TY - THES A1 - Beck, Katherina T1 - Einfluss von RSK auf die Aktivität von ERK, den axonalen Transport und die synaptische Funktion in Motoneuronen von \(Drosophila\) \(melanogaster\) T1 - RSK2 alters ERK activity, axonal transport and synaptic function in motoneurons of \(Drosophila\) \(melanogaster\) N2 - In dieser Arbeit sollte die Funktion von RSK in Motoneuronen von Drosophila untersucht werden. Mutationen im RSK2-Gen verursachen das Coffin-Lowry-Syndrom (CLS), das durch mentale Retardierung charakterisiert ist. RSK2 ist hauptsächlich in Regionen des Gehirns exprimiert, in denen Lernen und Gedächtnisbildung stattfinden. In Mäusen und Drosophila, die als Modellorganismen für CLS dienen, konnten auf makroskopischer Ebene keine Veränderungen in den Hirnstrukturen gefunden werden, dennoch wurden in verschiedenen Verhaltensstudien Defekte im Lernen und der Gedächtnisbildung beobachtet. Die synaptische Plastizität und die einhergehenden Veränderungen in den Eigenschaften der Synapse sind fundamental für adaptives Verhalten. Zur Analyse der synaptischen Plastizität eignet sich das neuromuskuläre System von Drosophila als Modell wegen des stereotypen Innervierungsmusters und der Verwendung ionotroper Glutamatrezeptoren, deren Untereinheiten homolog sind zu den Untereinheiten der Glutamatrezeptoren des AMPA-Typs aus Säugern, die wesentlich für die Bildung von LTP im Hippocampus sind. Zunächst konnte gezeigt werden, dass RSK in den Motoneuronen von Drosophila an der präsynaptischen Seite lokalisiert ist, wodurch RSK eine Synapsen-spezifische Funktion ausüben könnte. Morphologische Untersuchungen der Struktur der neuromuskulären Synapsen konnten aufzeigen, dass durch den Verlust von RSK die Größe der neuromuskulären Synapse, der Boutons sowie der Aktiven Zonen und Glutamatrezeptorfelder reduziert ist. Obwohl mehr Boutons gebildet werden, sind weniger Aktive Zonen und Glutamatrezeptorfelder in der neuromuskulären Synapse enthalten. RSK reguliert die synaptische Transmission, indem es die postsynaptische Sensitivität, nicht aber die Freisetzung der Neurotransmitter an der präsynaptischen Seite beeinflusst, obwohl in immunhistochemischen Analysen eine postsynaptische Lokalisierung von RSK nicht nachgewiesen werden konnte. RSK ist demnach an der Regulation der synaptischen Plastizität glutamaterger Synapsen beteiligt. Durch immunhistochemische Untersuchungen konnte erstmals gezeigt werden, dass aktiviertes ERK an der präsynaptischen Seite lokalisiert ist und diese synaptische Lokalisierung von RSK reguliert wird. Darüber hinaus konnte in dieser Arbeit nachgewiesen werden, dass durch den Verlust von RSK hyperaktiviertes ERK in den Zellkörpern der Motoneurone vorliegt. RSK wird durch den ERK/MAPK-Signalweg aktiviert und übernimmt eine Funktion sowohl als Effektorkinase als auch in der Negativregulation des Signalwegs. Demnach dient RSK in den Zellkörpern der Motoneurone als Negativregulator des ERK/MAPK-Signalwegs. Darüber hinaus könnte RSK die Verteilung von aktivem ERK in den Subkompartimenten der Motoneurone regulieren. Da in vorangegangenen Studien gezeigt werden konnte, dass ERK an der Regulation der synaptischen Plastizität beteiligt ist, indem es die Insertion der AMPA-Rezeptoren zur Bildung der LTP reguliert, sollte in dieser Arbeit aufgeklärt werden, ob der Einfluss von RSK auf die synaptische Plastizität durch seine Funktion als Negativregulator von ERK zustande kommt. Untersuchungen der genetischen Interaktion von rsk und rolled, dem Homolog von ERK in Drosophila, zeigten, dass die durch den Verlust von RSK beobachtete reduzierte Gesamtzahl der Aktiven Zonen und Glutamatrezeptorfelder der neuromuskulären Synapse auf die Funktion von RSK als Negativregulator von ERK zurückzuführen ist. Die Größe der neuromuskulären Synapse sowie die Größe der Aktiven Zonen und Glutamatrezeptorfelder beeinflusst RSK allerdings durch seine Funktion als Effektorkinase des ERK/MAPK-Signalwegs. Studien des axonalen Transports von Mitochondrien zeigten, dass dieser in vielen neuropathologischen Erkrankungen beeinträchtigt ist. Die durchgeführten Untersuchungen des axonalen Transports in Motoneuronen konnten eine neue Funktion von RSK in der Regulation des axonalen Transports aufdecken. In den Axonen der Motoneurone von RSK-Nullmutanten wurden BRP- und CSP-Agglomerate nachgewiesen. RSK könnte an der Regulation des axonalen Transports von präsynaptischem Material beteiligt sein. Durch den Verlust von RSK wurden weniger Mitochondrien in anterograder Richtung entlang dem Axon transportiert, dafür verweilten mehr Mitochondrien in stationären Phasen. Diese Ergebnisse zeigen, dass auch der anterograde Transport von Mitochondrien durch den Verlust von RSK beeinträchtigt ist. N2 - In this thesis the function RSK in motoneurons of Drosophila has been analyzed. Mutations in the RSK2-gene cause the Coffin-Lowry-Syndrome (CLS) which is characterized by mental retardation. RSK2 is predominantly expressed in regions of the brain where learning and formation of the memory take place. Even no obvious changes in brain structures could be observed at macroscopic level in mouse and Drosophila which serve as an animal model for CLS. However deficits in various learning tasks could be observed due to the loss of the RSK function. Synaptic plasticity and the following changes in synaptic properties are fundamental for adaptive behaviors. The neuromuscular system of Drosophila suits as a model for studies of the synaptic plasticity because of the stereotypic innervation pattern and the use of ionotropic glutamate receptors which subunits are homologous to the subunits of the mammalian AMPA-type of glutamate receptors which are essential for the formation of LTP in the hippocampus. This study shows that RSK is located at the presynaptic site of the motoneurons of Drosophila which indicates a synapse-specific function of RSK. The structural analysis of the neuromuscular junction (NMJ) show that the loss of RSK causes a reduction in size of the NMJ, boutons, active zones and glutamate receptor fields. More boutons were found at the NMJ, but less active zones and glutamate receptor fields were established. The localization of RSK at the postsynaptic side could not be detected in this study although RSK regulates the synaptic transmission by affecting the postsynaptic sensitivity but not the presynaptic neurotransmitter release. Hence RSK could take part in the regulation of synaptic plasticity. Immunohistochemical analysis could depict a novel function of RSK in the synapse-specific localization of ERK. Further this study show that due to the loss of RSK more activated ERK is located in den cell bodies of the motoneurons. RSK functions as a negative regulator of the ERK/MAPK signaling in the somata of motoneurons. Additionally, RSK could regulate the distribution of ERK in the different subcompartments of the motoneurons. Previous studies show ERK as a regulator of synaptic plasticity by influencing the insertion of AMPA receptors into the postsynaptic membrane during LTP. RSK is activated by the ERK/MAPK signaling and functions not only as an effector kinase but also as a negative regulator of this pathway. If the effect of RSK on synaptic plasticity is due to its function as a negative regulator of ERK should be clarified in this work. Analysis of the genetic interactions of rsk and rolled, the Drosophila homologue of mammalian ERK, show that the reduced number of active zones and glutamate receptor fields found at the NMJ of RSK null mutants is caused by the function of RSK as a negative regulator of ERK. In turn RSK affects the size of the NMJ, also the size of the active zones and glutamate receptor fields by its function as an effector kinase of the ERK/MAPK signaling. Several studies have shown that the axonal transport of mitochondria is affected in many neuropathological diseases. This work could uncover a novel function of RSK in the regulation of the axonal transport in motoneurons. The loss of RSK causes the formation of agglomerates of the presynaptic proteins BRP and CSP. Therefore RSK takes part in the regulation of the transport of presynaptic material. In absence of RSK less mitochondria are transported in anterograde direction and more mitochondria are pausing. This results implicate a function of RSK in regulating the anterograde transport of mitochondria. KW - Taufliege KW - RSK KW - axonaler Transport KW - synaptische Funktion KW - ERK KW - Motoneuron KW - Motoneuron KW - Genmutation KW - Drosophila Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-130717 ER - TY - THES A1 - Ruf, Franziska T1 - The circadian regulation of eclosion in \(Drosophila\) \(melanogaster\) T1 - Die zeitliche Steuerung des Adultschlupfes in \(Drosophila\) \(melanogaster\) N2 - Eclosion is the emergence of an adult insect from the pupal case at the end of development. In the fruit fly Drosophila melanogaster, eclosion is a circadian clock-gated event and is regulated by various peptides. When studied on the population