TY - THES A1 - Ljaschenko, Dmitrij T1 - Hebbian plasticity at neuromuscular synapses of Drosophila T1 - Hebbsche Plastizität an den neuromuskulären Synapsen in Drosophila melanogaster N2 - Synaptic plasticity determines the development of functional neural circuits. It is widely accepted as the mechanism behind learning and memory. Among different forms of synaptic plasticity, Hebbian plasticity describes an activity-induced change in synaptic strength, caused by correlated pre- and postsynaptic activity. Additionally, Hebbian plasticity is characterised by input specificity, which means it takes place only at synapses, which participate in activity. Because of its correlative nature, Hebbian plasticity suggests itself as a mechanism behind associative learning. Although it is commonly assumed that synaptic plasticity is closely linked to synaptic activity during development, the mechanistic understanding of this coupling is far from complete. In the present study channelrhodopsin-2 was used to evoke activity in vivo, at the glutamatergic Drosophila neuromuscular junction. Remarkably, correlated pre- and postsynaptic stimulation led to increased incorporation of GluR-IIA-type glutamate receptors into postsynaptic receptor fields, thus boosting postsynaptic sensitivity. This phenomenon is input-specific. Conversely, GluR-IIA was rapidly removed from synapses at which neurotransmitter release failed to evoke substantial postsynaptic depolarisation. This mechanism might be responsible to tame uncontrolled receptor field growth. Combining these results with developmental GluR-IIA dynamics leads to a comprehensive physiological concept, where Hebbian plasticity guides growth of postsynaptic receptor fields and sparse transmitter release stabilises receptor fields by preventing overgrowth. Additionally, a novel mechanism of retrograde signaling was discovered, where direct postsynaptic channelrhodopsin-2 based stimulation, without involvement of presynaptic neurotransmitter release, leads to presynaptic depression. This phenomenon is reminiscent of a known retrograde homeostatic mechanism, of inverted polarity, where neurotransmitter release is upregulated, upon reduction of postsynaptic sensitivity. N2 - Das Phänomen der synaptischen Plastizität bestimmt die Entwicklung funktionaler neuronaler Schaltkreise. Die meisten Neurowissenschaftler betrachten synaptische Plastizität als die neuronal Grundlage von Lernen und Gedächtnis. Es gibt viele Ausprägungsarten synaptischer Plastizität, eine davon ist die sogenannte Hebb’sche Plastizität. Diese ist definiert durch eine aktivitätsinduzierte, langanhaltende Veränderung der Stärke einer synaptischen Verbindung, verursacht durch korrelative Aktivierung der Prä- und der Postsynapse. Zusätzlich ist die Ausbreitung der Hebb’sche Plastizität synapsenspezifisch, d.h. nur die Synapsen, die an der korrelativen Aktivierung teilnehmen, erfahren auch die Veränderung. Das Wachstumssignal breitet sich also nicht auf benachbarte Synapsen aus. Der korrelative Wesenszug der Hebb’schen Plastizität macht sie zu einem naheliegenden zellulären Mechanismus assoziativen Lernens. Es wird angenommen, dass synaptische Aktivität und synaptische Plastizität während der Entwicklung neuronaler Schaltkreise eng gekoppelt sind. Das mechanistische Verständnis dieser Kopplung ist jedoch weitgehend unverstanden. In der vorliegenden Arbeit wurde das lichtaktivierbare Kanalrhodopsin-2 verwendet, um Aktivität an der glutamatergen neuromuskulären Synapse in der lebenden, sich frei bewegenden, Drosophila melanogaster Larve auszulösen. Wenn die Prä- und die Postsynapse korrelativ aktiviert wurden, führte dies zur verstärkten Integration von Glutamatrezeptoren des GluR-IIA Typs in die postsynaptischen Rezeptorfelder, was in einer Erhöhung der postsynaptischer Empfindlichkeit mündete. Dieses Platizitätsphänomen wurde als synapsenspezifisch identifiziert und damit als Hebb’sch. Im Gegenzug, wurde der gleiche Rezeptortyp entfernt, wenn Neurotransmitterfreisetzung nicht zu einer erheblichen Depolarisation der Postsynapse führte. Dieser Mechanismus könnte für die Kontrolle des Rezeptorfeldwachstums verantwortlich sein. Es wurde ein physiologisches Modell erarbeitet, bei dem Hebb’sche