TY - THES A1 - Mrestani, Achmed T1 - Strukturelle Differenzierung und Plastizität präsynaptischer Aktiver Zonen T1 - Structural differentiation and plasticity of presynaptic active zones N2 - Ziel der vorliegenden Arbeit war die nanoskopische Analyse struktureller Differenzierung und Plastizität präsynaptischer aktiver Zonen (AZs) an der NMJ von Drosophila melanogaster mittels hochauflösender, lichtmikroskopischer Bildgebung von Bruchpilot (Brp). In erster Linie wurde das lokalisationsmikroskopische Verfahren dSTORM angewendet. Es wurden neue Analyse-Algorithmen auf der Basis von HDBSCAN entwickelt, um eine objektive, in weiten Teilen automatisierte Quantifizierung bis auf Ebene der Substruktur der AZ zu ermöglichen. Die Differenzierung wurde am Beispiel phasischer und tonischer Synapsen, die an dieser NMJ durch Is- und Ib-Neurone gebildet werden, untersucht. Phasische Is-Synapsen mit hoher Freisetzungswahrscheinlichkeit zeigten kleinere, kompaktere AZs mit weniger Molekülen und höherer molekularer Dichte mit ebenfalls kleineren, kompakteren Brp-Subclustern. Akute strukturelle Plastizität wurde am Beispiel präsynaptischer Homöostase, bei der es zu einer kompensatorisch erhöhten Neurotransmitterfreisetzung kommt, analysiert. Interessanterweise zeigte sich hier ebenfalls eine kompaktere Konfiguration der AZ, die sich auch auf Ebene der Subcluster widerspiegelte, ohne Rekrutierung von Molekülen. Es konnte demonstriert werden, dass sich eine höhere Moleküldichte in der Lokalisationsmikroskopie in eine höhere Intensität und größere Fläche in der konfokalen Mikroskopie übersetzt, und damit der Zusammenhang zu scheinbar gegensätzlichen Vorbefunden hergestellt werden. Die Verdichtung bzw. Kompaktierung erscheint im Zusammenhang mit der Kopplungsdistanz zwischen VGCCs und präsynaptischen Vesikeln als plausibles Muster der effizienten Anordnung molekularer Komponenten der AZ. Die hier eingeführten Analysewerkzeuge und molekularbiologischen Strategien, basierend auf dem CRISPR/Cas9-System, zur Markierung von AZ-Komponenten können zukünftig zur weiteren Klärung der Bedeutung der molekularen Verdichtung als allgemeines Konzept der AZ-Differenzierung beitragen. N2 - The aim of this work was a nanoscopic analysis of structural differentiation and plasticity of presynaptic active zones (AZs) at the NMJ of Drosophila melanogaster using super-resolution light microscopy of Bruchpilot (Brp). The localization microscopy technique dSTORM was primarily used. New analysis algorithms based on HDBSCAN were developed to ensure objective and largely automatized quantification including the substructure of the AZ. Differentiation was assessed using the model of phasic and tonic neurons that are represented by type Is and type Ib neurons at this NMJ. Phasic Is synapses with higher release probability displayed smaller, more compact AZs with less molecules and an enhanced molecular density with smaller, more compact Brp subclusters. For acute structural plasticity the model of presynaptic homeostasis, which is accompanied by a compensatory increase of neurotransmitter release, was used. Interestingly, this again showed a more compact arrangement of the AZ, that was also found in Brp subclusters, without addition of molecules. It could be demonstrated that a higher molecular density in localization microscopy translates into a higher intensity and area in confocal microscopy and, thus, the apparent discrepancy to earlier studies could be explained. With respect to the coupling distance between VGCCs and presynaptic vesicles compaction appears to be a plausible mechanism for an efficient remodeling of AZ components. The analysis tools and molecular biology strategies, based on the CRISPR/Cas9-System, introduced here will be useful to further clarify the importance of molecular compaction as a general concept of AZ differentiation. KW - Synapse KW - Neuronale Plastizität KW - Taufliege KW - Immunfluoreszenz KW - CRISPR/Cas-Methode KW - Hochauflösende Lichtmikroskopie KW - HDBSCAN KW - Bruchpilot Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-235787 ER - TY - THES A1 - Beck, Katherina T1 - Einfluss von RSK auf die Aktivität von ERK, den axonalen Transport und die synaptische Funktion in Motoneuronen von \(Drosophila\) \(melanogaster\) T1 - RSK2 alters ERK activity, axonal transport and synaptic function in motoneurons of \(Drosophila\) \(melanogaster\) N2 - In dieser Arbeit sollte die Funktion von RSK in Motoneuronen von Drosophila untersucht werden. Mutationen im RSK2-Gen verursachen das Coffin-Lowry-Syndrom (CLS), das durch mentale Retardierung charakterisiert ist. RSK2 ist hauptsächlich in Regionen des Gehirns exprimiert, in denen Lernen und Gedächtnisbildung stattfinden. In Mäusen und Drosophila, die als Modellorganismen für CLS dienen, konnten auf makroskopischer Ebene keine Veränderungen in den Hirnstrukturen gefunden werden, dennoch wurden in verschiedenen Verhaltensstudien Defekte im Lernen und der Gedächtnisbildung beobachtet. Die synaptische Plastizität und die einhergehenden Veränderungen in den Eigenschaften der Synapse sind fundamental für adaptives Verhalten. Zur Analyse der synaptischen Plastizität eignet sich das neuromuskuläre System von Drosophila als Modell wegen des stereotypen Innervierungsmusters und der Verwendung ionotroper Glutamatrezeptoren, deren Untereinheiten homolog sind zu den Untereinheiten der Glutamatrezeptoren des AMPA-Typs aus Säugern, die wesentlich für die Bildung von LTP im Hippocampus sind. Zunächst konnte gezeigt werden, dass RSK in den Motoneuronen von Drosophila an der präsynaptischen Seite lokalisiert ist, wodurch RSK eine Synapsen-spezifische Funktion ausüben könnte. Morphologische Untersuchungen der Struktur der neuromuskulären Synapsen konnten aufzeigen, dass durch den Verlust von RSK die Größe der neuromuskulären Synapse, der Boutons sowie der Aktiven Zonen und Glutamatrezeptorfelder reduziert ist. Obwohl mehr Boutons gebildet werden, sind weniger Aktive Zonen und Glutamatrezeptorfelder in der neuromuskulären Synapse enthalten. RSK reguliert die synaptische Transmission, indem es die postsynaptische Sensitivität, nicht aber die Freisetzung der Neurotransmitter an der präsynaptischen Seite beeinflusst, obwohl in immunhistochemischen Analysen eine postsynaptische Lokalisierung von RSK nicht nachgewiesen werden konnte. RSK ist demnach an der Regulation der synaptischen Plastizität glutamaterger Synapsen beteiligt. Durch immunhistochemische Untersuchungen konnte erstmals gezeigt werden, dass aktiviertes ERK an der präsynaptischen Seite lokalisiert ist und diese synaptische Lokalisierung von RSK reguliert wird. Darüber hinaus konnte in dieser Arbeit nachgewiesen werden, dass durch den Verlust von RSK hyperaktiviertes ERK in den Zellkörpern der Motoneurone vorliegt. RSK wird durch den ERK/MAPK-Signalweg aktiviert und übernimmt eine Funktion sowohl als Effektorkinase als auch in der Negativregulation des Signalwegs. Demnach dient RSK in den Zellkörpern der Motoneurone als Negativregulator des ERK/MAPK-Signalwegs. Darüber hinaus könnte RSK die Verteilung von aktivem ERK in den Subkompartimenten der Motoneurone regulieren. Da in vorangegangenen Studien gezeigt werden konnte, dass ERK an der Regulation der synaptischen Plastizität beteiligt ist, indem es die Insertion der AMPA-Rezeptoren zur Bildung der LTP reguliert, sollte in dieser Arbeit aufgeklärt werden, ob der Einfluss von RSK auf die synaptische Plastizität durch seine Funktion als Negativregulator von ERK zustande kommt. Untersuchungen der genetischen Interaktion von rsk und rolled, dem Homolog von ERK in Drosophila, zeigten, dass die durch den Verlust von RSK beobachtete reduzierte Gesamtzahl der Aktiven Zonen und Glutamatrezeptorfelder der neuromuskulären Synapse auf die Funktion von RSK als Negativregulator von ERK zurückzuführen ist. Die Größe der neuromuskulären Synapse sowie die Größe der Aktiven Zonen und Glutamatrezeptorfelder beeinflusst RSK allerdings durch seine Funktion als Effektorkinase des ERK/MAPK-Signalwegs. Studien des axonalen Transports von Mitochondrien zeigten, dass dieser in vielen neuropathologischen Erkrankungen beeinträchtigt ist. Die durchgeführten Untersuchungen des axonalen Transports in Motoneuronen konnten eine neue Funktion von RSK in der Regulation des axonalen Transports aufdecken. In den Axonen der Motoneurone von RSK-Nullmutanten wurden BRP- und CSP-Agglomerate nachgewiesen. RSK könnte an der Regulation des axonalen Transports von präsynaptischem Material beteiligt sein. Durch den Verlust von RSK wurden weniger Mitochondrien in anterograder Richtung entlang dem Axon transportiert, dafür verweilten mehr Mitochondrien in stationären Phasen. Diese Ergebnisse zeigen, dass auch der anterograde Transport von Mitochondrien durch den Verlust von RSK beeinträchtigt ist. N2 - In this thesis the function RSK in motoneurons of Drosophila has been analyzed. Mutations in the RSK2-gene cause the Coffin-Lowry-Syndrome (CLS) which is characterized by mental retardation. RSK2 is predominantly expressed in regions of the brain where learning and formation of the memory take place. Even no obvious changes in brain structures could be observed at macroscopic level in mouse and Drosophila which serve as an animal model for CLS. However deficits in various learning tasks could be observed due to the loss of the RSK function. Synaptic plasticity and the following changes in synaptic properties are fundamental for adaptive behaviors. The neuromuscular system of Drosophila suits as a model for studies of the synaptic plasticity because of the stereotypic innervation pattern and the use of ionotropic glutamate receptors which subunits are homologous to the subunits of the mammalian