level, eclosion reveals a clear rhythmicity with a peak at the beginning of the light-phase that persists also under constant conditions. It is a long standing hypothesis that eclosion gating to the morning hours with more humid conditions is an adaption to reduce water loss and increase the survival. Eclosion behavior, including the motor pattern required for the fly to hatch out of the puparium, is orchestrated by a well-characterized cascade of peptides. The main components are ecdysis-triggering hormone (ETH), eclosion hormone (EH) and crustacean cardioactive peptide (CCAP). The molt is initiated by a peak level and pupal ecdysis by a subsequent decline of the ecdysteroid ecdysone. Ecdysteroids are produced by the prothoracic gland (PG), an endocrine tissue that contains a peripheral clock and degenerates shortly after eclosion. Production and release of ecdysteroids are regulated by the prothoracicotropic hormone (PTTH). Although many aspects of the circadian clock and the peptidergic control of the eclosion behavior are known, it still remains unclear how both systems are interconnected. The aim of this dissertation research was to dissect this connection and evaluate the importance of different Zeitgebers on eclosion rhythmicity under natural conditions. Potential interactions between the central clock and the peptides regulating ecdysis motor behavior were evaluated by analyzing the influence of CCAP on eclosion rhythmicity. Ablation and silencing of CCAP neurons, as well as CCAP null-mutation did not affect eclosion rhythmicity under either light or temperature entrainment nor under natural conditions. To dissect the connection between the central and the peripheral clock, PTTH neurons were ablated. Monitoring eclosion under light and temperature entrainment revealed that eclosion became arrhythmic under constant conditions. However, qPCR expression analysis revealed no evidence for cycling of Ptth mRNA in pharate flies. To test for a connection with pigment-dispersing factor (PDF)-expressing neurons, the PDF receptor (PDFR) and short neuropeptide F receptor (sNPFR) were knocked down in the PTTH neurons. Knockdown of sNPFR, but not PDFR, resulted in arrhythmic eclosion under constant darkness conditions. PCR analysis of the PTTH receptor, Torso, revealed its expression in the PG and the gonads, but not in the brain or eyes, of pharate flies. Knockdown of torso in the PG lead to arrhythmicity under constant conditions, which provides strong evidence for the specific effect of PTTH on the PG. These results suggest connections from the PDF positive lateral neurons to the PTTH neurons via sNPF signaling, and to the PG via PTTH and Torso. This interaction presumably couples the period of the peripheral clock in the PG to that of the central clock in the brain. To identify a starting signal for eclosion and possible further candidates in the regulation of eclosion behavior, chemically defined peptidergic and aminergic neurons were optogenetically activated in pharate pupae via ChR2-XXL. This screen approach revealed two candidates for the regulation of eclosion behavior: Dromyosuppressin (DMS) and myo-inhibitory peptides (MIP). However, ablation of DMS neurons did not affect eclosion rhythmicity or success and the exact function of MIP must be evaluated in future studies. To assess the importance of the clock and of possible Zeitgebers in nature, eclosion of the wildtype Canton S and the clock mutant per01 and the PDF signaling mutants pdf01 and han5304 was monitored under natural conditions. For this purpose, the Würzburg eclosion monitor (WEclMon) was developed, which is a new open monitoring system that allows direct exposure of pupae to the environment. A general decline of rhythmicity under natural conditions compared to laboratory conditions was observed in all tested strains. While the wildtype and the pdf01 and han5304 mutants stayed weakly rhythmic, the per01 mutant flies eclosed mostly arrhythmic. PDF and its receptor (PDFR encoded by han) are required for the synchronization of the clock network and functional loss can obviously be compensated by a persisting synchronization to external Zeitgebers. The loss of the central clock protein PER, however, lead to a non-functional clock and revealed the absolute importance of the clock for eclosion rhythmicity. To quantitatively analyze the effect of the clock and abiotic factors on eclosion rhythmicity, a statistical model was developed in cooperation with Oliver Mitesser and Thomas Hovestadt. The modelling results confirmed the clock as the most important factor for eclosion rhythmicity. Moreover, temperature was found to have the strongest effect on the actual shape of the daily emergence pattern, while light has only minor effects. Relative humidity could be excluded as Zeitgeber for eclosion and therefore was not further analyzed. Taken together, the present dissertation identified the so far unknown connection between the central and peripheral clock regulating eclosion. Furthermore, a new method for the analysis of eclosion rhythms under natural conditions was established and the necessity of a functional clock for rhythmic eclosion even in the presence of multiple Zeitgebers was shown. N2 - Der Schlupf adulter Fliegen aus dem Puparium wird in der Taufliege Drosophila melanogaster zum einen von der inneren Uhr und zum anderen von Peptiden gesteuert. Beobachtet man den Schlupf auf der Populationsebene, lässt sich erkennen, dass die meisten Fliegen zu Beginn der Lichtphase schlüpfen. Diese Rhythmizität im Schlupfverhalten von Fliegenpopulationen hält auch unter konstanten Bedingungen an. Seit langer Zeit wird angenommen, dass der Schlupf am Morgen eine Anpassung an feuchte Bedingungen ist, wodurch der Wasserverlust verringert und die Überlebenswahrscheinlichkeit erhöht werden könnte. Das stereotype motorische Schlupfverhalten, mit dem sich die Fliege aus der Puppenhülle befreit, wird durch das gut untersuchte Zusammenspiel zahlreicher Peptide gesteuert. Die wichtigsten Peptide sind hierbei das ecdysis-triggering hormone (ETH), das Schlupfhormon (EH) und das crustacean cardioactive peptide (CCAP). Wie bei jedem Schlupf wird die Häutung durch eine stark erhöhte Produktion des Ecdysteroids Ecdyson ausgelöst. Der anschließende Abfall der Ecdyson-Titer löst dann den Adultschlupf aus. Ecdysteroide werden in der Prothorakaldrüse (PD) gebildet, die eine periphere Uhr besitzt und kurz nach dem Adultschlupf zurückgebildet wird. Das prothorakotrope Hormon (PTTH) reguliert sowohl die Produktion als auch die Freisetzung der Ecdysteroide aus der PD. Obwohl bereits viel über den Aufbau und die Funktionsweise der inneren Uhr und der Kontrolle des Adultschlupfes durch Peptide bekannt ist, weiß man bisher nicht, wie beide Systeme miteinander interagieren. Das Hauptziel der vorliegenden Arbeit war es, einerseits diese Verbindung zu untersuchen und andererseits die Gewichtung verschiedener Zeitgeber für den Adultschlupf unter natürlichen Bedingungen zu bewerten. Um eine mögliche Verbindung zwischen der zentralen Uhr und den Peptiden, die das motorische Verhalten während des Schlupfes steuern, zu untersuchen, wurde der Einfluss von CCAP auf die Schlupfrhythmik betrachtet. Hierzu wurden die CCAP-exprimierenden Neurone genetisch ablatiert oder elektrisch stillgelegt, sowie zusätzlich eine CCAP-defiziente Mutante getestet. Weder unter künstlichen Licht- oder Temperaturzyklen, noch unter natürlichen Bedingungen wurden Effekte auf den Schlupfrhythmus bei veränderter CCAP Verfügbarkeit beobachtet. Die Verbindung zwischen der zentralen und der peripheren Uhr der PD wurde untersucht, indem die PTTH-exprimierenden Neurone in Fliegen ablatiert wurden. Dies führte sowohl unter konstanten Licht- als auch Temperaturbedingungen zu arrhythmischem Schlupf der Populationen. Die Analyse der Expression von Ptth mRNA mittels qPCR lieferte keine Hinweise auf eine zyklische Regulation des Ptth Transkripts in pharaten Tieren. Um eine Verbindung zu pigment-dispersing factor (PDF)-exprimierenden Uhrneuronen nachzuweisen, wurden die Rezeptoren von PDF (PDFR) und dem short Neuropeptide F (sNPFR) in den PTTH- Neuronen herunterreguliert. Nur der Verlust von sNPFR führte unter konstanten Bedingungen zu arrhythmischem Schlupf. RT-PCR-Analyse der mRNA Expression des Rezeptors von PTTH, Torso, ergab, dass torso mRNA in pharaten Fliegen nur in der PD und in den Gonaden exprimiert wird, nicht jedoch im Gehirn. Das Herrunterregulieren der torso mRNA in der PD führte unter konstanten Bedingungen zu arrhythmischem Schlupf und lieferte deutliche Hinweise zur spezifischen Funktion von PTTH in der PD. Diese Ergebnisse zeigen eine sNPF-vermittelte Verbindung zwischen den PDF-positiven lateralen Neuronen und den PTTH-Neuronen, welche über PTTH und Torso weiter bis in die PD reicht. Durch diese Verbindung wird vermutlich die Periode der peripheren Uhr in der PD an die Periode der zentralen Uhr im Gehirn angepasst. Um ein Startsignal für den Adultschlupf und weitere