form in der Dunkelphase vor und zeigt, neben seiner circadian regulierten Aktivierung, zusätzlich auch eine Inaktivierung durch Licht. 15-Minuten-Lichtpulse in der subjektiven Nacht führen zu einer signifikanten Reduktion von aktivierter, phosphorylierter p38 MAPK in den DN1a von Canton S Wildtypfliegen im Vergleich zu Fliegen ohne Lichtpuls-Behandlung. Aufzeichnungen der Lokomotoraktivität offenbaren zusätzlich die Notwendigkeit von p38 MAPK für wildtypisches Timing der Abendaktivität sowie zum Erhalt von 24-Stunden-Verhaltensrhythmen unter konstanten Dauerdunkel-Bedindungen. So zeigen Fliegen mit reduzierten p38 Level in Uhrneuronen einen verzögerten Beginn der Abendaktivität und stark verlängerte Freilaufperioden. In Übereinstimmung mit Effekten auf das Laufverhalten scheint darüber hinaus die Expression einer dominant-negativen Form von p38b in Drosophila’s wichtigsten Uhrneuronen eine verspätete nukleäre Translokation von Period zur Folge zu haben. Westernblots legen zusätzlich einen Einfluss von p38 auf den Phosphorylierungsgrad von Period nahe und liefern damit einen mögliche Erklärung für den verspäteten Kerneintritt des Uhrproteins. Abschließende Stützung der Westernblotergebnisse bringen in vitro Kinasenassays und deuten auf p38 als eine potentielle „Uhrkinase“ hin, welche auch in vivo Period an Serin 661 sowie weiteren potentiellen Phosphorylierungsstellen phosphorylieren könnte. Zusammengenommen deuten die Ergebnisse der hier vorliegenden Arbeit eindeutig auf eine bedeutende Rolle von p38, neben dessen Funkion im Stress-System, auch im circadianen System der Fliege hin und offenbaren damit die Möglichkeit, dass p38 als Schnittstelle zwischen beider Systeme fungiert. N2 - The circadian and the stress system are two distinct physiological systems that help the organism to adapt to environmental challenges. While the latter elicits reactive responses to acute environmental changes, the circadian system predicts daily occurring alterations and prepares the organism in advance. However, despite of these differences both responses are not mutually exclusive. Studies in the last years obviously prove a strong interaction between both systems showing a strong time-related stress response depending on the time of day of stressor presentation on the one hand and increased disturbances of daily rhythms, like sleep disorders, in consequence of uncontrolled or excessive stress on the other. In line with this fact, recent studies in vertebrates and fungi indicate that p38, a stress-activated Kinase, is involved in signaling to the circadian clock (Hayashi et al., 2003) and in turn is additionally regulated by this timekeeping system (Vitalini et al., 2007; Lamb et al., 2011) providing an interesting link between stress-induced and regularly rhythmic adaptations of the organism to environmental changes. However, little is known about molecular and cellular mechanisms of this interconnection. In Drosophila melanogaster the role of p38 MAPK is well characterized in terms of immune and stress response, p38 expression and function in the circadian clock has not been reported so far. Therefore, the present thesis aimed to elucidate a putative role of the stress-activated Kinase in the fly’s circadian system using an immunohistochemical, behavioral as well as molecular approach. Surprisingly, for the first time antibody as well as reporterline studies cleary prove p38 expression in Drosophila clock neurons showing visible staining in s-LNvs, l-LNvs and DN1as. Moreover p38 MAPK in DN1as seems to be activated in a clock-dependent manner. p38 is most active under darkness and, besides its circadian activation, additionally gets inactivated by light. 15 minutes light pulse applied during the dark phase lead to a significant reduction in phosphorylated and activated p38 MAPK in Canton S wildtype flies compared to flies without light pulse treatment. In addition, locomotor activity recordings reveal that p38 is essential for a wild-type timing of evening activity and for maintaining ~24h behavioral rhythms under constant darkness. Flies with reduced p38 activity in clock neurons show delayed evening activity onsets and drastically lengthened the period of their free-running rhythms. In line with these effects on locomotor behavior, the nuclear translocation of the clock protein Period is significantly delayed on the expression of a dominant-negative form of p38b in Drosophila’s most important clock neurons. Western Blots reveal that p38 affects the phosphorylation degree of Period, what is likely the reason for its effects on nuclear entry of Period. In vitro kinase assays