AMPA-type of glutamate receptors which are essential for the formation of LTP in the hippocampus. This study shows that RSK is located at the presynaptic site of the motoneurons of Drosophila which indicates a synapse-specific function of RSK. The structural analysis of the neuromuscular junction (NMJ) show that the loss of RSK causes a reduction in size of the NMJ, boutons, active zones and glutamate receptor fields. More boutons were found at the NMJ, but less active zones and glutamate receptor fields were established. The localization of RSK at the postsynaptic side could not be detected in this study although RSK regulates the synaptic transmission by affecting the postsynaptic sensitivity but not the presynaptic neurotransmitter release. Hence RSK could take part in the regulation of synaptic plasticity. Immunohistochemical analysis could depict a novel function of RSK in the synapse-specific localization of ERK. Further this study show that due to the loss of RSK more activated ERK is located in den cell bodies of the motoneurons. RSK functions as a negative regulator of the ERK/MAPK signaling in the somata of motoneurons. Additionally, RSK could regulate the distribution of ERK in the different subcompartments of the motoneurons. Previous studies show ERK as a regulator of synaptic plasticity by influencing the insertion of AMPA receptors into the postsynaptic membrane during LTP. RSK is activated by the ERK/MAPK signaling and functions not only as an effector kinase but also as a negative regulator of this pathway. If the effect of RSK on synaptic plasticity is due to its function as a negative regulator of ERK should be clarified in this work. Analysis of the genetic interactions of rsk and rolled, the Drosophila homologue of mammalian ERK, show that the reduced number of active zones and glutamate receptor fields found at the NMJ of RSK null mutants is caused by the function of RSK as a negative regulator of ERK. In turn RSK affects the size of the NMJ, also the size of the active zones and glutamate receptor fields by its function as an effector kinase of the ERK/MAPK signaling. Several studies have shown that the axonal transport of mitochondria is affected in many neuropathological diseases. This work could uncover a novel function of RSK in the regulation of the axonal transport in motoneurons. The loss of RSK causes the formation of agglomerates of the presynaptic proteins BRP and CSP. Therefore RSK takes part in the regulation of the transport of presynaptic material. In absence of RSK less mitochondria are transported in anterograde direction and more mitochondria are pausing. This results implicate a function of RSK in regulating the anterograde transport of mitochondria. KW - Taufliege KW - RSK KW - axonaler Transport KW - synaptische Funktion KW - ERK KW - Motoneuron KW - Motoneuron KW - Genmutation KW - Drosophila Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-130717 ER - TY - THES A1 - Grebler, Rudi T1 - Untersuchung der Rolle von Rhodopsin 7 und Cryptochrom im Sehprozess von Drosophila melanogaster T1 - Investigation of Rhodopsin 7 and Cryptochrome in Drosophila melanogaster vision N2 - Ausgangspunkt für die Detektion von Licht ist im gesamten Tierreich die Absorption von Photonen durch photorezeptive Proteine, die sogenannten Opsine und in geringerem Ausmaß die Typ 1 Cryptochrome. Die Taufliege Drosophila melanogaster besitzt sechs eingehend charakterisierte, auch als Rhodopsine bezeichnete Opsine (Rh1-Rh6) und ein Cryptochrom (CRY). Neben den Ocellen und den Hofbauer-Buchner Äuglein werden die Rhodopsine in erster Linie in den Photorezeptorzellen der Komplexaugen, den Hauptorganen der Lichtperzeption exprimiert, wo sie der Vermittlung der visuellen Wahrnehmung dienen. Basierend auf Sequenzvergleichen wurde im Jahr 2000 ein neues Protein namens Rh7 zur Gruppe der Drosophila Opsine hinzugefügt. Bis heute fehlt allerdings jeglicher experimentelle Beleg für die photorezeptive Funktion dieses Proteins. Im Gegensatz dazu wird Cryptochrom in erster Linie in einigen Uhrneuronen des Drosophila Gehirns exprimiert, wo es diesen Neuronen die Fähigkeit zur Lichtdetektion verleiht und das Photoentrainment der inneren Uhr lenkt. Neueren Untersuchungen zu folge spielt CRY allerdings auch bei der visuellen Wahrnehmung der Augen eine Rolle. Die vorliegende Arbeit zielte nun darauf ab die potentielle Funktion von Rh7 als neuen Photorezeptor in Drosophila sowie die Rolle von CRY bei der visuellen Lichtperzeption zu untersuchen. Die Aufnahmen der Elektroretinogramme (ERGs) von transgenen Fliegen, die Rh7 anstelle von oder zusammen mit dem dominanten Photorezeptor Rh1 in den Komplexaugen exprimieren, zeigen, dass Rh7 die Phototransduktionskaskade bei Belichtung mit Weißlicht nicht aktivieren kann. Die Abwesenheit von Rh7 sorgt allerdings trotzdem für eine Beeinträchtigung der lichtinduzierten Antwort der Rezeptorzellen im Komplexauge. So zeigen die Intensitäts-Response Kurven der ERG Rezeptorpotentialamplitude von rh7 Knockout-Fliegen unter Weißlicht niedriger und mittlerer Intensität nach einer anfänglichen Dunkeladaptation von 15min eine insgesamt, im Vergleich zur Kontrolle erhöhte Rezeptorpotentialamplitude. Der Verlauf dieser Kurven deutet außerdem darauf hin, dass die Zunahme der Rezeptorpotentialamplitude mit steigender Lichtintensität größer wird. Zudem zeigt das Aktionsspektrum für die Rezeptorpotentialamplitude der rh7 Knockout-Fliegen, dass diese Empfindlichkeitszunahme im gesamten Bereich von 370-648nm auftritt. Diese Beeinträchtigung scheint jedoch zu fehlen, wenn die Fliegen vor Experimentbeginn nur 1min dunkeladaptiert wurden, oder wenn intensives Blaulicht zur Belichtung verwendet wird. Des weiteren ist auch das 4s nach Ende des Lichtpulses im ERG gemessene Nachpotential bei fehlendem Rh7 reduziert. Zusammengenommen deuten diese Ergebnisse darauf hin, dass Rh7, wenn auch nicht als Photorezeptor, bei Belichtung mit Weißlicht niedriger und mittlerer Intensität die Lichtantwort in den Rezeptorzellen des Komplexauges in Abhängigkeit von Intensität und Adaptationszustand beeinflusst und dass dieser Einfluss scheinbar nicht durch Licht eines eng begrenzten Wellenlängenbereichs induziert wird. Des weiteren legt die Untersuchung des ERG Nachpotentials nahe, dass Rh7 möglicherweise für eine normale Beendigung der Lichtantwort benötigt wird. Die allgemeine Funktion von Rh7 als Photorezeptor in Drosophila sowie die Eigenschaften der endogenen Funktion von Rh7 werden diskutiert. Unabhängig davon wird in der vorliegenden Arbeit auch gezeigt, dass Fliegen ohne CRY zwar nach 15-minütiger, nicht jedoch nach 1-minütiger Dunkeladaptation bei Belichtung mit Weißlicht niedriger Intensität eine insgesamt geringere ERG Rezeptorpotentialamplitude aufweisen. Dies könnte auf eine Beeinträchtigung der Dunkeladaptationsprozesse bei Abwesenheit von CRY hindeuten. N2 - Throughout the animal kingdom light detection is based on the absorption of photons by photoreceptive proteins, the so called opsins and to a minor degree the type 1 cryptochromes. The fruit fly Drosophila melanogaster possesses six well characterized opsins, also referred to as rhodopsins (Rh1-Rh6) and one cryptochrome (CRY). Besides the ocelli and the Hofbauer-Buchner eyelet, the rhodopsins are predominantly expressed in the photoreceptor cells of the compound eye, the major light receptive organ of the fly, where they mediate visual perception. Based on sequence comparisons a new protein, called Rh7, was added to the group of Drosophila opsins in the year 2000. But to date there is no experimental evidence for the photoreceptive function of this protein. By contrast cryptochrome is predominantly expressed in some clock neurons of the Drosophila brain, where it confers light sensitivity to these neurons and guides the photoentrainment of the endogenous clock. But recent publications also envisage a role for CRY in visual perception. The present thesis now aimed to investigate the putative function of Rh7 as a new photoreceptor in Drosophila as well as the role of CRY in visual perception. Recordings of the electroretinogram (ERG) of transgenic flies, that express Rh7 instead of or together with the major photoreceptor Rh1 in the compound eye, show that Rh7 can not activate the phototransduction cascade under white-light. Nevertheless, the absence of Rh7 impairs the light induced response of the receptor cells in the compound eye. Thus, the irradiance-response curves for the ERG receptor potential of rh7 knockout-flies show an overall increased amplitude of the receptor potential compared to controls upon illumination with white-light in the low- and mid-intensity range and after an initial dark adaptation of 15min. The curve shape also indicates that the gain in amplitude gets bigger with increasing light intensity. In addition the action spectrum for the receptor potential of rh7 knockout-flies demonstrates that this increase in sensitivity covers the whole range from 370-648nm. However this impairment seems to be absent when flies were only allowed to dark adapt for 1min before the experiment or when intense blue light is used for illumination. Moreover also the ERG afterpotential measured 4s after lights-off is reduced in absence of Rh7. Taken together these results indicate that Rh7, even though it might not work as a photoreceptor under white-light, alters the light response of the receptor cells in the compound eyes under low- and mid-intense white-light in an intensity and adaptation dependent manner and that this alteration seems not to be caused by light of a limited spectral range. Furthermore the analysis of the ERG afterpotential indicates that Rh7 may also be required for normal light response