mögliche Kandidaten, die eine Rolle in der Steuerung des Schlupfes spielen, zu identifizieren, wurden chemisch definierte kleine Gruppen peptiderger und aminerger Neurone optogenetisch durch das Kanalrhodopsin ChR2-XXL aktiviert. In dieser Testreihe wurden Dromyosuppressin (DMS) und myoinhibitorisches Peptid (MIP) als mögliche Kandidaten ermittelt. Eine Ablation der DMS-Neurone hatte jedoch keine Auswirkungen auf Schlupfrhythmik und -erfolg. Die genaue Funktion von MIP sollte in zukünftigen Experimenten untersucht werden. Um die Gewichtung der Uhr und möglicher Zeitgeber für das natürliche Verhalten zu bestimmen, wurde der Schlupf des Wildtyps Canton S, der Uhrmutante per01 sowie der PDF-Signalwegsmutanten pdf01 und han5304 (han codiert für den PDFR) unter natürlichen Bedingungen beobachtet. Hierfür wurde ein neues und offenes Aufzeichnungssystem entwickelt: der Würzburger Schlupfmonitor (WEclMon), der einen direkten Kontakt der Puppen mit den sie umgebenden abiotischen Bedingungen ermöglicht. Im Vergleich zu Laborbedingungen war die Rhythmizität des Schlupfes unter natürlichen Bedingungen in allen getesteten Fliegenlinien weniger ausgeprägt. Während der Wildtyp sowie die pdf01 und han5304 Mutanten weiterhin schwach rhythmisch schlüpften, schlüpfte die per01 Mutante hauptsächlich arrhythmisch. Das Zusammenspiel zwischen PDF und seinem Rezeptor synchronisiert das Uhrnetzwerk, und der Verlust dieser Interaktion kann durch tägliches neues Ausrichten an den Zeitgebern ausgeglichen werden. Der Verlust des Uhrproteins PER unterbindet jedoch die komplette Funktionsfähigkeit der Uhr. Dadurch wird die Notwendigkeit der Uhr für einen rhythmischen Schlupf unterstrichen. Um den Einfluss der Uhr und abiotischer Faktoren auf den Schlupfrhythmus zu untersuchen, wurde im Rahmen einer Kooperation mit Oliver Mitesser und Thomas Hovestadt ein statistisches Modell entwickelt. Die Ergebnisse der Modellierung unterstützen die Hypothese, dass die Uhr der wichtigste Faktor für einen rhythmischen Schlupf auch unter Zeitgeber-Bedingungen ist. Die Umgebungstemperatur übt hingegen den stärksten Einfluss auf die Form des täglichen Schlupfmusters aus, während Licht hier nur einen schwachen Einfluss hat. Es konnte gezeigt werden, dass sich relative Luftfeuchtigkeit nicht als Zeitgeber für den Schlupf eignet, weshalb sie in weiteren Untersuchungen nicht berücksichtigt wurde. Zusammenfassend lässt sich sagen, dass mit der vorliegenden Arbeit die Verbindung zwischen der zentralen und peripheren Uhr in der Steuerung des Schlupfes identifiziert werden konnten, die bisher nicht bekannt war. Außerdem wurde eine neue Methode der Untersuchung des Adultschlupfes unter natürlichen Bedingungen etabliert und die Notwendigkeit einer intakten Uhr für einen rhythmischen Adultschlupf selbst in Anwesenheit mehrerer Zeitgeber konnte herausgestellt werden. KW - Taufliege KW - Tagesrhythmus KW - Adultschlupfes Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-146265 ER - TY - THES A1 - Guan, Chonglin T1 - Functional and genetic dissection of mechanosensory organs of \(Drosophila\) \(melanogaster\) T1 - Funktionelle und genetische Analyse von mmechanosensorischen Organe in \(Drosophila\) \(melanogaster\) N2 - In Drosophila larvae and adults, chordotonal organs (chos) are highly versatile mechanosensors that are essential for proprioception, touch sensation and hearing. Chos share molecular, anatomical and functional properties with the inner ear hair cells of mammals. These multiple similarities make chos powerful models for the molecular study of mechanosensation. In the present study, I have developed a preparation to directly record from the sensory neurons of larval chos (from the lateral chos or lch5) and managed to correlate defined mechanical inputs with the corresponding electrical outputs. The findings of this setup are described in several case studies. (1) The basal functional lch5 parameters, including the time course of response during continuous mechanical stimulation and the recovery time between successive bouts of stimulation, was characterized. (2) The calcium-independent receptor of α-latrotoxin (dCIRL/Latrophilin), an Adhesion class G protein-coupled receptor (aGPCR), is identified as a modulator of the mechanical signals perceived by lch5 neurons. The results indicate that dCIRL/Latrophilin is required for the perception of external and internal mechanical stimuli and shapes the sensitivity of neuronal mechanosensation. (3) By combining this setup with optogenetics, I have confirmed that dCIRL modulates lch5 neuronal activity at the level of their receptor current (sensory encoding) rather than their ability to generate action potentials. (4) dCIRL´s structural properties (e.g. ectodomain length) are essential for the mechanosensitive properties of chordotonal neurons. (5) The versatility of chos also provides an opportunity to study multimodalities at multiple levels. In this context, I performed an experiment to directly record neuronal activities at different temperatures. The results show that both spontaneous and mechanically evoked activity increase in proportion to temperature, suggesting that dCIRL is not required for thermosensation in chos. These findings, from the development of an assay of sound/vibration sensation, to neuronal signal processing, to molecular aspects of mechanosensory transduction, have provided the first insights into the mechanosensitivity of dCIRL. In addition to the functional screening of peripheral sensory neurons, another electrophysiological approach was applied in the central nervous system: dCIRL may impact the excitability of the motor neurons in the ventral nerve cord (VNC). In the second part of my work, whole-cell patch clamp recordings of motor neuron somata demonstrated that action potential firing in the dCirl\(^K\)\(^O\) did not differ from control samples, indicating comparable membrane excitability. N2 - In Drosophila Larven, sowie in adulten Tieren, sind die Chordotonalorgane (Chos) sehr vielseitige Mechanosensoren und von wesentlicher Bedeutung für die Propriozeption, das Tastgefühl und die auditive Wahrnehmung. Chos teilen molekulare, anatomische und funktionelle Eigenschaften mit Innenohrhaarzellen der Säugetiere und machen sie somit zu leistungsstarken Modellen um molekulare Mechanismen der Mechanosensorik zu untersuchen. In der vorliegenden Studie habe ich ein Präparat entwickelt, um direkt von sensorischen Neuronen der larvalen Chos (von lateralen Chos oder lch5) abzuleiten und definierte mechanische Eingänge mit den korrelierenden elektrischen Ausgängen zu verbinden. Im Folgenden sind die Ergebnisse dieses experimentellen Setups zusammengefasst. (1) Die basalen funktionellen Parameter von lch5 insbesondere der Zeitverlauf der Reaktion während kontinuierlicher mechanischer Stimulation und die Erholungszeit zwischen aufeinanderfolgenden Stimulationen wurden bestimmt. (2) Der Calcium-unabhängige Rezeptor von α-Latrotoxin (dCIRL/Latrophilin), ein Adhäsion Klasse G-Protein-gekoppelter Rezeptor (GPCR) wurde als Modulator der von Ich5 Neuronen perzipierten mechanischen Signale identifiziert. Die Ergebnisse zeigen, dass dCIRL/Latrophilin für die Wahrnehmung der externen und internen mechanischen Reize erforderlich ist und die Empfindlichkeit neuronaler Mechanosensorik modelliert. (3) Mit Hilfe optogenetischer Werkzeuge konnte ich bestätigen, dass dCIRL die Aktivität von lch5 Neuronen auf Ebene des Rezeptorstroms (sensorische Kodierung) und nicht der Generierung von Aktionspotentialen moduliert. (4) Die strukturellen Eigenschaften von dCIRL (z.B. Ektodomänenlänge) sind wesentlich für die mechanosensitiven Eigenschaften von Chos. (5) Die Vielseitigkeit der Chos bietet des Weiteren die Möglichkeit, Multimodalitäten auf mehreren Ebenen zu untersuchen. In diesem Zusammenhang wurde die neuronale Aktivität der Chos bei verschiedenen Temperaturen analysiert. Die Ergebnisse zeigen, dass sich sowohl spontane als auch mechanisch evozierte Aktivität im Verhältnis zur Temperatur erhöhen, was darauf hindeutet, dass dCIRL keine Rolle in der Temperaturwahrnehmung spielt. Diese Erkenntnisse, von der Entwicklung des Präparats der Ton/Vibrations Wahrnehmung, über die neuronalen Signalverarbeitung bis hin zu molekularen Aspekten der Mechanotransduktion, haben erste Einblicke in die Mechanosensitivität von dCIRL gewährt. Neben der funktionellen Charakterisierung peripherer sensorischer Neurone wurde ein weiterer elektrophysiologischer Ansatz im larvalen Zentralnervensystem gewählt, um zu untersuchen, ob sich dCIRL auf die Erregbarkeit motorischer Nervenzellen im Strickleiternervensystem (VNC) auswirkt. Im zweiten Teil meiner Arbeit wird mit Hilfe des whole-cell-patch-clamp-Verfahrens gezeigt, dass die Aktionspotentialfrequenz in Motoneuronen von dCirl\(^K\)\(^O\) Mutanten ähnlich derer von Kontrolltieren ist, d.h. ihre Membranerregbarkeit ist vergleichbar. KW - Taufliege KW - Drosophila KW - Mechanosensation KW - Adhesion-GPCR KW - Electrophysiology KW - Mechanorezeptor