additionally confirm the Western Blot results and point to p38 as a potential “clock kinase” phosphorylating Period at Serin 661 and putative phosphorylation sites. Taken together, the results of the present thesis clearly indicate a prominent role of p38 in the circadian system of the fly besides its function in stress-input pathways und open up the possibility of p38 MAPK being a nodal point of both physiological systems. KW - Taufliege KW - Biologische Uhr KW - MAP-Kinase KW - Innere Uhr KW - MAPK KW - p38 KW - Phosphorylierung KW - Mitogen-aktivierte Proteinkinase KW - Drosophila melanogaster KW - Circadiane Rhythmen KW - Drosophila Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-124636 ER - TY - THES A1 - Fischer, Robin T1 - Generating useful tools for future studies in the center of the circadian clock – defined knockout mutants for PERIOD and TIMELESS T1 - Generierung nützlicher Instrumente für zukünftige Studien im Zentrum der Inneren Uhr - definierte knockout Mutanten für PERIOD und TIMELESS N2 - To unravel the role of single genes underlying certain biological processes, scientists often use amorphic or hypomorphic alleles. In the past, such mutants were often created by chance. Enormous approaches with many animals and massive screening effort for striking phenotypes were necessary to find a needle in the haystack. Therefore at the beginning chemical mutagens or radiation were used to induce mutations in the genome. Later P-element insertions and inaccurate jump-outs enabled the advantage of potential larger deletions or inversions. The mutations were characterized and subsequently kept in smaller populations in the laboratories. Thus additional mutations with unknown background effects could accumulate. The precision of the knockout through homologous recombination and the additional advantage of being able to generate many useful rescue constructs that can be easily reintegrated into the target locus made us trying an ends-out targeting procedure of the two core clock genes period and timeless in Drosophila melanogaster. Instead of the endogenous region, a small fragment of approximately 100 base pairs remains including an attP-site that can be used as integration site for in vitro created rescue constructs. After a successful ends-out targeting procedure, the locus will be restored with e.g. flies expressing the endogenous gene under the native promoter at the original locus coupled to a fluorescence tag or expressing luciferase. We also linked this project to other research interests of our work group, like the epigenetic related ADAR-editing project of the Timeless protein, a promising newly discovered feature of time point specific timeless mRNA modification after transcription with yet unexplored consequences. The editing position within the Timeless protein is likewise interesting and not only noticed for the first time. This will render new insights into the otherwise not-satisfying investigation and quest for functional important sequences of the Timeless protein, which anyway shows less homology to other yet characterized proteins. Last but not least, we bothered with the question of the role of Shaggy on the circadian clock. The impact of an overexpression or downregulation of Shaggy on the pace of the clock is obvious and often described. The influence of Shaggy on Period and Timeless was also shown, but for the latter it is still controversially discussed. Some are talking of a Cryptochrome stabilization effect and rhythmic animals in constant light due to Shaggy overexpression, others show a decrease of Cryptochrome levels under these conditions. Also the constant light rhythmicity of the flies, as it was published, could not be repeated so far. We were able to expose the conditions behind the Cryptochrome stabilization and discuss possibilities for the phenomenon of rhythmicity under constant light due to Shaggy overexpression. N2 - Um die Rolle einzelner Gene hinter biologischen Prozessen zu entschlüsseln, bedienen sich Wissenschaftler häufig amorpher oder hypomorpher Allele. Diese wurden in der Vergangenheit oft auf Zufall basierend generiert. Gewaltige Ansätze mit zahllosen Tieren unter enormem Selektionsaufwand bei der Suche nach markanten Phänotypen waren notwendig um sprichwörtlich die Nadel im Heuhaufen zu finden. Zunächst wurden chemische Mutagene oder Strahlung verwendet um Mutationen im Genom zu induzieren. Später kamen P-element Insertionen und induziertes unpräzises Herausspringen der Transposons dazu. Das hatte den Vorteil, dass so unter Umstände größere Deletionen oder Inversionen entstanden. Die Mutationen wurden