termination. The general function of Rh7 as a photoreceptor in Drosophila as well as the characteristics of the endogenous function of Rh7 are discussed. Independently the present thesis also demonstrates that flies lacking CRY show a decreased ERG receptor potential amplitude upon illumination with low-intensity white-light when 15min but not when 1min of dark adaptation preceded the recording. This may indicate an impairment of the dark adaptation process without cryptochrome. KW - Taufliege KW - Rhodopsin 7 KW - Rhodopsin KW - Cryptochrom KW - Drosophila Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-114466 ER - TY - THES A1 - Dusik, Verena T1 - Immunhistochemische und funktionelle Charakterisierung der Mitogen-aktivierten Proteinkinase p38 in der inneren Uhr von Drosophila melanogaster T1 - Immunhistochemical and functional characterisation of the mitogen-activated protein kinase p38 in the endogenous clock of Drosophila melanogaster N2 - Circadianes und Stress-System sind zwei physiologische Systeme, die dem Organismus helfen sich an Veränderungen ihrer Umwelt anzupassen. Während letzteres spontane und schnelle Antworten auf akute, unvorhersehbare Umweltreize liefert, sagt das circadiane System täglich wiederkehrende Ereignisse vorher and bereitet den Organismus so vorzeitig auf diese nahende Umweltveränderung vor. Dennoch, trotz dieser unterschiedlichen Reaktionsmechanismen agieren beide Systeme nicht komplett autonom. Studien der vergangen Jahre belegen vielmehr eine Interaktion beider Systeme. So postulieren sie zum einem Unterschiede in der Stressantwort in Abhängigkeit von der Tageszeit zu der der Reiz auftritt und weisen zugleich auf eine Zunahme von gestörten biologischen Tagesrhythmen, wie zum Beispiel Schlafstörungen, in Folge von unkontrollierten oder exzessiven Stress hin. Ebenso liefern kürzlich durchgeführte Studien an Vertebraten und Pilzen Hinweise, dass mit p38, eine Stress-aktivierte Kinase, an der Signalweiterleitung zur inneren Uhr beteiligt ist (Hayashi et al., 2003), sogar durch dieses endogene Zeitmesssystem reguliert wird (Vitalini et al., 2007; Lamb et al., 2011) und deuten damit erstmals eine mögliche Verbindung zwischen Stress-induzierten und regulären rhythmischen Anpassungen des Organismus an Umweltveränderungen an. Molekulare und zelluläre Mechanismen dieser Verknüpfung sind bisher noch nicht bekannt. Während die Rolle von p38 MAPK bei der Stress- und Immunantwort in Drosophila melanogaster gut charakterisiert ist, wurden Expression und Funktion von p38 in der inneren Uhr hingegen bislang nicht untersucht. Die hier vorliegende Arbeit hatte daher zum Ziel mittels immunhistochemischer, verhaltensphysiologischer und molekularer Methoden eine mögliche Rolle der Stress-aktivierten Kinase im circadianen System der Fliege aufzudecken. Antikörperfärbungen sowie Studien mit Reporterlinien zeigen deutliche Färbesignale in den s-LNv, l-LNv und DN1a und erbringen erstmals einen Nachweis für p38 Expression in den Uhrneuronen der Fliege. Ebenso scheint die Aktivität von p38 MAPK in den DN1a uhrgesteuert zu sein. So liegt p38 vermehrt in seiner aktiven Form in der Dunkelphase vor und zeigt, neben seiner circadian regulierten Aktivierung, zusätzlich auch eine Inaktivierung durch Licht. 15-Minuten-Lichtpulse in der subjektiven Nacht führen zu einer signifikanten Reduktion von aktivierter, phosphorylierter p38 MAPK in den DN1a von Canton S Wildtypfliegen im Vergleich zu Fliegen ohne Lichtpuls-Behandlung. Aufzeichnungen der Lokomotoraktivität offenbaren zusätzlich die Notwendigkeit von p38 MAPK für wildtypisches Timing der Abendaktivität sowie zum Erhalt von 24-Stunden-Verhaltensrhythmen unter konstanten Dauerdunkel-Bedindungen. So zeigen Fliegen mit reduzierten p38 Level in Uhrneuronen einen verzögerten Beginn der Abendaktivität und stark verlängerte Freilaufperioden. In Übereinstimmung mit Effekten auf das Laufverhalten scheint darüber hinaus die Expression einer dominant-negativen Form von p38b in Drosophila’s wichtigsten Uhrneuronen eine verspätete nukleäre Translokation von Period zur Folge zu haben. Westernblots legen zusätzlich einen Einfluss von p38 auf den Phosphorylierungsgrad von Period nahe und liefern damit einen mögliche Erklärung für den verspäteten Kerneintritt des Uhrproteins. Abschließende Stützung der Westernblotergebnisse bringen in vitro Kinasenassays und deuten auf p38 als eine potentielle „Uhrkinase“ hin, welche auch in vivo Period an Serin 661 sowie weiteren potentiellen Phosphorylierungsstellen phosphorylieren könnte. Zusammengenommen deuten die Ergebnisse der hier vorliegenden Arbeit eindeutig auf eine bedeutende Rolle von p38, neben dessen Funkion im Stress-System, auch im circadianen System der Fliege hin und offenbaren damit die Möglichkeit, dass p38 als Schnittstelle zwischen beider Systeme fungiert. N2 - The circadian and the stress system are two distinct physiological systems that help the organism to adapt to environmental challenges. While the latter elicits reactive responses to acute environmental changes, the circadian system predicts daily occurring alterations and prepares the organism in advance. However, despite of these differences both responses are not mutually exclusive. Studies in the last years obviously prove a strong interaction between both systems showing a strong time-related stress response depending on the time of day of stressor presentation on the one hand and increased disturbances of daily rhythms, like sleep disorders, in consequence of uncontrolled or excessive stress on the other. In line with this fact, recent studies in vertebrates and fungi indicate that p38, a stress-activated Kinase, is involved in signaling to the circadian clock (Hayashi et al., 2003) and in turn is additionally regulated by this timekeeping system (Vitalini et al., 2007; Lamb et al., 2011) providing an interesting link between stress-induced and regularly rhythmic adaptations of the organism to environmental changes. However, little is known about molecular and cellular mechanisms of this interconnection. In Drosophila melanogaster the role of p38 MAPK is well characterized in terms of immune and stress response, p38 expression and function in the circadian clock has not been reported so far. Therefore, the present thesis aimed to elucidate a putative role of the stress-activated Kinase in the fly’s circadian system using an immunohistochemical, behavioral as well as molecular approach. Surprisingly, for the first time antibody as well as reporterline studies cleary prove p38 expression in Drosophila clock neurons showing visible staining in s-LNvs, l-LNvs and DN1as. Moreover p38 MAPK in DN1as seems to be activated in a clock-dependent manner. p38 is most active under darkness and, besides its circadian activation, additionally gets inactivated by light. 15 minutes light pulse applied during the dark phase lead to a significant reduction in phosphorylated and activated p38 MAPK in Canton S wildtype flies compared to flies without light pulse treatment. In addition, locomotor activity recordings reveal that p38 is essential for a wild-type timing of evening activity and for maintaining ~24h behavioral rhythms under constant darkness. Flies with reduced p38 activity in clock neurons show delayed evening activity onsets and drastically lengthened the period of their free-running rhythms. In line with these effects on locomotor behavior, the nuclear translocation of the clock protein Period is significantly delayed on the expression of a dominant-negative form of p38b in Drosophila’s most important clock neurons. Western Blots reveal that p38 affects the phosphorylation degree of Period, what is likely the reason for its effects on nuclear entry of Period. In vitro kinase assays additionally confirm the Western Blot results and point to p38 as a potential “clock kinase” phosphorylating Period at Serin 661 and putative phosphorylation sites. Taken together, the results of the present thesis clearly indicate a prominent role of p38 in the circadian system of the fly besides its function in stress-input pathways und open up the possibility of p38 MAPK being a nodal point of both physiological systems. KW - Taufliege KW - Biologische Uhr KW - MAP-Kinase KW - Innere Uhr KW - MAPK KW - p38 KW - Phosphorylierung KW - Mitogen-aktivierte Proteinkinase KW - Drosophila melanogaster KW - Circadiane Rhythmen KW - Drosophila Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-124636 ER - TY - THES A1 - Gmeiner, Florian T1 - Der Einfluss der Neurotransmitter Dopamin, Serotonin und GABA sowie ihrer Transporter auf das Schlafverhalten von Drosophila melanogaster T1 - The influence of the neurotransmitters dopamine, serotonin and GABA as well as its transporters on the sleep behaviour of drosophila melanogaster N2 - In der vorliegenden Arbeit wurde der Einfluss von Dopamin, Serotonin und GABA auf das Schlafverhalten von Drosophila melanogaster genauer untersucht. Mit Hilfe von Mutanten in Wiederaufnahmetransportern für Dopamin und Serotonin konnte gezeigt werden, dass Dopamin und Serotonin entgegengesetzte Wirkungen auf die Schlafmenge der Fliegen haben. Dopamin hat eine schlafhemmende, Serotonin eine schlaffördernde Wirkung. Die Nutzung eines neuronal dopamindefizienten Fliegenstammes erweitert diese Erkenntnisse. Die Nutzung von RNAi zur Hinunterregulierung der Rezeptoren für Dopamin brachte keine weiteren Erkenntnisse, da sie zu keinem messbaren Effekt führen. Jedoch ergab eine parallel dazu durchgeführte Hinunterregulierung des GABABR2 Rezeptors, dass dieser maßgeblich für die Aufrechterhaltung des Schlafes in der zweiten Hälfte der Nacht verantwortlich ist. Es konnte gezeigt werden, dass für diese Aufgabe vor allem ihre