KW - Elektrophysiologie KW - Chordontonal organ Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-146220 ER - TY - THES A1 - Batsching, Sophie Johanna T1 - Behavior under uncontrollable stress in \(Drosophila\) \(melanogaster\) - Learned Helplessness revisited T1 - Verhalten unter nicht kontrollierbarem Stress - Neubetrachtung der Erlernten Hilflosigkeit bei \(Drosophila\) \(melanogaster\) N2 - In order to select the appropriate behavior, it is important to choose the right behavior at the right time out of many options. It still remains unclear nowadays how exactly this is managed. To address this question, I expose flies (Drosophila melanogaster) to uncontrollable stress to study their behavior under restrictive circumstances by using the so-called shock box. Exposing animals to uncontrollable stress may have an impact on subsequent behavior and can last for some time. The animal learns that whatever it does, it cannot change the situation and therefore can develop something called learned helplessness. The term was first conceptualized by two American psychologists Maier and Seligman (1967), who discovered this phenomenon while doing experiments with dogs. They found out that dogs which are exposed to inescapable stress, later fail in a learning task (‘shuttle box’). In this work the walking patterns of three different types of experimental flies, walking in a small dark chamber, were evaluated. Using the triadic design (Seligman and Maier, 1967), flies were either exposed to electric shock randomly (yoked), could turn it off by being active (master) or did not receive punishment at all (control). Master flies were shocked whenever they sat for more than 0.9 seconds. At the same time yoked flies received a shock as well independent of what they were doing, to ensure the same amount of shocks received and to create random punishment pattern for the yoked group. With this so-called no-idleness paradigm flies were conditioned either 10 minutes, which resulted in a short (3 minutes) after-effect, or 20 minutes that turned out to be more stable (10 minutes). In a second part, the behavior during the 20 minute conditioning and a 10 minutes post-test was described in detail. Female flies of the yoked group developed lower activity levels, longer pauses and walked more slowly than master and control flies during conditioning. In the time after the shocks while still in the box, the yoked flies also reduced the frequency and duration of walking bouts as well as their walking speed. Additionally, they took more time to resume walking after the onset of an electric shock than master flies (escape latency) and turned out to make less pauses lasting between 1-1.5 seconds which supports the finding concerning the escape latency. Male flies, tested under the same conditions, showed a slightly weaker after-effect regarding the difference between master and yoked during conditioning and post-test when compared to female flies. When comparing the 20 minutes conditioning with subsequent 10 minutes test in the heat and the shock box in parallel, one finds the same effect: Flies which do not have control over the shocks, lower their activity, make less but longer pauses and walk more slowly than their respective master flies. Despite the similar effect of heat and shock on the flies, some differences between the devices occurred, which can partly be explained by different humidity conditions as well as by different surfaces within the chambers. When the control over the shocks is given back to the yoked flies, it takes them about seven minutes to realize it. One could also show that dopamine levels in the brain were reduced in comparison to flies which did not receive shocks. Yoked flies also were impaired in a place learning task (place learning) and their reaction to light (exit from the box towards the light) directly after conditioning. After characterizing the walking behavior in the chambers, the study deals with the question whether the effects observed in the chambers transfer to different environments. In free walk they only differed from flies which did not receive electric shocks and no effect of uncontrollability was transferred to courtship behavior. Handling as the cause could be excluded. Since handling could be exclude to be the cause of losing the effect, I assumed that the behavior shown in the boxes are context depend. Not only were the after-effects of inescapable shock subject of the current research also the impact of the rearing situation on the response to electric shock was investigated in the present study. Flies which grew up in a single-reared situation turned out to be less affected by inescapable stress in both sexes. In the next part, the first steps to unravel the neuronal underpinning were taken. A mutant – fumin – which is defective in the dopamine re-uptake transporter showed less reaction to inescapable foot shocks, while a mutant for the gene which encodes an adenylate cyclase (rutabaga2080) resulted in a good score during conditioning, but showed no stable after-effect. Downregulating the expression of the adenylate cyclase gene (rutabaga) in different parts of the mushroom bodies showed, that rutabaga is necessary in the α’β’-lobes for expressing the differences between master and yoked flies in the no-idleness paradigm. The study further confirmed previous findings, that rutabaga is needed in operant but not in classical conditioning. As a result, the study could show that not the stimulus itself causes the state of uncontrollability but the fact that the fly learned that it was not in control of the stimulus. This state turned out to be context and time dependent. N2 - Eine wichtige Aufgabe für ein Tier ist es, das passende Verhalten zur richtigen Zeit zu wählen. Heutzutage ist immer noch unklar, wie dieser Prozess exakt abläuft. Zur Untersuchung dieser Frage werden Fliegen (Drosophila melanogaster) in der so genannten Schockbox unkontrollierbarem Stress ausgesetzt um auf diesem Weg Verhaltenskontrolle unter stressigen und stark restriktiven Umständen untersuchen zu können. Wenn Tiere unkontrollierbarem Stress ausgesetzt sind, kann dieser Zustand sowohl langanhaltend sein als auch Einfluss auf das Folgeverhalten haben. Das Tier lernt, dass alle Aktivitäten, die es in dieser Situation unternimmt keinen Einfluss auf die Situation haben. Dadurch kann das Tier einen Zustand der sogenannten Erlernten Hilflosigkeit entwickeln. Dieser Begriff wurde von zwei amerikanischen Psychologen, Maier und Seligman (1976), geprägt, die dieses Phänomen während Experimenten mit Hunden entdeckten und konzipierten. Sie fanden heraus, dass Hunde, die unkontrollierbarem Stress ausgesetzt waren, an einer anschließend gestellten Lernaufgabe scheiterten (‚shuttle-box‘). Gegenstand der vorliegenden Arbeit ist es, das Laufmuster in einer schmalen und kleinen Kammer an drei verschiedenen Versuchsgruppen von Fliegen zu analysieren. Unter Verwendung des sogenannten triadischen Konzepts (Seligman and Maier, 1967) wurden die Fliegen drei unterschiedlichen Situationen ausgesetzt: Zufällige Elektroschocks (Yoked-Gruppe), durch Laufen abschaltbare Elektroschocks (Master-Gruppe) oder keine Bestrafung (Kontroll-Gruppe). Master-Fliegen wurden immer dann geschockt, wenn sie für länger als 0,9 Sekunden saßen. Unabhängig ihres Verhaltens erhielten die Yoked-Fliegen zeitgleich einen Schock um einen zufälligen Bestrafungsreiz zu generieren. Mit diesem so genannten ‚no-idleness‘ (nicht ruhen dürfen) Paradigma wurden die Fliegen entweder zehn Minuten oder 20 Minuten konditioniert. Während eine zehnminütige Konditionierung zu einem kurzen Nacheffekt führte (Nacheffekt von drei Minuten), stellte sich die zwanzigminütige Konditionierung als nachhaltiger heraus (Nacheffekt von zehn Minuten). In einem zweiten Teil der Arbeit wurde das Verhalten der Fliegen sowohl während der zwanzig Minuten andauernden Konditionierung also auch im nachfolgenden zehnminütigen Test im Detail beschrieben. Während der zwanzigminütigen Konditionierung zeigten weibliche Yoked-Fliegen eine geringere Aktivität, saßen länger und liefen langsamer als Master- oder Kontroll-Fliegen. In der Zeit nach den Schocks, zeigten sie immer noch eine verminderte Lauffrequenz sowie kürzere und langsamere Laufphasen. Zusätzlich benötigten sie länger um nach dem Einsetzten eines Elektroschocks loszulaufen (Flucht-Latenzzeit) und machten weniger Kurzpausen die zwischen 1 bis 1,5 Sekunden lang waren. Dies unterstützt das Ergebnis der verlängerten Flucht-Latenzzeit. Männchen, die unter gleichen Bedingungen getestet wurden, wiesen im Vergleich zu weiblichen Fliegen eine leicht abgeschwächte Reaktion bezüglich des Master-Yoked-Unterschieds auf. Wenn die Konditionierung mit dem anschließenden Test in der Schock- und der Hitzekammer gleichzeitig durchgeführt wurde, resultierte dies in vergleichbaren Ergebnissen: Fliegen, die keine Kontrolle über den Reiz haben, vermindern ihr Aktivitätslevel, sitzen seltener aber länger und laufen