charakterisiert und die Tiere anschließend in kleinen Populationen gehalten. Dadurch konnten sich zusätzliche Mutationen mit möglichen Hintergrundeffekten unbemerkt ansammeln. Ebenso blieben weitere durchaus mögliche Mutationen aufgrund der Mutagene und dem deutlicheren Phänotyp der primären Mutation oftmals unbemerkt. Die Präzision eines Knockouts durch homologe Rekombination und der Vorteil, zusätzlich im Stande zu sein, jedes entworfene Rettungskonstrukt auf einfache Weise wieder einsetzen zu können, überzeugte uns, eine Ends-out Targeting Prozedur mit den zwei Uhr Basisgenen period und timeless in Drosophila melanogaster durchzuführen. Dabei soll ein geplanter Knockout zu einer kompletten Deletion des gesamten Bereichs durch homologe Rekombination führen. Anstelle der endogenen Region verbleibt lediglich ein kleines Fragment von ungefähr 100 Basenpaaren inklusive einer attP-Stelle, die als Insertionsstelle für in vitro hergestellte Konstrukte genutzt werden kann. Angestrebte Ziele sind beispielsweise Fliegen, die das endogene Gen unter der Kontrolle des ursprünglichen Promoters am originalen Lokus gebunden an einen Fluoreszenzmarker oder aber gekoppelt an Luziferase exprimieren. Wir koppelten dieses Projekt zusätzlich mit anderen Forschungsinteressen unserer Arbeitsgruppe, wie zum Beispiel dem epigenetischen ADAR-Editierungsprojekt des Timeless Proteins, einer vielversprechenden Neuentdeckung zeitpunktspezifischer und posttranskriptionaler Modifizierung der timeless mRNA, mit bisher noch unbekannten Folgen. Die Position der Editierung innerhalb des Timeless Proteins ist ebenfalls sehr interessant und nicht zum ersten Mal im Fokus von Wissenschaftlern. Dies wird neue Einblicke in die sonst bislang nicht zufriedenstellende Suche nach funktionell wichtigen Strukturen von Timeless bringen, welche aufgrund der geringen Homologie zu anderen bisher charakterisierten Proteinen bislang nur unzureichend bestimmt werden konnten. Zuletzt beschäftigten wir uns mit der Frage nach der Rolle von Shaggy bezüglich der inneren Uhr. Der Einfluss einer Überexpression oder Herabregulierung von Shaggy auf die Taktung der Uhr ist eindeutig und wurde schon oft beschrieben. Der Einfluss von Shaggy auf Period und Timeless wurde ebenfalls bereits gezeigt, wird jedoch im Falle des letzteren Proteins noch sehr kontrovers diskutiert. Während einige von einem Cryptochrom stabilisierenden Effekt und rhythmischen Tieren in konstanter Beleuchtung aufgrund von Shaggy Überexpression sprechen, zeigen andere einen Abfall des Cryptochromlevels unter eben genau diesen Umständen. Es war uns möglich die Umstände hinter der Cryptochromstabilisierung aufzudecken. Darüber hinaus zeigen wir mögliche Gründe für das Phänomen des Rhythmus im Dauerlicht von Shaggy Überexpressionstieren auf. KW - Biologische Uhr KW - Circadian clock KW - Period KW - Timeless KW - Genetic engineering KW - Shaggy KW - Taufliege KW - Knockout Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-119141 ER - TY - THES A1 - Ehmann, Nadine T1 - Linking the active zone ultrastructure to function in Drosophila T1 - Struktur-Funktions-Beziehungen an der aktiven Zone in Drosophila N2 - Accurate information transfer between neurons governs proper brain function. At chemical synapses, communication is mediated via neurotransmitter release from specialized presynaptic intercellular contact sites, so called active zones. Their molecular composition constitutes a precisely arranged framework that sets the stage for synaptic communication. Active zones contain a variety of proteins that deliver the speed, accuracy and plasticity inherent to neurotransmission. Though, how the molecular arrangement of these proteins influences active zone output is still ambiguous. Elucidating the nanoscopic organization of AZs has been hindered by the diffraction-limited resolution of conventional light microscopy, which is insufficient to resolve the active zone architecture on the nanometer scale. Recently, super-resolution techniques entered the field of neuroscience, which yield the capacity to bridge the gap in resolution between light and electron microscopy without losing molecular specificity. Here, localization microscopy methods are of special interest, as they can potentially deliver quantitative information about molecular distributions, even giving absolute numbers of proteins present within cellular nanodomains. This thesis puts forward an approach based on conventional immunohistochemistry to quantify endogenous protein organizations in situ by employing direct stochastic optical reconstruction microscopy (dSTORM). Focussing on Bruchpilot (Brp) as a major component of Drosophila active zones, the results show that the cytomatrix at the active zone is composed of units, which comprise on average ~137 Brp molecules, most of which are arranged in approximately 15 heptameric clusters. To test for a quantitative relationship between active zone ultrastructure and synaptic output, Drosophila mutants and electrophysiology were employed. The findings indicate that the precise spatial arrangement of Brp reflects properties of short-term plasticity and distinguishes distinct mechanistic causes of synaptic depression. Moreover, functional diversification could be connected to a heretofore unrecognized ultrastructural gradient along a Drosophila motor neuron. N2 - Kommunikation zwischen Nervenzellen ist von grundlegender Bedeutung für die Hirnfunktion. An chemischen Synapsen findet diese an hoch spezialisierten interzellulären Kontaktstellen statt, den aktiven Zonen, welche die Voraussetzung für präzise Neurotransmission schaffen und somit die synaptische Kommunikation gewährleisten. In aktiven Zonen befindet sich eine Vielzahl von Proteinen dicht gepackt, die Geschwindigkeit, Genauigkeit und Plastizität der Signaltransduktion vermitteln. Bisher ist es jedoch unklar, in welcher Weise die molekularen Organisationsprinzipien dieser Proteine die Funktion der aktiven Zone beeinflussen. Teilweise ist dies dem Auflösungsvermögen konventioneller Lichtmikroskopie geschuldet, das nicht ausreicht um die Architektur der aktiven Zone im Nanometer Bereich aufzuklären. Unlängst jedoch haben neue Methoden der hochaufgelösten Fluoreszenzmikroskopie ihren Weg in die Neurowissenschaften gefunden. Diese sind in der Lage die Lücke zwischen optischer Lichtmikroskopie und Elektronenmikroskopie zu schließen, ohne die Identität der Proteinspezies aus den Augen zu verlieren. Besonderes Interesse kommt hierbei sogenannten Lokalisationsmikroskopie Techniken zu. Diese können neben der Darstellung molekularer Organisationen im Idealfall sogar quantitative Informationen über die absolute Anzahl bestimmter Moleküle in subzellulären Bereichen liefern. In der vorliegenden Arbeit wurde eine Methode entwickelt, die auf klassischer Immunohistochemie beruht und dSTORM (direct stochastic optical reconstruction microscopy) nutzt, um die endogene Proteinorganisation in situ zu quantifizieren. Fokussierend auf Brp (Bruchpilot), einem Protein an der aktiven Zone von Drosophila melanogaster, zeigen die Ergebnisse, dass die Zytomatrix an der aktiven Zone modular aufgebaut ist, wobei jedes Modul ~137 Brp Moleküle umfasst. Diese sind zum Großteil in etwa 15 Gruppen mit je 7 Untereinheiten angeordnet. Um auf einen quantitativen Zusammenhang zwischen der Ultrastruktur der aktiven Zone und ihrer Funktion zu schließen, wurden Drosophila Mutanten eingesetzt und mittels Elektrophysiologie funktionell untersucht. Die Ergebnisse veranschaulichen, dass sich spezifische Eigenschaften von Kurzzeitplastizität in der präzisen Anordnung von Brp widerspiegeln, was Rückschlüsse auf verschiedene Ursprünge synaptischer Depression zulässt. Darüber hinaus beschrieben dSTORM Experimente erstmals, dass ein funktioneller Gradient entlang des Motoneurons mit der graduellen Veränderung der Anzahl von Bruchpilotmolekülen pro aktive Zone korreliert. KW - Taufliege KW - Elektrophysiologie KW - Fluoreszenzmikroskopie KW - Synapse KW - Drosophila KW - active zone KW - structure-function relationships KW - super-resolution microscopy KW - electrophysiology KW - Synapses KW - Microscopy Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-118186 ER - TY - THES A1 - Yang, Zhenghong T1 - A systematic study of learned helplessness in Drosophila melanogaster T1 - Eine systematische Untersuchung der erlernten Hilflosigkeit in Drosophila melanogaster N2 - The learned helplessness phenomenon is a specific animal behavior induced by prior exposure to uncontrollable aversive stimuli. It was first found by Seligman and Maier (1967) in dogs and then has been reported in many other species, e.g. in rats (Vollmayr and Henn, 2001), in goldfishes (Padilla, 1970), in cockroaches (Brown, 1988) and also in fruit flies (Brown, 1996; Bertolucci, 2008). However, the learned helplessness effect in fruit flies (Drosophila melanogaster) has not been studied in detail. Thus, in this doctoral study, we investigated systematically learned helplessness behavior of Drosophila for the first time. Three groups of flies were tested in heatbox. Control group was in the chambers experiencing constant, mild temperature. Second group, master flies were punished in their chambers by being heated if they stopped walking for 