Expression in den l-LNv Neuronen relevant ist. Dabei ist für die GABABR2 Rezeptoren kein Effekt, für Dopamin und Serotonin nur in geringen Ausmaß ein Effekt auf die Innere Uhr in Form von gering veränderter Periode zu beobachten. Durch eine Kombination der Transportermutanten für Dopamin und Serotonin mit dem intakten, als auch mutierten WHITE Transporter zeigte sich eine interessante Interaktion dieser drei Transporter bei der Regulation der Gesamtschlafmenge, wobei die white Mutation zu einer Reduzierung der Gesamtschlafmenge führt. UPLC Messungen der Stämme ergaben, dass der Effekt von white vermutlich auf dessen Einfluss auf den beta-Alanyldopamingehalt der Fliegen basiert. beta-Alanyldopamin wird bei dem Transport von Dopamin über die Gliazellen durch das Enzym EBONY gebildet, dessen Mutation in der Kombination mit intaktem WHITE und mutiertem Dopamintransporter zu einer drastischen Reduktion des Schlafes während der Nacht führt. Im Rahmen der Untersuchung konnte zudem gezeigt werden, dass entgegen des bisherigen Wissens aus Zellkulturstudien in Drosophila melanogaster kein beta-Alanylserotonin gebildet wird. Möglicherweise wird nur Dopamin, nicht jedoch Serotonin über die Gliazellen recycelt. Dies ist ein interessanter Unterschied, der sowohl eine zeitliche, als auch lokale Feinregulation der Gegenspieler Dopamin und Serotonin ermöglicht. Die Untersuchung der Dimerpartner BROWN und SCARLET zeigte, dass lediglich BROWN zu einer Reduktion des Schlafes führt. Ein Effekt, der auch in einer Fliegenlinie mit spontaner white Mutation beobachtet werden konnte. Die genaue Funktion dieses Heterodimertransporters und seine neuronale Lokalisation wurden im Rahmen dieser Arbeit noch nicht geklärt. Dennoch liegt eine Funktion als Dopamin- oder beta-Alanyldopamintransporter in Gliazellen auf Grund der ermittelten Ergebnisse nahe. Zusätzlich konnte zum ersten Mal in Drosophila melanogaster eine Funktion der Amintransporter bei der Anpassung der Inneren Uhr an extreme kurze bzw. lange Photoperioden gezeigt werden. Eine anatomische Lokalisierung des WHITE Transporters im Gehirn von Drosophila melanogaster, die weitere Charakterisierung der Rolle des WHITE/BROWN Dimers und die Zuordnung bestimmter dopaminerger und serotonerger Neurone bei der Modulation der Aktivitätsmaxima stellen spannende Fragen für zukünftige Arbeiten dar. N2 - The main focus in the present work, was the observation of the influence of dopamine, serotonin and GABA on the sleep behaviour of Drosophila melanogaster. By utilizing mutants for the dopamine transporter as well as the serotonin transporter, it was possible to show, that dopamine and serotonin have opposing effects on the total sleep amount of flies. Dopamine has a sleep inhibiting, serotonin a sleep promoting function. A neuronal dopamine deficient stock complemented those findings. Usage of RNAi to downregulate dopamine receptors did not enhance the information, since no measurable effect could be detected. But in parallel performed experiments with RNAi mediated knockdown of GABABR2 receptors could show its role in the maintenance of sleep during the second half of the night. I could show that especially the expression in the l-LNv is needed for that. In case of the GABABR2 receptors no effect on the period was observed, for dopamine and serotonin only a minor effect on the clock in form of a mild period change accompanied those drastic sleep phenotypes. Combining the amine transporter mutants with functional as well as mutated white led to some interesting observations regarding the interaction of those transporters in regulating total sleep, in which white reduces the total sleep amount. Following up those experiments with UPLC measurements, it was shown that presumably WHITE causes its effect due to its relevance for the amount of beta-alanyldopamine in adult flies. When dopamine is transported into the glia cells, beta-alanyldopamine is synthesized by the enzyme EBONY. The ebony mutant revealed a drastic sleep phenotype when combined with an intact WHITE transporter and a mutated dopamine transporter. This leads to a dramatic decrease of sleep during the night phase. When doing the UPLC measurements it was furthermore revealed, that unexpectedly regarding the knowledge from cell culture experiments, beta-alanylserotonin cannot be detected. Presumably, only dopamine, but not serotonin is recycled by the glia cells. This interesting difference gives space for a temporal as well as for a local fine regulation of the dopamine and serotonin signals. Investigating the dimer partners of WHITE, BROWN and SCARLET, I found that BROWN just as a spontaneous white mutation that I observed, led to a decrease of total sleep. The function of this heterodimer and its neuronal localisation in the brain remains unknown. Regarding the data presented in this work, it is likely that this dimer transports either dopamine or beta-alanyldopamine in glia cells. Furthermore, I could observe that dopamine and serotonin change the ability of the circadian clock to adapt to different photoperiods, a so far unstudied phenotype. 96 An anatomical approach to localize the WHITE transporter in the brain of Drosophila melanogaster and a further characterization of the function of the WHITE/BROWN dimer, with regard to sleep and eventually the mapping of serotonergic and dopaminergic neurons, which modulate the activity peak responses, are questions for future work. KW - Taufliege KW - Drosophila melanogaster KW - Schlaf KW - Dopamin KW - Serotonin KW - GABA KW - Drosophila melanogaster KW - sleep KW - dopamine KW - serotonin KW - GABA KW - Schlaf KW - Dopamin KW - Serotonin KW - Aminobuttersäure Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-99152 ER - TY - THES A1 - Melzer, Juliane T1 - Die Funktion der p21-aktivierten Kinase Mbt in Neuroblasten während der Entwicklung des zentralen Nervensystems von Drosophila melanogaster T1 - The function of the p21-activated kinase Mbt in neuroblasts during the development of the central nervous system of Drosophila melanogaster N2 - p21-aktivierte Kinasen regulieren zahlreiche zelluläre Prozesse, die während der Entwicklung, aber auch beispielsweise bei der Krebsentstehung, von zentraler Bedeutung sind. Mbt, das einzige Typ II PAK-Protein von Drosophila melanogaster, spielt eine Rolle bei der Gehirnentwicklung. Eine Nullmutation von mbt, mbtP1, bildet kleinere Gehirne mit stark verkleinerten Pilzkörpern aus. In dieser Arbeit wurde die Funktion von Mbt in Neuroblasten untersucht. Mbt wurde als Teil des apikalen Proteinkomplexes in Neuroblasten des Zentralhirns nachgewiesen. Die apikale Lokalisation von Mbt ist Zellzyklus-abhängig und wird über Bindung an Cdc42 reguliert. Sie ist essentiell für die Funktion von Mbt in Neuroblasten. Trotz apikaler Mbt-Lokalisation in Neuroblasten zeigte die mbt Nullmutante keine Defekte des basalen Mechanismus der asymmetrischen Zellteilung. Mud zeigte geringfügige Lokalisationsveränderungen, die auf einen möglichen Einfluss von Mbt hinweisen. Obwohl PAKs zentrale Regulatoren des Zytoskeletts sind, zeigte die mbtP1 Mutante keine offensichtlichen Veränderungen des Aktin- und Tubulin-Zytoskeletts. Armadillo, ein Aktin-assoziiertes Mbt-Substrat, zeigte ebenfalls keine Lokalisationsveränderung in Neuroblasten. Mbt steuert jedoch die apikale Anreicherung von Cno, einem weiteren Aktin-assoziierten Protein, in Neuroblasten. Darüber hinaus beeinflusst Mbt die Zellgröße von Neuroblasten, sowie deren Proliferationspotenzial und Überleben. mbtP1 Neuroblasten sind kleiner als wildtypische Neuroblasten, haben ein geringeres Proliferationsvermögen und eine geringere Überlebenswahrscheinlichkeit. Der Zelltod von Neuroblasten ist jedoch ein sekundärer Effekt. Daher kann eine Blockierung von Apoptose den adulten Pilzkörperphänotyp nicht retten. Signalwege, die Zellgröße und Proliferation regulieren, wurden auf eine Beteiligung von Mbt hin analysiert. mbtP1 induzierte leichte Effekte im Insulin-Signalweg und die Delokalisation eines nukleolären Proteins. Eine genetische Interaktion von mbtP1 mit Mutationen in Genen des klassischen MAPK-Signalweges identifzierte mbt als Positivregulator dieses Signalweges im Auge. Ein ähnlicher, schwächerer Effekt wurde auch bzgl. der Proliferation und Größe von Neuroblasten beobachtet. Eine 2D-Gelanalyse von Larvengehirnen identifizierte Bic und Hsp83 als mögliche von Mbt regulierte Proteine. Diese Arbeit charakterisiert eine bisher unbekannte Funktion der p21-aktivierten Kinase Mbt in neuronalen Stammzellen und liefert damit Ansatzpunkte für eine detaillierte Aufklärung der Funktionsmechanismen von Typ II PAKs bei der Regulation von Zellproliferation und Überleben N2 - p21-activated kinases regulate numerous cellular processes central not only during development, but also for example for cancer pathogenesis. Mbt, the only type II PAK in Drosophila, regulates brain development. The mbt null mutant mbtP1 exhibits reduced brain size, with the mushroom bodies showing the most pronounced reduction. In this work, the function of Mbt in neuroblasts was investigated. Mbt was identified as a component of the apical protein complex in central brain neuroblasts. The apical localization of Mbt was cell cycle dependent and regulated by binding to Cdc42, which is essential for Mbt function in neuroblasts. Despite apical localization of Mbt, the mbtP1 null allel showed no defects in the basic mechanism of asymmetric cell division in larval neuroblasts. However, Mud showed minor localization changes indicating a possible influence of Mbt. Even though PAKs are well-known regulators of the cytoskeleton, no obvious changes in the actin and tubulin cytoskeleton were observed in mbtP1 neuroblasts. The