langsamer als die dazugehörigen Master-Fliegen. Neben der Tatsache, dass ein ähnlicher Effekt auftritt, weisen die Apparaturen dennoch kleine Unterschiede auf. Diese können zu Teilen mit den unterschiedlichen Luftfeuchtigkeitsniveaus als auch durch die Verschiedenheit der Laufoberfläche der jeweiligen Kammern erklärt werden. Wird den Fliegen die Kontrolle über die Schocks zurückgegeben, benötigen sie etwa sieben Minuten um dies zu erkennen. Zudem konnte gezeigt werden, dass die Dopaminkonzentration in den Köpfen, im Vergleich zu Tieren die keine Schocks erhalten haben, vermindert war. Yoked-Fliegen wiesen außerdem unmittelbar nach der Konditionierung Defekte im Ortslernen und in ihrer positiven Reaktion auf Licht auf. Nachdem das Laufverhalten innerhalb der Kammern ausführlich charakterisiert wurde, geht diese Studie darauf ein, ob die Effekte, die in den Kammern gemessen wurden, auch in anderen Umgebungen zu beobachten sind. Im freien Lauf unterschieden sie sich lediglich von Fliegen, die keine Schocks erhalten hatten und es sind keine Auswirkungen durch Kontrollverlust im Paarungsverhalten festzustellen. Da die Handhabung der Tiere als Grund für den Verlust des Nacheffektes ausgeschlossen werden konnte, lässt sich schlussfolgern, dass das Verhalten das in den Kammern gemessen wurde, kontextabhängig ist. Zusätzlich zur Untersuchung der Auswirkungen unausweichlichen Stresses, wurde der Einfluss, der Aufzuchtbedingungen auf die Stress-Antwort in der vorliegenden Studie untersucht. Fliegen, die einzeln aufgezogen wurden, weisen bei beiden Geschlechtern eine verminderte Antwort auf Stress auf. Im darauffolgenden Abschnitt wurden erste Schritte unternommen, um die neuronalen Grundlagen der Erlernten Hilflosigkeit zu untersuchen. Eine Mutante – fumin – die ein defektes Wiederaufnahmetransporter-Gen für Dopamin besitzt, wies eine verminderte Stressantwort auf. Während eine Mutante des Adenylatzyklasegens (rutabaga2080) normale Ergebnisse während der Konditionierung aufzeigten, war im Post-test kein signifikanter Nacheffekt messbar. Das Herunterregulieren des Adenylatcyclasengens (rutabaga), in verschiedenen Teilen der Pilzkörper, zeigte dass die Expression von rutabaga in den α’β’-Loben für die Entwicklung der Erlernten Hilflosigkeit im no-idleness Paradigma benötigt wird. Zudem konnten vorangegangene Studien bestätigt werden, die rutabaga eine Rolle im operanten Lernen jedoch nicht im klassischen Lernen zuordnen. Als Fazit zeigt die Studie, dass nicht der Stressor selbst, sondern die Unkontrollierbarkeit des Stressors der Grund für die Entwicklung der Erlernten Hilflosigkeit darstellt und das Phänomen, innerhalb der hier gewählten Zeitspanne (20 Minuten Stress), kontextabhängig zu sein scheint. KW - Taufliege KW - Stress KW - Verhalten KW - Gelernte Hilflosigkeit KW - Erlernte Hilflosigkeit KW - Learned Helplessness KW - Behavior KW - Drosophila melanogaster Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-145416 ER - TY - THES A1 - Eck, Saskia T1 - The impact of thermogenetic depolarizations of specific clock neurons on Drosophila melanogaster's circadian clock T1 - Der Einfluss thermogenetischer Depolarisationen spezifischer Uhrneurone auf Drosophila melanogasters circadiane Uhr N2 - The rotation of the earth around its own axis determines periodically changing environmental conditions, like alterations in light and temperature. For the purpose of adapting all organisms’ behavior, physiology and metabolism to recurring changes, endogenous clocks have evolved, which allow the organisms to anticipate environmental changes. In chronobiology, the scientific field dealing with the investigation of the underlying mechanisms of the endogenous clock, the fruit fly Drosophila melanogaster serves as a beneficial model organism. The fruit fly’s circadian clock exhibits a rather simple anatomical organization, but nevertheless constitutes homologies to the mammalian system. Thus also in this PhD-thesis the fruit fly was used to decipher general features of the circadian clock’s interneuronal communication. Drosophila melanogaster’s circadian clock consists of about 150 clock neurons, which are located in the central nervous system of the fly. These clock neurons can be subdivided regarding to their anatomical position in the brain into the dorsal neurons (DN1s, DN2s, DN3s), as well as into the lateral neurons (LPNs, LNds, s-LNvs, l-LNvs). Functionally these clock neuron clusters can be classified as Morning- and Evening oscillators (M- and E- oscillators), driving different parts of the fly’s locomotor activity in light-dark conditions (LD). The Morning-oscillators are represented by the s-LNvs and are known to be the main pacemakers, driving the pace of the clock in constant conditions (constant darkness; DD). The group of Evening-oscillators consists of the LNds, the DN1s and the 5th s-LNv and is important for the proper timing of the evening activity in LD. All of these clock neurons are not functionally independent, but form complex neuronal connections, which are highly plastic in their response to different environmental stimuli (Zeitgebers), like light or temperature. Even though a lot is known about the function and the importance of some clock neuron clusters, the exact interplay between the neurons is not fully known yet. To investigate the mechanisms, which are involved in communication processes among different clock neurons, we depolarized specific clock cells in a temporally and cell-type restricted manner using dTrpA1, a thermosensitive cation channel, which allows the depolarization of neurons by application of temperature pulses (TP) above 29°C to the intact and freely moving fly. Using different clock specific GAL4-driver lines and applying TPs at different time points within the circadian cycle in DD enabled us with the help of phase shift experiments to draw conclusions on the properties of the endogenous clock. The obtained phase shifts in locomotor behavior elicited by specific clock neuronal activation were plotted as phase response curves (PRCs). The depolarization of all clock neurons shifted the phase of activity the strongest, especially in the delay zone of the PRC. The exclusive depolarization of the M oscillators together with the l-LNvs (PDF+ neurons: s-LNvs & l-LNvs) caused shifts in the delay and in the advance zone as well, however the advances were severely enhanced in their temporal occurrence ranging into the subjective day. We concluded that light might have inhibitory effects on the PDF+ cells in that particular part of the PRC, as typical light PRCs do not exhibit that kind of distinctive advances. By completely excluding light in the PRC-experiments of this PhD-thesis, this photic inhibitory input to the PDF+ neurons is missing, probably causing the broadened advance zone. These findings suggest the existence of an inhibitory light-input pathway to the PDF+ cells from the photoreceptive organs (Hofbauer-Buchner eyelet, photoreceptor cells of compound eyes, ocelli) or from other clock neurons, which might inhibit phase advances during the subjective day. To get an impression of the molecular state of the clock in the delay and advance zone, staining experiments against Period (PER), one of the most important core clock components, and against the neuropeptide Pigment Dispersing Factor (PDF) were performed. The cycling of PER levels mirrored the behavioral phase shifts in experimental flies, whereas the controls were widely unaffected. As just those neurons, which had been depolarized, exhibited immediate shifted PER oscillations, this effect has to be rapidly regulated in a cell-autonomous manner. However, the molecular link between clock neuron depolarization and shifts in the molecular clock’s cycling is still missing. This issue was addressed by CREB (cAMP responsive element binding protein) quantification in the large ventrolateral neurons (l-LNvs), as these neurons responded unexpectedly and strongest to the artificial depolarization exhibiting a huge increase in PER levels. It had been previously suggested that CREB is involved in circadian rhythms by binding to regulatory sequences of the period gene (Belvin et al., 1999), thus activating its transcription. We were able to show, that CREB levels in the l-LNvs are under circadian regulation, as they exhibit higher CREB levels at the end of the subjective night relative to the end of the subjective day. That effect was further reinforced by artificial depolarization, independently of the time point of depolarization. Furthermore the data indicate that rises in CREB levels are coinciding with the time point of increases of PER levels in the l-LNvs, suggesting CREB being the molecular link between the neuronal electrical state and the molecular clock. Taking together, the results indicate that a temporal depolarization using dTrpA1 is able to significantly phase shift the clock on the behavioral and protein level. An artificial depolarization at the beginning of the subjective night