Plastizität das Wachstum postsynaptischer Rezeptorfelder während der Entwicklung leitet und sporadische, nicht synchronisierte Neurotransmitterfreisetzung die Rezeptorfeldgröße stabilisiert, indem sie das Wachstum Dieser begrenzt. Zusätzlich wurde eine neue Modalität der synaptischen Plastizität an der neuromuskulären Synapse entdeckt: Ein retrograder Signalweg wird aktiviert wenn die postsynaptische Seite, unter Umgehung der Präsynapse, direkt, lichtinduziert aktiviert wird. Dieser Signalweg führt zur präsynaptischen Depression. Das Phänomen erinnert stark an einen bereits bekannten retrograden homöostatischen Mechanismus, reziproker Polarität, bei dem Neurotransmitter Freisetzung hochreguliert wird, wenn die Empfindlichkeit der Postsynapse verringert wird. KW - Synapse KW - Hebbian plasticity KW - synapse KW - Drosophila KW - Plastizität KW - Hebbsche Lernregel KW - Taufliege Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-90465 ER - TY - THES A1 - Melzer, Juliane T1 - Die Funktion der p21-aktivierten Kinase Mbt in Neuroblasten während der Entwicklung des zentralen Nervensystems von Drosophila melanogaster T1 - The function of the p21-activated kinase Mbt in neuroblasts during the development of the central nervous system of Drosophila melanogaster N2 - p21-aktivierte Kinasen regulieren zahlreiche zelluläre Prozesse, die während der Entwicklung, aber auch beispielsweise bei der Krebsentstehung, von zentraler Bedeutung sind. Mbt, das einzige Typ II PAK-Protein von Drosophila melanogaster, spielt eine Rolle bei der Gehirnentwicklung. Eine Nullmutation von mbt, mbtP1, bildet kleinere Gehirne mit stark verkleinerten Pilzkörpern aus. In dieser Arbeit wurde die Funktion von Mbt in Neuroblasten untersucht. Mbt wurde als Teil des apikalen Proteinkomplexes in Neuroblasten des Zentralhirns nachgewiesen. Die apikale Lokalisation von Mbt ist Zellzyklus-abhängig und wird über Bindung an Cdc42 reguliert. Sie ist essentiell für die Funktion von Mbt in Neuroblasten. Trotz apikaler Mbt-Lokalisation in Neuroblasten zeigte die mbt Nullmutante keine Defekte des basalen Mechanismus der asymmetrischen Zellteilung. Mud zeigte geringfügige Lokalisationsveränderungen, die auf einen möglichen Einfluss von Mbt hinweisen. Obwohl PAKs zentrale Regulatoren des Zytoskeletts sind, zeigte die mbtP1 Mutante keine offensichtlichen Veränderungen des Aktin- und Tubulin-Zytoskeletts. Armadillo, ein Aktin-assoziiertes Mbt-Substrat, zeigte ebenfalls keine Lokalisationsveränderung in Neuroblasten. Mbt steuert jedoch die apikale Anreicherung von Cno, einem weiteren Aktin-assoziierten Protein, in Neuroblasten. Darüber hinaus beeinflusst Mbt die Zellgröße von Neuroblasten, sowie deren Proliferationspotenzial und Überleben. mbtP1 Neuroblasten sind kleiner als wildtypische Neuroblasten, haben ein geringeres Proliferationsvermögen und eine geringere Überlebenswahrscheinlichkeit. Der Zelltod von Neuroblasten ist jedoch ein sekundärer Effekt. Daher kann eine Blockierung von Apoptose den adulten Pilzkörperphänotyp nicht retten. Signalwege, die Zellgröße und Proliferation regulieren, wurden auf eine Beteiligung von Mbt hin analysiert. mbtP1 induzierte leichte Effekte im Insulin-Signalweg und die Delokalisation eines nukleolären Proteins. Eine genetische Interaktion von mbtP1 mit Mutationen in Genen des klassischen MAPK-Signalweges identifzierte mbt als Positivregulator dieses Signalweges im Auge. Ein ähnlicher, schwächerer Effekt wurde auch bzgl. der Proliferation und Größe von Neuroblasten beobachtet. Eine 2D-Gelanalyse von Larvengehirnen identifizierte Bic und Hsp83 als mögliche von Mbt regulierte Proteine. Diese Arbeit charakterisiert eine bisher unbekannte Funktion der p21-aktivierten Kinase Mbt in neuronalen Stammzellen und liefert damit Ansatzpunkte für eine detaillierte Aufklärung der Funktionsmechanismen von Typ II PAKs bei der Regulation von Zellproliferation und Überleben N2 - p21-activated kinases regulate numerous cellular processes central not only during development, but also for example for cancer pathogenesis. Mbt, the only type II PAK in Drosophila, regulates brain development. The mbt null mutant mbtP1 exhibits reduced brain size, with the mushroom bodies showing the most pronounced reduction. In