localization of Armadillo, an actin-associated Mbt substrate, was also undisturbed throughout the cell cycle. Mbt controls the apical enrichment of Cno, another actin-associated protein. Moreover, Mbt influences neuroblast cell size, proliferation potential and survival. mbtP1 neuroblasts were smaller than wildtype neuroblasts and showed reduced proliferation activity and survival. However, the apoptotic loss of mbtP1 neuroblasts is a secondary effect. Thus, the adult mushroom body phenotype cannot be rescued by blocking apoptosis. Signalling pathways known to regulate growth and proliferation were analyzed with respect to a possible participation of Mbt. mbtP1 induced slight effects in the insulin pathway and strongly influenced the localization of an unknown nucleolar protein. Genetic interactions of mbtP1 with mutations in genes involved in the classical MAPK pathway identified mbt as a positive regulator of the MAPK pathway. A similar effect was also observed with respect to neuroblast proliferation and size. A 2D gel analysis of larval brains identified Bic and Hsp83 as candidate proteins, that might be regulated by Mbt. This work characterizes a novel function of the p21-activated kinase Mbt in neural stem cells. It provides starting points for a detailed analysis of the mechanisms of type II PAK functions in the control of cell growth, proliferation and survival. KW - Taufliege KW - Auge KW - Ontogenie KW - Pilzkörper KW - Molekularbiologie KW - p21-aktivierten Kinase KW - PAK KW - Neuroblast KW - Pilzkörper KW - Drosophila melanogaster KW - p21 activated kinase KW - PAK KW - neuroblast KW - mushroombody KW - Drosophila melanogaster Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-85619 ER - TY - THES A1 - Stark, Felix T1 - Funktionelle Untersuchungen zur Regulation der Protein Kinase CK2 durch Polyamine in Drosophila melanogaster und deren physiologische Bedeutung T1 - Functional analysis of the regulation of the protein kinase CK2 by polyamines in Drosophila melanogaster and its psyiological meaning N2 - Die heterotetramere Proteinkinase CK2 nimmt aufgrund der großen Anzahl und Diversität ihrer Substrate, sowie aufgrund ihrer Eigenschaft Signalwege miteinander zu vernetzen eine Sonderstellung innerhalb der Kinasen ein. CK2 beeinflusst Proliferation, Differenzierung und Apoptose, Prozesse an denen auch Polyamine und der MAPK-Signalweg beteiligt sind. Eine vor kurzem durchgeführte Arbeit beschreibt die Bindung von CK2 an das Gerüstprotein KSR und die Verstärkung des MAPK-Signalwegs durch Phosphorylierung von Raf-Proteinen in Vertebraten. In dieser Arbeit konnte gezeigt werden, dass CK2 auch in Drosophila mit KSR interagiert und das einzige in Drosophila vorhandene Raf-Potein (DRaf) in vitro phosphoryliert. Im Gegensatz zur Phosphorylierung der humanen B-Raf und C-Raf Proteine an Serin 446 bzw. Serin 338 innerhalb der „negative charge regulatory region“ (N-Region), führten Kinasereaktionen und Massenspektrometrische Untersuchungen zur Identifizierung von Serin 11 als CK2 Phosphorylierungsstelle in DRaf, während ein zu Serin 446 in B-Raf äquivalentes Serin in der N-Region in Drosophila nicht durch CK2 phosphoryliert wird. Durch Überexpression von DRaf sowie von zwei DRaf-Varianten bei denen Serin 11 durch Alanin oder Aspartat substituiert wurde (DRafS11A und DRafS11D) konnte in Zellkulturexperimenten gezeigt werden, dass die Ladung an der Aminosäureposition 11 die Funktion von DRaf beeinflusst, wobei eine negative Ladung an dieser Stelle zur Phosphorylierung und Aktivierung der Effektorkinase Erk führt. Die Phosphorylierung durch CK2 ist unabhängig von regulatorischen Botenstoffen ("second messengers"), wird aber durch Bindung von Polyaminen moduliert. Intrazelluläre Polyamine entstammen zum grossen Teil dem zellulären Aminosäurekatabolismus und beeinflussen die Phosphorylierung von DRaf durch CK2 in vitro, wobei Spermin ein effizienter Inhibitor der Reaktion ist, während die Effekte von Putrescin und Spermidin gering sind. Auch in Drosophila Schneider S2 Zellen und in adulten weiblichen Fliegen hat Spermin einen inhibitorischen, CK2-abhängigen Effekt auf die Aktivierung von Erk. Ausserdem konnte gezeigt werden, dass Putrescin und Spermidin in der Lage sind die Aktivierung von Erk, im Vergleich zu Zellen die nur mit Spermin behandelt wurden, zu erhöhen. Das spricht dafür, dass die Phosphorylierung von DRaf und die davon abhängige Aktivierung von Erk durch CK2 von der Menge und Relation der verschiedenen Polyamine zueinander abhängt. Die Ergebnisse dieser Arbeit lassen den Schluss zu, dass der Polyaminmetabolismus über CK2 mit dem MAPK-Signalweg verknüpft ist. Nachdem Polyamine durch Aminosäurekatabolismus enstehen, kann auf diese Weise der MAPK-Signalweg in Abhängigkeit der Verfügbarkeit zellulärer Aminosäuren reguliert werden. Vorversuche zeigten eine Beeinflussung von Proliferation und Apoptose durch CK2 und Polyamine. Weitere Untersuchungen sind aber nötig um spezifische Einflüsse von Polyaminen und CK2 auf zelluläre Prozesse wie Proliferation, Differenzierung und Apoptose aufzudecken. N2 - Because of its high number and diversity of substrates, as well as its ability to cross-link signalling pathways, the heterotetrameric protein kinase CK2 has an exceptional position within kinases. CK2 influences proliferation, differentiation and apoptosis, processes in which also polyamines and the MAPK-signalling pathway are involved. A recent publication delineates binding of CK2 to the scaffold protein KSR and the enhancement of the MAPK-signalling pathway by phosphorylation of Raf-proteins in vertebrates. In my thesis I could show that CK2 also interacts with KSR in Drosophila and phosphorylates the only existing Raf protein in Drosophila (DRaf) in vitro. In contrast to the phosphorylation of human B-Raf- and C-Raf-proteins on serine 446 respectively serine 338 within the "negative charge regulatory region" (N-region), kinase reactions and mass spectrometric analyses led to the identification of serine 11 as phosphorylation site in DRaf, whereas a serine in the N-region, which corresponds to serine 446 of B-Raf, is not phosphorylated by CK2 in Drosophila. In cell culture experiments overexpression of DRaf and two DRaf-variants, in which serine 11 was substituted by alanine or aspartate (DRafS11A and DRafS11D), revealed the charge at amino acid position 11 to affect the function of DRaf, with a negative charge leading to phosphorylation and activation of the effector kinase Erk. Phosphorylation by CK2 is independent of second messengers, whereas it is modified by binding of polyamines. Intracellular polyamines mainly derive from cellular amino acid catabolism and modulate the phosphorylation of DRaf by CK2 in vitro with spermine being an efficient inhibitor of the reaction, whereas the effects of putrescine and spermidine are minor. In Drosophila Schneider S2 cells and adult flies spermine inhibits the activation of Erk in a CK2-dependent way. Furthermore administration of putrescine and spermidine in combination with spermine leads to enhanced Erk activation in cells compared to cells that are treated with spermine. These results suggest that phosphorylation of DRaf and the subsequent activation of Erk by CK2 are dependent on the amount and relative concentrations of polyamines. Altogether the results of this work demonstrate a role for CK2 in linking polyamine metabolism to the MAPK-signalling pathway. Since polyamines derive from amino acid catabolism, the MAPK-signalling pathway can be regulated dependent on the availability of cellular amino acids. Preliminary experiments point to CK2- and polyamine-dependent effects on proliferation and apoptosis. Further investigations are necessary to reveal specific effects of polyamines and CK2 on cellular processes like proliferation, differentiation and apoptosis. KW - Protein Kinase CK2 KW - Polyamine KW - MAP-Kinase KW - Signaltransduktion KW - Taufliege KW - Raf KW - MAPK-Signalweg KW - Drosophila melanogaster KW - DRaf KW - protein kinase CK2 KW - polyamines KW - MAPK signalling pathway KW - Drosophila melanogaster KW - DRaf Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-57522 ER - TY - THES A1 - Jauch, Mandy T1 - Die Serin/Arginin Proteinkinase 79D (SRPK79D) von Drosophila melanogaster und ihre Rolle bei der Bildung Aktiver Zonen von Synapsen T1 - The serine/arginine protein kinase 79D (SRPK79D) of Drosophila melanogaster and its role in the formation of active zones of synapses N2 - Synapsen als Stellen der Kommunikation zwischen Neuronen besitzen spezialisierte Bereiche – Aktive Zonen (AZs) genannt –, die aus einem hoch komplexen Netzwerk von Proteinen aufgebaut sind und die Maschinerie für den Prozess der Neurotransmitter-Ausschüttung und das Vesikel-Recycling beinhalten. In Drosophila ist das Protein Bruchpilot (BRP) ein wichtiger Baustein für die T-förmigen Bänder („T-Bars“) der präsynaptischen Aktiven Zonen. BRP ist notwendig für eine intakte Struktur der Aktiven Zone und eine normale Exocytose von Neurotransmitter-Vesikeln. Auf der Suche nach Mutationen, welche die Verteilung von Bruchpilot im Gewebe beeinträchtigen, wurde eine P-Element-Insertion im Gen CG11489 an der Position 79D identifiziert, welches eine Kinase kodiert, die einen hohen Grad an Homologie zur Familie der SR Proteinkinasen (SRPKs) von Säugern aufweist. Die Mitglieder dieser Familie zeichnen sich durch eine evolutionär hoch konservierte zweigeteilte Kinasedomäne aus, die durch eine nicht konservierte Spacer-Sequenz unterbrochen ist. SRPKs phosphorylieren SR-Proteine, die zu einer evolutionär hoch konservierten Familie Serin/Arginin-reicher Spleißfaktoren gehören und konstitutive sowie alternative Spleißprozesse steuern und damit auf