caused phase delays, whereas a depolarization at the end of the subjective night resulted in advances. The activation of all clock neurons caused a PRC that roughly resembled a light-PRC. However, the depolarization of the PDF+ neurons led to a PRC exhibiting a shape that did not resemble that of a light-mediated PRC, indicating the complex processing ability of excitatory and inhibitory input by the circadian clock. Even though this experimental approach is highly artificial, just the exclusion of light-inputs enabled us to draw novel conclusions on the network communication and its light input pathways. N2 - Die Rotation der Erde um ihre eigene Achse hat periodisch verändernde Umweltbedingungen, wie beispielsweise Veränderungen in den Lichtverhältnissen und der Temperatur, zur Folge. Um das Verhalten, die Physiologie und den Metabolismus eines Organismus an stets wiederkehrende Veränderungen anzupassen, haben sich endogene/circadiane Uhren entwickelt, die es dem Organismus erlauben diese Umweltbedingungen zu antizipieren. In der Chronobiologie, einem wissenschaftlichen Fachbereich, der sich mit der Untersuchung der zugrunde liegenden Mechanismen der Inneren Uhr befasst, dient die Taufliege Drosophila melanogaster als nützlicher Modellorganismus. Die Innere Uhr der Taufliege ist anatomisch eher einfach organisiert, weist trotz alledem jedoch Homologien zum Säugersystem auf. Auch im Rahmen dieser Doktorarbeit diente die Taufliege daher dazu grundlegende Netzwerkeigenschaften der circadianen Uhr zu untersuchen. Die Innere Uhr von Drosophila melanogaster besteht aus ungefähr 150 Uhrneuronen, die sich im zentralen Nervensystem der Fliege befinden. Diese Uhrneurone können, bezüglich ihrer anatomischen Position im Gehirn in die Gruppe der dorsalen Neurone (DN1, DN2, DN3), sowie in die der lateralen Neurone untergliedert werden (LPN, LNd, s-LNv, l-LNv). Funktionell werden diese Uhrneuronengruppen als Morgen- und Abendoszillatoren (M- und E-Oszillatoren) klassifiziert, da sie für unterschiedliche Verhaltensanteile in der Laufaktivität der Fliege unter Licht-Dunkel-Verhältnissen (LD) verantwortlich sind. Die s-LNv stellen dabei die Morgenoszillatoren (M-Oszillatoren) dar und werden als Hauptschrittmacher betrachtet, da sie die Geschwindigkeit der Uhr unter konstanten Bedingungen (Dauerdunkel; DD) bestimmen. Die Gruppe der Abendoszillatoren (EOszillatoren) besteht aus den LNd, einigen DN1 und der fünften s-LNv (5th s-LNv) und ist für die richtige Terminierung der Abendaktivität in LD zuständig. All diese Uhrneurone sind funktionell nicht unabhängig voneinander, sondern bilden komplexe neuronale Verschaltungen untereinander aus, die durch einen hohen Grad an Plastizität bezüglich ihrer Reaktion auf unterschiedliche Umweltparameter (Zeitgeber), wie Licht oder Temperatur, gekennzeichnet sind. Obwohl bereits vieles hinsichtlich der Funktion und der Bedeutung einiger Gruppen von Uhrneuronen bekannt ist, ist das genaue Zusammenspiel unter ihnen immer noch recht unklar. Um die Mechanismen, die in den Kommunikationsprozessen zwischen verschiedenen Uhrneuronen involviert sind, zu untersuchen, machten wir Gebrauch von dTrpA1, einem thermosensitiven Kationenkanal, der es durch die Applizierung von Temperaturpulsen (TP) über 29°C ermöglicht, Neuronen in der intakten und sich frei bewegenden Fliege zeitlich begrenzt und zellspezifisch zu depolarisieren. Mithilfe verschiedener Uhr-spezifischer GAL4-Treiberlinien und der Verabreichung von TP zu verschiedenen Zeitpunkten des circadianen Zyklus in DD, war es uns möglich Rückschlüsse auf die Eigenschaften der Inneren Uhr anhand von Phasen-Verschiebungsexperimenten zu ziehen. Die hervorgerufenen Phasenverschiebungen im Laufverhalten, die durch die Aktivierung spezieller Uhrneuronen hervorgerufen wurden, wurden dabei als Phasen Responz Kurve (engl. phase response curve; PRC) dargestellt. Die Depolarisierung aller Uhrneurone verschob die Phase der Aktivität am stärksten, insbesondere in der Phasen-Verzögerungszone der PRC. Wurden ausschließlich die M-Oszillatoren zusammen mit den l-LNv (PDF+ Neurone: s-LNv & l-LNv) depolarisiert, wurden ebenso Phasenverschiebungen nach vorne, wie auch nach hinten hervorgerufen, jedoch reichten die Verschiebungen nach vorne deutlich in den subjektiven Tag hinein. Daraus schlussfolgerten wir, dass Licht inhibitorischen Einfluss in diesem Bereich der PRC haben muss, da typische Licht-PRCs nicht derart ausgeprägte Vorverschiebungen aufweisen. Aufgrund des vollständigen Lichtausschlusses in den PRC-Versuchen dieser Doktorarbeit fehlt jedoch dieser Licht-vermittelte inhibitorische Einfluss zu den PDF+ Neuronen und führt daher zur zeitlich stark ausgeprägten Phasen-Vorverschiebungszone. Diese Ergebnisse lassen daher vermuten, dass ein inhibitorisch wirkender Licht-vermittelter Eingang zu den PDF+ Neuronen von den photorezeptiven Organen (Hofbauer-Buchner Äuglein, Photorezeptoren der Komplexaugen, Ocellen) oder von anderen Uhrneuronen existieren muss, der die Phasen-Vorverschiebungen während des subjektiven Tages unterdrückt. Um Kenntnis über den molekularen Status der Uhr in der Verzögerungs- und Phasen-Vorverschiebungszone zu erlangen, wurden Färbungen gegen das Protein Period (PER), eines der zentralen Bestandteile der Inneren Uhr und gegen das Neuropeptid Pigment Dispersing Factor (PDF) angefertigt. Der zeitliche Verlauf im Auf- und Abbau des PER Proteins spiegelte die Phasenverschiebungen im Verhalten der Experimentalfliegen wider, wohingegen die Kontrollen weitestgehend unauffällig blieben. Zudem waren nur diejenigen Neurone von einer unmittelbaren Verschiebung der PER Protein Oszillation betroffen, die depolarisiert wurden, was auf einen schnellen Zell-autonomen Prozess schließen lässt. Die molekulare Verknüpfung, die zwischen der Depolarisation der Uhrneuronen und der Verschiebung der molekularen Uhr-Oszillation fungiert, ist immer noch unbekannt. Diesem Thema wurde nachgegangen, indem CREB (engl. cAMP responsive element binding protein) in den großen ventrolateralen Neuronen (l-LNv) quantifiziert wurde, da diese Neuronen unerwarteterweise und am wirksamsten auf die artifizielle Depolarisation mit einer starken PER-Akkumulation reagiert haben. In vorherigen Arbeiten wurde bereits angenommen, dass CREB in die circadiane Rhythmik involviert sei, indem es an Regulationssequenzen des period Gens bindet (Belvin et al., 1999) und somit dessen Transkription aktiviert. Wir konnten zeigen, dass die Menge an CREB Protein in den l-LNv circadian reguliert wird, da diese am Ende der subjektiven Nacht im Vergleich zum Ende des subjektiven Tages deutlich erhöht ist. Dieser Effekt konnte durch die artifizielle Depolarisation, aber unabhängig von deren Zeitpunkt, weiter verstärkt werden. Zudem deuten die Ergebnisse darauf hin, dass die Akkumulation des CREB Proteins mit dem Zeitpunkt des Anstiegs des PER Proteins in den l-LNv koinzidiert. Das lässt die Vermutung zu, dass CREB als molekulare Verbindung zwischen dem elektrischen neuronalen Status und der molekularen Uhr dienen kann. Zusammenfassend lässt sich sagen, dass die zeitlich begrenzte Depolarisation mithilfe von dTrpA1 signifikante Phasenverschiebungen im Verhalten wie auch auf der Proteinebene hervorrufen kann. Eine artifizielle Depolarisation zu Beginn der subjektiven Nacht verursacht Phasenverschiebungen nach hinten, wohingegen eine Depolarisation zum Ende der subjektiven Nacht Phasenverschiebungen nach vorne zur Folge hat. Die Aktivierung aller Uhrneurone brachte eine PRC hervor, die weitestgehend einer Licht-PRC gleicht. Die Depolarisierung der PDF+ Zellen hingegen ergab eine PRC, die sich insbesondere bezüglich der ausgeprägten Phasen-Vorverschiebungszone von einer Licht-vermittelten PRC unterscheidet. Die Innere Uhr scheint somit die Fähigkeit zu besitzen, exzitatorische und inhibitorische Eingänge in komplexer Art und Weise zu verarbeiten. Obwohl der in dieser Doktorarbeit gewählte experimentelle Ansatz hochgradig artifiziell ist, war es uns gerade durch den Ausschluss von Licht möglich, neue Schlussfolgerungen bezüglich der Kommunikation innerhalb des Netzwerks und dessen Lichtinformations-Eingänge zu ziehen. KW - Chronobiologie KW - Circadian clock KW - Tagesrhythmus KW - Taufliege Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-137118 ER - TY - THES A1 - König, Sebastian T1 - Spatially selective visual attention in Drosophila melanogaster T1 - Räumlich selektive visuelle Aufmerksamkeit in Drosophila melanogaster N2 - Finding the right behavior at the right time is one of the major tasks of brains. In a natural scenery there is often an abundance of stimuli present and the brain has to separate the relevant from the irrelevant ones. Selective visual attention (SVA) is a property of higher visual systems that achieves this separation, as it allows to ‘[…] focus on one source of sensory input to the exclusion of others’ (Luck and Mangun, 1996). There are probably several forms of SVA depending upon the criteria used for the separation, such as