0.9s. The heat pulses ended as soon as they resumed walking again. A third group, the yoked fly, was in their chambers at the same time. However, their behavior didn’t affect anything: yoked flies were heated whenever master flies did, with same timing and durations. After certain amount of heating events, yoked flies associated their own behavior with the uncontrollability of the environment. They suppressed their innate responses such as reducing their walking time and walking speed; making longer escape latencies and less turning around behavior under heat pulses. Even after the conditioning phase, yoked flies showed lower activity level than master and control flies. Interestingly, we have also observed sex dimorphisms in flies. Male flies expressed learned helplessness not like female flies. Differences between master and yoked flies were smaller in male than in female flies. Another interesting finding was that prolonged or even repetition of training phases didn’t enhance learned helplessness effect in flies. Furthermore, we investigated serotonergic and dopaminergic nervous systems in learned helplessness. Using genetic and pharmacological manipulations, we altered the levels of serotonin and dopamine in flies’ central nervous system. Female flies with reduced serotonin concentration didn’t show helpless behavior, while the learned helplessness effect in male flies seems not to be affected by a reduction of serotonin. Flies with lower dopamine level do not display the learned helplessness effect in the test phase, suggesting that with low dopamine the motivational change in learned helplessness in Drosophila may decline faster than with a normal dopamine level. N2 - Das „learned helplessness“ Phänomen ist ein spezifisches Verhalten nach vorheriger Exposition von unkontrollierbaren aversiven Stimuli induziert. Es wurde zuerst von Seligman und Maier (1967) bei Hunden und dann in vielen anderen Tierarten berichtet, z.B. in Ratten (Vollmayr und Henn, 2001), in Goldfische (Padilla , 1970), in Kakerlaken (Brown, 1988) sowie in Fruchtfliegen (Brown, 1996; Bertolucci, 2008). Allerdings wurde das learned helplessness Phänomen in Fruchtfliegen (Drosophila melanogaster) noch nicht genau erforscht. Somit wird in dieser Doktorarbeit haben wir erlernten learned helplessness von Drosophila zum ersten Mal systematisch untersucht. Drei Gruppen von Fliegen wurden in Heatbox getestet. Die Kontrollgruppe war in den Kammern erlebter konstant milder Temperatur. Die zweite Master Gruppe wurde in ihren Kammern erhitzt, wenn sie blieb stehen für 0,9 s. Die Hitze endete, sobald sie sich wieder bewegten. Eine dritte Gruppe, die Yoked Fliegen, war in ihren Kammern gleichzeitig. Doch ihr Verhalten keine Auswirkungen auf die Hitze hatte: Yoked Fliegen wurden erhitzt, wenn Master Fliegen wurden, mit gleichen Zeitpunkt und Dauer. Nach gewissen Hitze Veranstaltungen, Yoked Fliegen assoziierten ihre eigenen Verhalten mit der Unkontrollierbarkeit der Umwelt. Sie unterdrückte ihre angeborene Reaktionen, wie die Verringerung ihrer Laufaktivität; verlängerte mehr Fluchtlatenzzeiten und weniger Umdrehen Verhalten unter Hitzen. Auch nach der Konditionierungsphase zeigte Yoked Fliegen niedrigeren Aktivität als Master und Kontrolle Fliegen. Interessanterweise haben wir auch Sex Dimorphismus in Fliegen beobachtet. Male Fliegen haben learned helplessness nicht wie weibliche Fliegen ausgedrückt. Die Unterschiede zwischen den Master und Yoked Fliegen waren bei männlichen kleiner als bei weiblichen Fliegen. Ein weiteres interessantes Ergebnis war, dass längere oder sogar wiederholte Trainingsphasen die lerned helplessness Wirkung bei Fliegen nicht verstärken könnten. Darüber hinaus haben wir serotonergen und dopaminerge Nervensysteme in learned helplessness erforscht. Mit genetischen und pharmakologischen Manipulationen, haben wir das Niveau von Serotonin und Dopamin im zentralen Nervensystem der Fliegen geändert. Weibliche Fliegen mit reduzierten Serotoninkonzentration zeigten kein hilflos Verhalten, während die learned helplessness Wirkung in männlichen Fliegen schien nicht durch eine Reduktion von Serotonin beeinflusst zu werden. Fliegen mit niedrigerer Dopamin Konzentration zeigten keine learned helplessness Wirkung in der Testphase an, was darauf hindeutet, dass mit niedrigen Dopamin die Motivationsänderung in learned helplessness in Drosophila kann schneller als mit einem normalen Dopaminspiegel sinken. KW - Taufliege KW - Gelernte Hilflosigkeit KW - Drosophila KW - learned helplessness KW - depression KW - learning and memory Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-112424 ER -