this work, the function of Mbt in neuroblasts was investigated. Mbt was identified as a component of the apical protein complex in central brain neuroblasts. The apical localization of Mbt was cell cycle dependent and regulated by binding to Cdc42, which is essential for Mbt function in neuroblasts. Despite apical localization of Mbt, the mbtP1 null allel showed no defects in the basic mechanism of asymmetric cell division in larval neuroblasts. However, Mud showed minor localization changes indicating a possible influence of Mbt. Even though PAKs are well-known regulators of the cytoskeleton, no obvious changes in the actin and tubulin cytoskeleton were observed in mbtP1 neuroblasts. The localization of Armadillo, an actin-associated Mbt substrate, was also undisturbed throughout the cell cycle. Mbt controls the apical enrichment of Cno, another actin-associated protein. Moreover, Mbt influences neuroblast cell size, proliferation potential and survival. mbtP1 neuroblasts were smaller than wildtype neuroblasts and showed reduced proliferation activity and survival. However, the apoptotic loss of mbtP1 neuroblasts is a secondary effect. Thus, the adult mushroom body phenotype cannot be rescued by blocking apoptosis. Signalling pathways known to regulate growth and proliferation were analyzed with respect to a possible participation of Mbt. mbtP1 induced slight effects in the insulin pathway and strongly influenced the localization of an unknown nucleolar protein. Genetic interactions of mbtP1 with mutations in genes involved in the classical MAPK pathway identified mbt as a positive regulator of the MAPK pathway. A similar effect was also observed with respect to neuroblast proliferation and size. A 2D gel analysis of larval brains identified Bic and Hsp83 as candidate proteins, that might be regulated by Mbt. This work characterizes a novel function of the p21-activated kinase Mbt in neural stem cells. It provides starting points for a detailed analysis of the mechanisms of type II PAK functions in the control of cell growth, proliferation and survival. KW - Taufliege KW - Auge KW - Ontogenie KW - Pilzkörper KW - Molekularbiologie KW - p21-aktivierten Kinase KW - PAK KW - Neuroblast KW - Pilzkörper KW - Drosophila melanogaster KW - p21 activated kinase KW - PAK KW - neuroblast KW - mushroombody KW - Drosophila melanogaster Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-85619 ER - TY - THES A1 - Engelhardt [geb. Christiansen], Frauke T1 - Synaptic Connectivity in the Mushroom Body Calyx of Drosophila melanogaster T1 - Synaptische Konnektivität im Pilzkörper Kalyx in Drosophila melanogaster N2 - Learning and memory is considered to require synaptic plasticity at presynaptic specializations of neurons. Kenyon cells are the intrinsic neurons of the primary olfactory learning center in the brain of arthropods – the mushroom body neuropils. An olfactory mushroom body memory trace is supposed to be located at the presynapses of Kenyon cells. In the calyx, a sub-compartment of the mushroom bodies, Kenyon cell dendrites receive olfactory input provided via projection neurons. Their output synapses, however, were thought to reside exclusively along their axonal projections outside the calyx, in the mushroom body lobes. By means of high-resolution imaging and with novel transgenic tools, we showed that the calyx of the fruit fly Drosophila melanogaster also comprised Kenyon cell presynapses. At these presynapses, synaptic vesicles were present, which were capable of neurotransmitter release upon stimulation. In addition, the newly identified Kenyon cell presynapses shared similarities with most other presynapses: their active zones, the sites of vesicle fusion, contained the proteins Bruchpilot and Syd-1. These proteins are part of the cytomatrix at the active zone, a scaffold controlling synaptic vesicle endo- and exocytosis. Kenyon cell presynapses were present in γ- and α/β-type KCs but not in α/β-type Kenyon cells. The newly identified Kenyon cell derived presynapses in the calyx are candidate sites for an olfactory associative memory trace. We hypothesize that, as in mammals, recurrent neuronal activity might operate for memory retrieval in the fly olfactory system. Moreover, we