post-transkriptioneller Ebene die Genexpression regulieren. Mutation des Srpk79D-Gens durch die P-Element-Insertion (Srpk79DP1) oder eine Deletion im Gen (Srpk79DVN Nullmutante) führt zu auffälligen BRP-Akkumulationen in larvalen und adulten Nerven. In der vorliegenden Arbeit wird gezeigt, dass diese BRP-Akkumulationen auf Ultrastruktur-Ebene ausgedehnten axonalen Agglomeraten elektronendichter Bänder entsprechen und von klaren Vesikeln umgeben sind. Charakterisierung durch Immuno-Elektronenmikroskopie ergab, dass diese Strukturen BRP-immunoreaktiv sind. Um die Bildung BRP-enthaltender Agglomerate in Axonen zu verhindern und damit eine intakte Gehirnfunktion zu gewährleisten, scheint die SRPK79D nur auf niedrigem Niveau exprimiert zu werden, da die endogene Kinase mit verschiedenen Antikörpern nicht nachweisbar war. Wie in anderen Arbeiten gezeigt werden konnte, ist die Expression der PB-, PC- oder PF-Isoform der vier möglichen SRPK79D-Varianten, die durch alternativen Transkriptionsstart in Exon eins beziehungsweise drei und alternatives Spleißen von Exon sieben zustande kommen, zur Rettung des Phänotyps der BRP-Akkumulation im Srpk79DVN Nullmutanten-Hintergrund ausreichend. Zur Charakterisierung der Rescue-Eigenschaften der SRPK79D-PE-Isoform wurde mit der Klonierung der cDNA in einen UAS-Vektor begonnen. Offenbar beruht die Bildung der axonalen BRP-Agglomerate nicht auf einer Überexpression von BRP in den betroffenen Neuronen, denn auch bei reduzierter Expression des BRP-Proteins im Srpk79DVN Nullmutanten-Hintergrund entstehen die BRP-Agglomerate. In Köpfen der Srpk79DVN Nullmutante ist die Gesamtmenge an Bruchpilot-Protein im Vergleich zum Wildtyp nicht deutlich verändert. Auch die auf Protein-Ebene untersuchte Expression der verschiedenen Isoformen der präsynaptischen Proteine Synapsin, Sap47 und CSP weicht in der Srpk79DVN Nullmutante nicht wesentlich von der Wildtyp-Situation ab, sodass sich keine Hinweise auf verändertes Spleißen der entsprechenden prä-mRNAs ergeben. Jedes der sieben bekannten SR-Proteine von Drosophila ist ein potentielles Zielprotein der SRPK79D. Knock-down-Experimente für die drei hier untersuchten SR-Proteine SC35, X16/9G8 und B52/SRp55 im gesamten Nervensystem durch RNA-Interferenz zeigten allerdings keinen Effekt auf die Verteilung von BRP im Gewebe. Hinsichtlich der Flugfähigkeit der Tiere hat die Srpk79DVN Nullmutation keinen additiven Effekt zum Knock-down des BRP-Proteins, denn die Doppelmutanten zeigten bei der Bestimmung des Anteils an flugunfähigen Tieren vergleichbare Werte wie die Einzelmutanten, die entweder die Nullmutation im Srpk79D-Gen trugen, oder BRP reduziert exprimierten. Vermutlich sind Bruchpilot und die SR Proteinkinase 79D somit Teil desselben Signalwegs. Durch Doppelfärbungen mit Antikörpern gegen BRP und CAPA-Peptide wurde abschließend entdeckt, dass Bruchpilot auch im Median- und Transvers-Nervensystem (MeN/TVN) von Drosophila zu finden ist, welche die Neurohämal-Organe beherbergen. Aufgabe dieser Organe ist die Speicherung und Ausschüttung von Neuropeptid-Hormonen. Daher ist zu vermuten, dass das BRP-Protein neben Funktionen bei der Neurotransmitter-Exocytose möglicherweise eine Rolle bei der Ausschüttung von Neuropeptiden spielt. Anders als in den Axonen der larvalen Segmental- und Intersegmentalnerven der Srpk79DVN Nullmutante, die charakteristische BRP-Agglomerate aufweisen, hat die Mutation des Srpk79D-Gens in den Axonen der Va-Neurone, die das MeN/TVN-System bilden, keinen sichtbaren Effekt auf die Verteilung von Brp, denn das Muster bei Färbung gegen BRP weist keine deutlichen Veränderungen zum Wildtyp auf. N2 - Synapses as sites of communication between neurons contain specialized regions termed active zones (AZs) which are composed of a highly complex network of proteins comprising the exocytotic machinery for neurotransmitter release and vesicle recycling. In Drosophila the Bruchpilot (BRP) protein is an important building block of the T-shaped ribbons („T-bars“) at presynaptic active zones. By screening for mutations affecting the tissue distribution of Bruchpilot, a P-transposon insertion in the Srpk gene at the position 79D has been identified (Srpk79D, CG11489). This gene codes for a kinase which shows high homology to the mammalian family of serine/arginine protein kinases (SRPKs). Members of this family have an evolutionarily highly conserved bipartite kinase domain in common which is separated by a non-conserved spacer sequence. SRPKs phosphorylate SR proteins, an evolutionarily highly conserved family of serine/arginine-rich splicing factors that control the processes of constitutive and alternative splicing. Mutation of the Srpk79D gene caused by the P-element insertion (Srpk79DP1) or by a deletion in the gene (Srpk79DVN null mutant) leads to conspicuous accumulations of BRP in larval and adult axons. This thesis shows that these BRP accumulations at the ultrastructural level correspond to extensive axonal agglomerates of electron-dense ribbons surrounded by clear vesicles. Using immuno electron microscopy, these accumulation were characterized as BRP immuno-reactive structures. To prevent the assembly of BRP containing agglomerates in axons and to maintain intact brain function the SRPK79D seems to be expressed only at low levels because the endogenous kinase was not detectable using various antibodies. It was shown in other thesis that the expression of the PB, PC or PF isoform of the four possible SRPK79D variants resulting from two alternative transcription start sites in exon one and three, respectively, and alternative splicing of exon seven is sufficient to rescue the phenotype of BRP accumulation in the Srpk79DVN null-mutant background. Cloning of the cDNA for the SRPK79D-PE isoform into a UAS vector has been started in order to characterize the ability of this isoform to rescue the BRP-phenotype. It seems as if the formation of axonal BRP agglomerates is not due to BRP overexpression in the affected neurons as was shown by reduced expression of the BRP protein in the Srpk79DVN null-mutant background which still leads to BRP agglomerates. The overall amount of Bruchpilot protein in adult heads of the Srpk79DVN null mutant is not clearly altered compared to wild type. No clear alteration was observed between Srpk79DVN null-mutant and wild-type flies comparing the expression of different presynaptic proteins like Synapsin, Synapse-associated protein of 47 kDa (Sap47), and Cysteine string protein (CSP). The experiment does not point towards altered splicing of the corresponding pre-mRNAs. Each of the seven known SR proteins of Drosophila is a potential target protein of the SRPK79D. Pan-neuronal knock-down experiments for the three SR proteins SC35, X16/9G8, and B52/SRp55 investigated in this thesis by RNA interference did not show an effect on the tissue distribution of BRP. It was shown that the Srpk79DVN null mutation has no additive effect on the knock-down of the BRP protein regarding the flight ability of the respective animals because the double mutants showed similar values of non-flyers as each of the single mutants with either null mutation of the Srpk79D gene or knock-down of BRP. Presumably, Bruchpilot and the SR protein kinase 79D are part of the same signaling pathway. Performing double fluorescence stainings with antibodies against BRP and the CAPA peptides it was shown that Bruchpilot is also present in the median and transverse nerve system (MeN/TVN) of Drosophila containing the neurohaemal organs. These organs are responsible for storage and release of neuropeptide hormones. In contrast to the larval segmental and intersegmental nerves of the Srpk79DVN null mutant which show characteristic BRP agglomerates, mutation of the Srpk79D gene does not affect the distribution of BRP in the axons of the Va neurons which form the MeN/TVN system. The staining pattern of BRP in these nerves does not show clear alterations in the Srpk79DVN null mutant compared to wild type. The finding that BRP is present in the median and transverse nerve system opens the field for speculation of a role for the Bruchpilot protein not only in the neurotransmitter exocytosis but also in the release of neuropeptides. KW - Taufliege KW - Serin KW - Arginin KW - Proteinkinasen KW - Synapse KW - Genexpression KW - Aktive Zone KW - Serin/Arginin Proteinkinase KW - SRPK KW - Bruchpilot KW - Drosophila KW - Synapse KW - Motorische Endplatte KW - Nervenzelle KW - Neurotransmitter KW - active zone KW - serine/arginine protein kinase KW - SRPK KW - Bruchpilot Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-53974 ER - TY - THES A1 - Schubert, Alice T1 - Immunhistochemische und funktionelle Charakterisierung der Serin/Arginin-Proteinkinase SRPK79D mit Identifizierung von Interaktionspartnern in Drosophila melanogaster T1 - Immunohistochemical and functional characterisation of the serine/arginine protein kinase SRPK79D with identification of interaction partners in Drosophila melanogaster N2 - Auf der Suche nach Mutanten mit einer vom Wildtyp abweichenden Verteilung des Aktive Zone-Proteins Bruchpilot wurde die Serin/Arginin-Proteinkinase SRPK79D identifiziert. Hier zeigte sich, dass die Mutation im Srpk79D-Gen zu einer Agglomeration von Bruchpilot in den larvalen segmentalen und intersegmentalen Nerven führt. In der vorliegenden Arbeit sollte die SRPK79D genauer charakterisiert werden. Nach Präadsorptionen und Affinitätsreinigungen von in einer früheren Arbeit erzeugten Antiseren, gelang es die Lokalisation der überexprimierten SRPK79D-GFP-Isoformen zu bestimmen. Dabei zeigte sich, dass keines der Antiseren die endogene Kinase im Western Blot oder immunhistocheimisch detektieren konnte. Dies legt den Schluss