salience, color, location in space, novelty, or motion. Many studies have investigated SVA in humans and non-human primates. However, complex functions like attention were initially not expected to be already implemented in the brains of simple organisms like Drosophila. After a first demonstration of selective attention in the fly (Wolf and Heisenberg, 1980), it took some time until other studies included attentional mechanisms in their argumentation to explain certain behaviors of Drosophila. However, their definition and characterization of attention differed and often was ambiguous. Here, one particular form, spatially selective visual attention in the fly Drosophila is investigated. It has been shown earlier that the fly spontaneously may restrict its behavioral responses in stationary flight to the visual stimuli on one side of the visual field. On the basis of experiments of Sareen et al., (2011) it has been conjectured that the fly has a focus of attention (FoA) and that the fly responds to the visual stimuli within this area of the visual field. Whether the FoA is the adequate concept for this spatial property of SVA in the fly needs to be further discussed and is a subject also of the present study. At this stage, the concept will be used in the description of the new results expanding the characterization of SVA. This study continued the investigation of SVA during tethered flight with variable but controlled visual input and an automated primary data evaluation. This standardized paradigm allowed for analysis of wild-type behavior as well as for a comparison of several mutant and pharmacologically manipulated strains to the wild-type. Some properties of human SVA like the occurrence of externally as well as internally caused shifts of attention were found in Drosophila and it could be shown, that SVA in the fly can be externally guided and has an attention span. Additionally, a neurotransmitter and proteins, which play a significant role in SVA were discovered. Based on this, the genetic tools available for Drosophila provided the means to a first examination of cells and circuits involved in SVA. Finally, the free walk behavior of flies that had been shown to have compromised SVA was characterized. The results suggested that the observed phenotypes of SVA were not behavior specific. Covert shifts of the FoA were investigated. The FoA can be externally guided by visual cues to one or the other side of the visual field and even after the cue has disappeared it remains there for <4s. An intriguing finding of this study is the fact, that the quality of the cue determines whether it is attractive or repellent. For example a cue can be changed from being repellent (negative) to being attractive (positive) by changing its oscillation amplitude from 4° to 2°. Testing the effectiveness of cues in the upper and lower visual field separately, revealed that the perception of a cue by the fly is not exclusively based on a sum of its specifications. Because positive cueing did not have an after-effect in each of the two half-fields alone, but did so if the cue was shown in both, the fly seems to evaluate the cue for each combination of parameters specifically. Whether this evaluation of the cue changed on a trial-to-trial basis or if the cue in some cases failed to shift the FoA can at this point not be determined. Looking at the responses of the fly to the displacement of a black vertical stripe showed that they can be categorized as no responses, syn-directional responses (following the direction of motion of the stripe) and anti-directional responses (in the opposite direction of the motion of the stripe). The yaw-torque patterns of the latter bared similarities with spontaneous body saccades and they most likely represented escape attempts of the fly. Syn-directional responses, however, were genuine object responses, distinguishable by a longer latency until they were elicited and a larger amplitude. These properties as well as the distribution of response polarities were not influenced by the presence or absence of a cue. When two stripes were displaced simultaneously in opposite directions the rate of no responses increased in comparison to the displacement of a single stripe. If one of the stripes was cued, both, the responses towards and away from the side of cue resembled the syn-directional responses. Significant progress was made with the elucidation of the neuronal underpinnings of SVA. Ablation of the mushroom bodies (MB) demonstrated their requirement for SVA. Furthermore, it was shown that dopamine signaling has to be balanced between too much and too little. Either inhibiting the synthesis of dopamine or its re-uptake at the synapse via the dDAT impaired the flies’ susceptibility to cueing. Using the Gal4/UAS system, cell specific expression or knockdown of the dDAT was used to scrutinize the role of MB sub-compartments in SVA. The αβ-lobes turned out to be necessary and sufficient to maintain SVA. The Gal4-line c708a labels only a subset of Kenyon cells (KC) within the αβ-lobes, αβposterior. These cells stand out, because of (A) the mesh-like arrangement of their fibers within the lobes and (B) the fact that unlike the other KCs they bypass the calyx and thereby the main source of olfactory input to the MBs, forming connections only in the posterior accessory calyx (Tanaka et al., 2008). This structure receives no or only marginal olfactory input, suggesting for it a role in tasks other than olfaction. This study shows their requirement in a visual task by demonstrating that they are necessary to uphold SVA. Restoring dDAT function in these approximately only 90 cells was probably insufficient to lower the dopamine concentration at the relevant synapses and hence a rescue failed. Alternatively, the processes mediating SVA at the αβ-lobes might require an interplay between all of their KCs. In conclusion, the results provide an initial point for future research to fully understand the localization of and circuitry required for SVA in the brain. In the experiments described so far, attention has been externally guided. However, flies are also able to internally shift their FoA without any cues from the outside world. In a set of 60 consecutive simultaneous displacements of two stripes, they were more likely to produce a response with the same polarity as the preceding one than a random polarity selection predicted. This suggested a dwelling of the FoA on one side of the visual field. Assuming that each response was influenced by the previous one in a way that the probability to repeat the response polarity was increased by a certain factor (dwelling factor, df), a random selection of response type including a df was computed. Implementation of the df removed the difference between observed probability of polarity repetition and the one suggested by random selection. When the interval between displacements was iteratively increased to 5s, no significant df could be detected anymore for pauses longer than 4s. In conclusion, Drosophila has an attention span of approximately 4s. Flies with a mutation in the radish gene expressed no after-effect of cueing and had a shortened attention span of about 1s. The dDAT inhibitor methylphenidate is able to rescue the first, but does not affect the latter phenotype. Probably, radish is differently involved in the two mechanisms. This study showed, that endogenous (covert) shifts of spatially selective visual attention in the fly Drosophila can be internally and externally guided. The variables determining the quality of a cue turned out to be multifaceted and a more systematic approach is needed for a better understanding of what property or feature of the cue changes the way it is evaluated by the fly. A first step has been made to demonstrate that SVA is a fundamental process and compromising it can influence the characteristics of other behaviors like walking. The existence of an attention span, the dependence of SVA on dopamine as well as the susceptibility to pharmacological manipulations, which in humans are used to treat respective diseases, point towards striking similarities between SVA in humans and Drosophila. N2 - Eine der Hauptaufgaben eines Gehirns ist es, das richtige Verhalten zur richtigen Zeit zu finden. In einer natürlichen Umgebung gibt es eine Vielzahl visueller Reize, die das Gehirn unterteilen muss in solche, die irrelevant und solche, die bedeutsam sind. Selektive visuelle Aufmerksamkeit (SVA) ist eine Eigenschaft hoch entwickelter visueller Systeme, die diese Unterteilung erzielt, indem sie es erlaubt „[…] eine Quelle sensorischen Inputs zu fokussieren und dabei andere auszuschließen“ (Luck and Mangun, 1996). In Abhängigkeit der Kriterien (z.B. Salienz, Farbe, Lage im Raum, Neuartigkeit oder Bewegung), die für die Aufteilung herangezogen werden, existieren wahrscheinlich mehrere Formen von SVA. Viele Studien haben sich mit SVA in Menschen und in Primaten beschäftigt, ohne jedoch zu erwarten, dass eine