present evidence for structural synaptic plasticity in the mushroom body calyx. This is the first demonstration of synaptic plasticity in the central nervous system of Drosophila melanogaster. The volume of the mushroom body calyx can change according to changes in the environment. Also size and numbers of microglomeruli - sub-structures of the calyx, at which projection neurons contact Kenyon cells – can change. We investigated the synapses within the microglomeruli in detail by using new transgenic tools for visualizing presynaptic active zones and postsynaptic densities. Here, we could show, by disruption of the projection neuron - Kenyon cell circuit, that synapses of microglomeruli were subject to activity-dependent synaptic plasticity. Projection neurons that could not generate action potentials compensated their functional limitation by increasing the number of active zones per microglomerulus. Moreover, they built more and enlarged microglomeruli. Our data provide clear evidence for an activity-induced, structural synaptic plasticity as well as for the activity-induced reorganization of the olfactory circuitry in the mushroom body calyx. N2 - Synaptische Plastizität an den präsynaptischen Spezialisierungen von Neuronen sind nach allgemeinem Verständnis die Grundlage für Lern- und Gedächtnisprozesse. Kenyon Zellen sind die intrinsischen Zellen des Zentrums für olfaktorisches Lernen im Gehirn von Arthropoden – den Pilzkörper Neuropilen. An den Präsynapsen der Kenyon Zellen wird eine olfaktorische Gedächtnisspur vermutet. Im Kalyx, einer Substruktur der Pilzkörper, erhalten die Kenyon Zell Dendriten ihren olfaktorischen Input durch Projektionsneurone. Ihre Präsynapsen wiederum befinden sich ausschließlich in ihren axonalen Kompartimenten außerhalb des Kalyx, nämlich in den Loben der Pilzkörper. Mit Hilfe von hochauflösenden bildgebenden Techniken und neuen transgenen Methoden, ist es uns in der Fruchtfliege Drosophila melanogaster gelungen, Kenyon Zell Präsynapsen im Kalyx zu identifizieren. Diese Präsynapsen enthalten synaptische Vesikel, die nach Stimulation ihren Inhalt freisetzen können. Sie weisen noch weitere Gemeinsamkeiten mit den meisten anderen Präsynapsen auf: Ihre Aktiven Zonen, die Orte der Transmitterfreisetzung, enthalten die Proteine Bruchpilot und Syd-1. Diese sind Teil der Zytomatrix an der Aktiven Zone, ein Proteingerüst das Endo- und Exozytose der synaptischen Vesikel kontrolliert. Die Präsynapsen im Kalyx wurden in γ- and α/β-Typ Kenyon Zellen aber nicht in α/β-Typ Kenyon Zellen gefunden. Die neu identifizierten Kenyon Zell Präsynapsen beherbergen potentiell eine Gedächtnisspur für olfaktorisch assoziatives Lernen. Möglicherweise wird im olfaktorischen Nervensystem von Fruchtfliegen rücklaufende neuronale Aktivität benötigt, um Gedächtnis abzurufen, so wie es auch für Säuger beschrieben ist. Darüber hinaus zeigen wir synaptische Plastizität im Kalyx. Dies ist die erste Beschreibung überhaupt von synaptischer Plastizität im zentralen Nervensystem von Drosophila melanogaster. Das Volumen des Kalyx kann sich als Antwort auf äußere Einflüsse verändern. Genauso auch Größe und Anzahl der Mikroglomeruli, Substrukturen des Kalyx, in denen Projektionsneurone und Kenyon Zellen aufeinander treffen. Wir untersuchten die Synapsen in Mikroglomeruli detailliert, mithilfe von neuen transgenen Methoden, die es erlauben, präsynaptische Aktive Zonen sowie Postsynaptische Spezialisierungen zu visualisieren. Mittels Beeinträchtigung der Kommunikation zwischen Projektionsneuronen und Kenyon Zellen, konnten wir synaptische Plastizität in Mikroglomeruli zeigen. Projektionsneurone, die nicht in der Lage waren, Aktionspotentiale zu erzeugen, kompensierten ihre funktionelle Einschränkung durch den vermehrten Einbau von Aktiven Zonen in Mikroglomeruli. Außerdem produzierten sie mehr und vergrößerte Mikroglomeruli. Unsere Daten zeigen deutlich eine aktivitätsinduzierte Veränderung des olfaktorischen neuronalen Netzes, sowie strukturelle synaptische Plastizität im Kalyx. KW - Taufliege KW - Pilzkörper KW - Drosophila melanogaster KW - mushroom body KW - calyx KW - Geruch KW - Lernen KW - Gedächtnis KW - Kalyx Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-85058 ER -