nahe, dass die Expression der SRPK79D in einer geringen Konzentration erfolgt. Es war jedoch möglich die endogene SRPK79D-PC-Isoform mittels einer Immunpräzipitation soweit anzureichern, dass sie im Western Blot nachweisbar war. Für die SRPK79D-PB-Isoform gelang dies allerdings nicht. Anhand von larvalen Nerv-Muskel-Präparaten konnte gezeigt werden, dass die panneural überexprimierte SRPK79D-PC-GFP-Isoform an die Aktiven Zone transportiert wird und dort mit Bruchpilot, sowie den Interaktionspartnern von Bruchpilot Liprin-α und Rab3 kolokalisiert. Außerdem liegt sie diffus im Zytoplasma von neuronalen Zellkörpern vor. In adulten Gehirnen lokalisiert die transgen überexprimierte SRPK79D-PC-GFP im Fanshaped body, Ringkomplex und in neuronalen Zellkörpern. Die panneural überexprimierte SRPK79D-PB-GFP-Isoform liegt im larvalen und adulten Gehirn lokal im Zytoplasma der Perikaryen akkumuliert vor und wird nicht an die Aktive Zone transportiert. Das PB-Antiserum erkennt im adulten Gehirn neuronale Zellkörper und das Neuropil in der Calyxregion der Pilzkörper. Immunhistochemische Färbungen von larvalen Nerv-Muskel-Präparaten mit verschiedenen Antikörpern gegen neuronale Proteine belegen, dass die Agglomerate in der Srpk79D-Mutante für Bruchpilot spezifisch sind. Es konnten bisher keine weiteren Komponenten der Agglomerate detektiert werden. Auch ein genereller axonaler Defekt konnte durch Färbungen gegen CSP, Synaptotagmin und Experimenten mit dem Mitochondrienfarbstoff MitoTracker® FM Green ausgeschlossen werden. Die quantitative Auswertung der Präparate zeigte, dass die Morphologie der synaptischen Boutons und die Zahl der Aktiven Zonen durch die Mutation im Srpk79D-Gen nicht beeinflusst werden. Um gesicherte Kenntnis darüber zu erlangen, ob die Mutation im Srpk79D-Gen die beobachteten Phänotypen verursacht, wurden Rettungsexperimente durchgeführt. Es konnte sowohl für das hypomorphe Srpk79DP1-Allel, als auch für die Nullmutante Srpk79DVN eine nahezu vollständige Rettung des Agglomerat-Phänotyps mit der panneural exprimierten SRPK79D-PF- oder der SRPK79D-PB-Isoform erreicht werden. Aus diesen Ergebnissen folgt, dass beide Isoformen der SRPK79D in der Lage sind den Bruchpilot-Agglomerat-Phänotyp zu retten, die Rettung der Verhaltensdefizite jedoch alle Isoformgruppen benötigen. Um zu untersuchen, ob der Agglomerations-Phänotyp der Srpk79D-Mutanten auf einer Überexpression des Bruchpilotgens oder auf Fehlspleißen seiner prä-mRNA beruht, wurden Immunpräzipitationen, semiquantitative RT-PCRs und Real Time-PCRs durchgeführt. Ausgehend von den Ergebnissen kann eine mögliche Überexpression bzw. Spleißdefekte von Bruchpilot weitgehend ausgeschlossen werden. Die simultane Überexpression von SRPK79D und Bruchpilot konnte den Phänotyp der Bruchpilot-Überexpression nicht retten. Anhand der stimulated emission depletion-Mikroskopie konnte gezeigt werden, dass die gebildeten Agglomerate das charakteristische Donut-förmige Muster der T-bars zeigen und wahrscheinlich als fusionierte Ketten von T-bars in den larvalen Nerven vorliegen. Beim in vivo Imaging Versuch konnte demonstriert werden, dass das verkürzte Bruchpilot-D3-Strawberry in die Bruchpilot-Agglomerate der Srpk79D-Nullmutante eingebaut wird und dass größere Agglomerate unbewegt im Nerv verharren. Der anterograde und retrograde Transport kleinerer Agglomerate konnte verzeichnet werden. Bei CytoTrap-Yeast-two-hybrid-Experimenten konnten für die SRPK79D-PB Isoform vier potentielle Interaktionspartner identifiziert werden: das Hitzeschockprotein Hsp70Bbb, die mitochondriale NADH-Dehydrogenase mt:ND5, das large ribosomal RNA Gen in Mitochondrien und das am Spleißen beteiligte Protein 1.3CC/Caper. Die Sequenzierung zeigte, dass nur das letzte Exon von Caper im pMyr-Vektor vorliegt. Der für die PC-Isoform durchgeführte CytoTrap-Versuch ergab nur Temperatur-Revertanten. SR-Proteinkinasen phosphorylieren die RS-Domäne von SR-Proteinen und sind dadurch an der Regulation des konstitutiven und alternativen Spleißens beteiligt. Somit stellen die acht identifizierten SR-Proteine in Drosophila potentielle Interaktionspartner der SRPK79D dar. Die durch RNAi-vermittelte Reduktion von sieben SR-Proteinen führte zu keiner Agglomeration von Bruchpilot. Jedoch führte die RNAi-vermittelte Reduktion des SR-Proteins Spleißfaktor 2 (SF2) zu kleineren Bruchpilot-Agglomeraten in den axonalen Nerven. SF2 ist selbst kein Bestandteil der Agglomerate der Srpk79D-Nullmutante. Die Überexpression von SF2 führt wahrscheinlich zu einem axonalen Transportdefekt, wie die Färbung gegen das Cysteine string protein zeigte. Weiterhin führt die Überexpression zu einer Akkumulation von SF2 in larvalen Axonen und im adulten Gehirn der Fliegen. SF2 ist nicht nur in Zellkernen sämtlicher Zellen nachweisbar, sondern es konnte auch ein spezifisches Signal im subsynaptischen Retikulum der Postsynapse detektiert werden, wie die Färbungen gegen Disc large bestätigten. N2 - In a Screen for mutations which affect the distribution of the active zone protein Bruchpilot, the serine/arginine protein kinase 79D (SRPK79D) was identified. A mutation in the Srpk79D gene leads to conspicuous agglomeration of Bruchpilot in the larval segmental and intersegmental nerves. The aim of this thesis was to characterize the function of SRPK79D and to identify its interaction partners. The isoform specific antisera which were generated in an earlier PhD thesis recognized only the pan-neuraly overexpressed GFP-tagged SRPK79D isoforms in Western blots and immunhistochemical stainings. After preabsorption and affinity purification the antisera could uncover the localization of the overexpressed SRPK79D-GFP. Without enrichment of the endogenous SRPK79D concentration seems to be too low to be detected with the antisera. However, the endogenous SRPK79D-PC isoform could be detected in a Western blot after immunoprecipitation, but not the SRPK79D-PB isoform. The panneural overexpressed SRPK79D-PC-GFP isoform co-localizes with Bruchpilot as well as with the Bruchpilot interaction partners Liprin-α and Rab3 at active zones and showed a diffuse pattern in the cytoplasm of neuronal cell bodies. In adult brains the panneural overexpressed SRPK79D-PC isoform is detectable in the fanshaped body, ring complex and neuronal cell bodies. The panneural overexpressed SRPK79D-PB isoform is not present at the active zone but is detectable in larval and adult CNS accumulating in discrete spots in the cytoplasm of neuronal cells. The panneural overexpressed SRPK79D-PB isoform is also present in the neuronal cell bodies and calyces of the mushroom body. Larval dissections followed by stainings with different antibodies against synaptic proteins showed that the agglomerates in the Srpk79D mutants are quite specific for Bruchpilot. No other components of the agglomerates could be revealed until now. General impairments of axonal transport could be excluded by stainings against cysteine string protein (CSP), Synaptotagmin, and experiments with the dye MitoTracker® Green FM. These synaptic proteins are uniformly distributed along the larval nerves. The quantification of boutons revealed that the basic synaptic structure is not altered in Srpk79D-mutants. Stainings on frozen head sections of null mutant Srpk79D revealed a spot like Bruchpilot accumulation in the antennal nerves. The mutation of Srpk79D causes behavioral deficits in adult flies as well as a shortened life span. In order to test if expression of either isoform (SRPK79D-PC/PF or –PB) is able to rescue the obtained phenotypes, rescue experiments were performed. A nearly complete rescue of the agglomerate phenotype was achieved with both SRPK79D isoforms. Rescue experiments for the observed behavioral phenotype in the null mutant background did not significant by improve the defect, neither when using the pannreural driver lines elav-GAL4 nor the newly generated nSyb-GAL4. Alkaline Phosphatase treatment followed by 1D- or 2D-gelelecrophoresis could not detect a possible phosphorylation of SRPK79D. Also the vesicle-associated protein Synapsin showed a normal isoform pattern which indicates that Synapsin is not a substrate for SRPK79D. In experiments to detect overexpression or splicing defects of the active zone protein Bruchpilot as possible cause for the agglomeration phenotype in mutant Srpk79D animals, immunoprecipitations, semiquantitative RT-PCRs and Real Time-PCRs were performed. The results showed that overexpression or splicing deficits could be largely excluded. In stainings with the new Bruchpilot antisera N-Term and D2 the staining pattern did not differ from the nc82 staining showing that the PF isoform of Bruchpilot is not forming separate agglomerates in Srpk79DVN mutants. The overexpression of D2-4 and D1-3, truncated Bruchpilot proteins without either the N- or C-terminus, respectively, showed an agglomeration of the corresponding proteins in larval and adult CNS. However the overexpression of D1-3 is not affecting the endogenous Bruchpilot distribution. The simultaneous overexpression of SRPK79D and Bruchpilot could not rescue the phenotype caused by Bruchpilot overexpression. With the stimulated emission depletion microscope the pattern of the Bruchpilot agglomerates in the Srpk79DVN mutant revealed electron-dense donut-shaped structures in larval nerves, presumably fused T-bars. With in vivo imaging experiments anterograde as well as retrograde movement of D3-labeled agglomerates in the Srpk79DVN mutant was observed whereas large agglomerates are immobile. To identify substrates or interaction partners of SRPK79D the Yeast-two-hybrid screen CytoTrap was performed. The CytoTrap screen for the SRPK79D-PB isoform identified four interaction partners: the heat shock protein Hsp70Bbb, the mitochondrial NADH-Dehydrogenase mt:ND5, the large ribosomal RNA gene in mitochondria and 1.3CC/Caper. Caper is involved in splicing via the spliceosome. Sequencing revealed that the pMyr vector includes only the last exon of Caper. The performed CytoTrap for the RC-Isoform detected only temperature revertants. The RNAi mediated knock down of each of the eight known SR proteins in Drosophila showed that seven of them do not produce a phenotype whereas the reduction of SF2 leads to Bruchpilot agglomerates in larval nerves. The SR-Protein SF2 is not included in the agglomerates of the Srpk79D mutant but showed expression in nuclei of all cell types. The overexpression of SF2 leads to an agglomeration of SF2 in the larval nerves probably due to an impairment of general axonal transport. SF2 is not only a nuclear protein; it is also associated with post synaptic structures. KW - Taufliege KW - Serin KW - Arginin KW - Proteinkinasen KW - RNS-Spleißen KW - Genmutation KW - Drosophila melanogaster KW - SRPK79D KW - Serin-Arginin Proteinkinase KW - Spleißen KW - Bruchpilot KW - Drosophila melanogaster KW - SRPK79D KW - serine-arginine protein kinase KW - splicing KW - Bruchpilot Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-53841 ER - TY - THES A1 - Gruber, Franz Andreas T1 - Untersuchung zur Regulation der Expression des zuckerkonditionierten Verhaltens bei Drosophila melanogaster T1 - Analysing the regulation of the expression of sugar-conditioned behaviour in Drosophila melanogaster N2 - In dieser Doktorarbeit habe ich die Regulation der Expression des zuckerbelohnten Verhaltens durch den Fütterungszustand bei Drosophila melanogaster untersucht. Die Fliegen können während einer Trainingsphase mit Hilfe einer Zuckerbelohnung auf einen bestimmten Duft konditioniert werden. Nach dem Training können die Fliegen dann auf das olfaktorische Gedächtnis getestet werden. Die Bereitschaft das zuckerkonditionierte Gedächtnis im Test zu zeigen wird vom Fütterungszustand kontrolliert, wie ich in Übereinstimmung mit den Ergebnissen früherer Arbeiten demonstrierte (Tempel et al. 1983; Gruber 2006; Krashes et al. 2008). Nur nicht gefütterte Fliegen exprimieren das Gedächtnis, während Fütterungen bis kurz vor dem Test eine reversibel supprimierende Wirkung haben. Einen ähnlichen regulatorischen Einfluss übt der Futterentzug auch auf die Expression anderer futterbezogener Verhaltensweisen, wie z.B. die naive Zuckerpräferenz, aus. Nachdem ich den drastischen Einfluss des Fütterungszustands auf die Ausprägung des zuckerkonditionierten Verhaltens gezeigt bzw. bestätigt hatte, habe ich nach verhaltensregulierenden Faktoren gesucht, die bei einer Fütterung die Gedächtnisexpression unterdrücken. Als mögliche Kandidaten untersuchte ich Parameter, die zum Teil bereits bei verschiedenen futterbezogenen Verhaltensweisen unterschiedlicher Tierarten als „Sättigungssignale“ identifiziert worden waren (Marty et al. 2007; Powley and Phillips 2004; Havel 2001; Bernays and Chapman 1974; Simpson and Bernays 1983; Gelperin 1971a). Dabei stellte sich heraus, dass weder die „ernährende“ Eigenschaft des Futters, noch ein durch Futteraufnahme bedingter Anstieg der internen Glukosekonzentration für die Suppression des zuckerkonditionierten Gedächtnisses notwendig sind. Die Unterdrückung der Gedächtnisexpression kann auch nicht durch Unterschiede in den aufgenommenen Futtermengen, die als verhaltensinhibitorische Dehnungssignale des Verdauungstrakts wirken könnten, oder mit der Stärke des süßen Geschmacks erklärt werden. Die Suppression des zuckerbelohnten Verhaltens folgte den Konzentrationen der gefütterten Substanzen und war unabhängig von deren chemischen Spezifität. Deshalb wird die Osmolarität des aufgenommenen Futters als ein entscheidender Faktor für die Unterdrückung der zuckerkonditionierten Gedächtnisexpression angenommen. Weil nur inkorporierte Substanzen einen Unterdrückungseffekt hatten, wird ein osmolaritätsdetektierender Mechanismus im Körper 67 postuliert, wahrscheinlich im Verdauungstrakt und/oder der Hämolymphe. Die Hämolymphosmolarität ist als „Sättigungssignal“ bei einigen wirbellosen Tieren bereits nachgewiesen worden (Bernays and Chapman 1974; Simpson and Raubenheimer 1993; Gelperin 1971a; Phifer and Prior 1985). Deshalb habe ich mit Hilfe genetischer Methoden und ohne die Fliegen zu füttern, versucht über einen künstlich induzierten Anstieg der Trehaloseund Lipidkonzentrationen die Osmolarität der Hämolymphe in Drosophila zu erhöhen. Eine solche konzentrationserhöhende Wirkung für Lipide und die Trehalose, dem Hauptblutzucker der Insekten, ist bereits für das adipokinetische Hormon (AKH), das von Zellen der Corpora cardiaca exprimiert wird, nachgewiesen worden (Kim and Rulifson 2004; Lee and Park 2004; Isabel et al. 2005). Es stellte sich heraus, dass die künstliche Stimulierung AKH-produzierender Neurone das zuckerkonditionierten Verhalten temporär, reversible und selektiv unterdrückt. Gleiche Behandlungen hatten keinen Effekt auf ein aversiv konditioniertes olfaktorisches Gedächtnis oder ein naives Zuckerpräferenzverhalten. Wie aus dieser Arbeit hervorgeht, stellt wahrscheinlich die Osmolarität des Verdauungstrakts und der Hämolymphe oder nur der Hämolymphe ein physiologisches Korrelat zum Fütterungszustand dar und wirkt als unterdrückendes Signal. Dass Fütterungen das zuckerkonditionierte Verhalten und die Zuckerpräferenz supprimieren, die künstliche Stimulation AKH-produzierender Zellen aber selektiv nur die zuckerbelohnte Gedächtnisexpression unterdrückt, deutet auf mindestens zwei unterschiedliche „Sättigungssignalwege“ hin. Außerdem macht es deutlich wie uneinheitlich futterbezogene Verhaltensweisen, wie das zuckerbelohnte Verhalten und die naive Zuckerpräferenz, reguliert werden. N2 - In this work I investigated the regulation of the expression of the sugar conditioned behavior by feeding states in Drosophila melanogaster. During the training flies are able to associate an odor with a sugar reward. During the test these flies have the opportunity to show their odor memory. In accordance with previous findings (Tempel et al. 1983; Gruber 2006; Krashes et al. 2008), I also showed that the readiness to express sugar conditioned memory is controlled by the feeding state. The memory was only displayed by starved flies, whereas feedings of the flies until the test cause a reversible and temporary suppression of conditioned behavior. Feeding states similarly influence the expression of other food-related behaviors like sugar preference. After I have showed/confirmed the drastic influence of feeding state on sugar conditioned behavior, I tried to search for factors which suppress the memory expression of conditioned flies during feeding. Therefore I verified physiological parameters as promising candidates which have already been identified as “satiation-signals” for different food-related behaviors through the animal kingdom (Marty et al. 2007; Powley and Phillips 2004; Havel 2001; Bernays and Chapman 1974; Simpson and Bernays 1983; Gelperin 1971a). As the results revealed, neither the nutritional value of the available food nor an increase of the internal glucose-concentrations were necessary for suppressing conditioned behavior. Furthermore differences in sweet taste and in the amount of the ingested food, which likely serve as volumetric signals of the digestive system, were not critical determinants for inhibition of the memory expression. Because suppression followed the concentration of the substances independent of the chemical specificity, I conclude that the osmolarity of the ingested food is a critical factor for inhibition of sugar conditioned behavior. Only ingested substances were suppressive. Therefore an internal osmolarity-detecting mechanism is postulated, most probably in the digestive system or the hemolymph. Hemolymph-osmolarity has already been shown as a “satiation-signal” for some invertebrates (Bernays and Chapman 1974; Simpson and Raubenheimer 1993; Gelperin 1971a; Phifer and Prior 1985). Thus I tried to increase the hemolymph-osmolarity by an artificially induced rise of the concentration of lipids and trehalose, the main blood sugar of insects. A concentration-increasing effect such like this has already been shown for the adipokinetic hormone (AKH), which is expressed in cells of the corpora cardiaca (Kim and Rulifson 2004; Lee and Park 2004; Isabel et al. 2005). I demonstrated that an artificial stimulation of AKH69 producing neurons induces the suppression of sugar conditioned behavior, but leaves aversive conditioned behavior and naïve sugar preference unchanged. This work indicates that the osmolarity of the digestive system and the hemolymph or only of the hemolymph serves as (a) physiological correlate(s), which signals suppression. Feeding induced inhibition of the expression of sugar conditioned behavior and naïve sugar preference, whereas the artificial stimulation of AKH-producing cells selectively inhibited sugar rewarded memory expression alone. Thus I assume at least two separable “satiation”-pathways. Moreover these results demonstrate the non-uniform regulation of different food-related behaviors like sugar conditioned behavior and naïve sugar preference. KW - Taufliege KW - Futterentzug KW - Klassische Konditionierung KW - Konditionierung KW - Gedächtnis KW - Assoziatives Gedächtnis KW - Osmolarität KW - Drosophila melanogaster KW - zuckerkonditioniertes Verhalten KW - klassische Konditionierung KW - Futterentzug KW - Drosophila melanogaster KW - sugar-conditioned behaviour KW - classical conditioning KW - food deprivation KW - starvation Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-48802 ER -