komplexe Funktion wie Aufmerksamkeit bereits in den Gehirnen von einfachen Organismen wie Drosophila implementiert zu finden. Erst einige Zeit nachdem selektive Aufmerksamkeit ein erstes Mal in der Fliege gezeigt worden war (Wolf, Heisenberg, 1980) begannen auch andere Studien Aufmerksamkeit in ihrer Argumentation als Erklärung für bestimmte Verhaltensweisen von Drosophila heranzuziehen. Definition und Charakterisierung des Begriffes Aufmerksamkeit waren jedoch oft mehrdeutig und unterschieden sich von Studie zu Studie. In dieser Arbeit wird eine ganz bestimmte Form von Aufmerksamkeit – räumlich selektive visuelle Aufmerksamkeit - anhand der Fliege Drosophila untersucht. Es wurde bereits gezeigt, dass die Fliege im stationären Flug ihre Verhaltensantworten spontan auf visuelle Reize einer Seite des visuellen Feldes beschränken kann. Basierend auf Experimenten von Sareen et al. (2011) wurde vermutet, dass die Fliege einen Aufmerksamkeitsfokus (FoA) besitzt und auf Reize, die innerhalb dieses Teils des visuellen Feldes liegen antwortet. Ob der FoA ein angemessenes Konzept für diese räumliche Eigenschaft von SVA in der Fliege ist, steht zur Debatte und ist auch ein Thema dieser Studie. Vorerst soll dieses Konzept jedoch für die Beschreibung der Ergebnisse, die die Charakterisierung von SVA vorantreiben, genutzt werden. Die vorliegende Arbeit führt die Untersuchung von SVA mit variablem aber kontrolliertem visuellem Input im stationären Flug fort und nutzt dazu eine automatisierte Datenerfassung. Dieses standardisierte Paradigma ermöglicht eine Analyse von Verhalten im Wildtyp aber auch einen Vergleich mit verschiedenen mutanten und pharmakologisch manipulierten Fliegenstämmen. Einige im Menschen auftretende Eigenschaften von SVA wurden auch in Drosophila gefunden. Dazu zählt das Auftreten von extern und intern verursachten Aufmerksamkeitsverlagerungen. Es konnte gezeigt werden, dass SVA in der Fliege extern gelenkt werden kann und eine Aufmerksamkeitsspanne aufweist. Zusätzlich wurden ein Neurotransmitter und einige Proteine entdeckt, die eine wichtige Rolle in SVA einnehmen. Darauf basierend ermöglichten es die verfügbaren genetischen Werkzeuge mit einer ersten Untersuchung der an SVA beteiligten Zellen und Netzwerke zu beginnen. Des Weiteren wurde das Laufverhalten von Fliegen, die Einschränkungen in SVA aufwiesen charakterisiert. Die Ergebnisse lassen vermuten, dass die beobachteten Phänotypen von SVA nicht verhaltensspezifisch sind. Als nächstes wurden interne Bewegungen des Aufmerksamkeitskegels (FoA) betrachtet. Der FoA kann durch visuelle Reize von außerhalb zu der einen oder der anderen Seite des visuellen Feldes gelenkt werden. Er verweilt dort für >4s nachdem der lenkende Reiz verschwunden ist. Es ist ein spannender Befund dieser Arbeit, dass dieser Reiz in Abhängigkeit seiner Beschaffenheit abstoßend oder anziehend sein kann. So kann ein abstoßender (negativer) Reiz auf einmal anziehend (positiv) werden, wenn seine Oszillationsamplitude von 4° auf 2° reduziert wird. Eine Überprüfung der Wirksamkeit von Aufmerksamkeitslenkung durch Reize im oberen und unteren Teil des visuellen Feldes ergab, dass die Wahrnehmung eines Reizes durch die Fliege sich nicht ausschließlich aus der Summe seiner Spezifikationen ergibt. Da positive Aufmerksamkeitslenkung in keinem der beiden Halbfelder einen Nacheffekt hatte, ein solcher aber bei der Präsentation von Reizen in beiden Felder gleichzeitig auftrat, kann vermutet werden, dass die Fliege den Reiz für jede Kombination von Parametern spezifisch bewertet. Ob sich diese Bewertung in jedem einzelnen Durchgang änderte oder ob der Reiz in manchen Fällen den FoA nicht auf eine Seite lenkte kann mit dem jetzigen Kenntnisstand nicht bestimmt werden. Betrachtet man die Antworten der Fliege auf eine Versetzung eines schwarzen vertikalen Streifens, so zeigt sich eine mögliche Unterteilung in die Kategorien „keine Antwort“, „syn-direktionale Antwort“ (der Bewegungsrichtung des Streifens folgend) und „anti-direktionale Antwort“ (entgegengesetzt zur Bewegungsrichtung des Streifens). Die Drehmomentmuster der letzteren Kategorie wiesen starke Ähnlichkeit zu spontanen Körpersakkaden auf und es handelte sich bei ihnen sehr wahrscheinlich um Fluchtversuche der Fliege. Syn-direktionale Antworten waren hingegen reine Objekt-Bewegungsantworten, erkennbar an einer längeren Latenz bis zu ihrer Auslösung und einer größeren Amplitude. Diese Eigenschaften und auch die Verteilung der Antworten auf die beiden Kategorien wurden durch die An- oder Abwesenheit eines vorhergehenden Reizes nicht beeinflusst. Wurden zwei Streifen gleichzeitig gegenläufig versetzt, so blieben die Antworten im Vergleich zur Versetzung eines einzelnen Streifens häufiger aus. Wurde der FoA zuvor auf eine Seite gelenkt, so entsprachen die Drehmomentmuster der Antworten auf diese Seite und auch die der Antworten auf die andere Seite denen der syn-direktionalen Antworten. Die Aufklärung der SVA zu Grunde liegenden neuronalen Strukturen konnte bedeutend vorangetrieben werden. Eine Ablation der Pilzkörper (MB) zeigte, dass diese für SVA benötigt werden. Außerdem konnte gezeigt werden, dass die von Dopamin übermittelte Signalstärke weder zu stark, noch zu schwach sein darf. Wurde die Synthese von Dopamin inhibiert oder seine Wiederaufnahme aus dem synaptischen Spalt mittels dDAT blockiert, führte dies dazu, dass die Aufmerksamkeit dieser Fliegen nicht mehr extern gelenkt werden konnte. Mithilfe des Gal4/UAS-Systems und zellspezifischer Expression oder Unterdrückung der Bildung von dDAT wurde die Rolle einzelner Strukturen der Pilzkörper in SVA genauer untersucht. Es zeigte sich, dass die αβ-Loben sowohl ausreichend als auch notwendig sind, um SVA nachhaltig zu lenken. Die Gal4-Linie c708a markiert einen Teil der Kenyonzellen (KC) innerhalb der αβ-Loben, αβposterior. Diese Zellen sind besonders, da (A) ihre Fasern innerhalb der Loben eine netzartige Anordnung aufweisen und (B) da sie anders als die anderen KCs nicht mit der Kalyx, der größten Quelle olfaktorischen Inputs in die MBs, verknüpft sind, sondern nur in der posterioren akzessorischen Kalyx Verbindungen ausbilden (Tanaka et al., 2008). Diese Struktur erhält keinen oder zumindest nur marginalen olfaktorischen Input und es ist anzunehmen, dass sie eher an Aufgaben aus anderen sensorischen Modalitäten beteiligt ist. In dieser Arbeit wird die Beteiligung dieser Zellen an einem visuellen Task gezeigt, genauer ihre Notwendigkeit für einen Nacheffekt der Lenkung von SVA. Eine Wiederherstellung der Funktion von dDAT in diesen ca. 90 Zellen war erfolglos, da die geringe Anzahl möglicherweise nicht ausreichte, um die Konzentration von Dopamin an den relevanten Synapsen zu senken. Es ist jedoch auch möglich, dass die Prozesse, die SVA über die αβ-Loben vermitteln ein Zusammenspiel aller dortigen KCs erfordern. Zusammen bilden die gesammelten Ergebnisse einen Ausgangspunkt für zukünftige Bestrebungen, die für SVA erforderlichen neuronalen Strukturen und deren Verortung komplett zu verstehen. In den bisher beschriebenen Experimenten wurde die Aufmerksamkeit extern gelenkt. Fliegen können ihren FoA aber auch ganz ohne äußerliche Reize intern verlagern. In einer Reihe von 60 aufeinanderfolgenden gleichzeitigen Versetzungen zweier Streifen zeigte sich, dass die Fliegen häufiger Antworten mit der gleichen Polarität wie die vorausgegangene produzierten, als dies eine zufällige Auswahl der Polarität vorhersagte. Dies ließ vermuten, dass der FoA auf einer Seite des visuellen Feldes verweilt. Es wurde angenommen, dass jede Antwort von der vorhergehenden beeinflusst wird, sodass die Wahrscheinlichkeit die Polarität dieser Antwort zu wiederholen um einen gewissen Faktor erhöht wird (dwelling factor, df). Deswegen wurde eine zufällige Verteilung der Antwortpolaritäten unter Berücksichtigung des df berechnet. Dadurch verschwand der Unterschied zwischen der beobachteten Wiederholungswahrscheinlichkeit einer Antwortpolarität und derer einer rein zufälligen Wahl der Antwort. Als das Intervall zwischen den einzelnen Versetzungen schrittweise auf 5s erhöht wurde, konnte bereits bei Pausen über 4s kein signifikanter df mehr festgestellt werden. Als Schlussfolgerung ergibt sich, dass Drosophila eine Aufmerksamkeitsspanne von etwa 4s besitzt. Fliegen mit einer Mutation im radish Gen zeigten keine anhaltende Lenkung von SVA und hatten zudem eine verkürzte Aufmerksamkeitsspanne von ungefähr 1s. Der dDAT-Inhibitor Methylphenidat beseitigte den zuerst erwähnten Phänotyp, verlängerte jedoch nicht die Aufmerksamkeitsspanne. Es ist anzunehmen, dass radish auf unterschiedliche Art und Weise an beiden Mechanismen beteiligt ist. Im Zuge dieser Arbeit wurde gezeigt, dass endogene (covert) Verlagerungen von räumlich selektiver visueller Aufmerksamkeit in der Fliege Drosophila intern und extern gelenkt werden können. Vielfältige Variablen bestimmen die Beschaffenheit eines Reizes. Es bedarf eines systematischeren Ansatzes, um die Eigenschaften eines Reizes genauer zu verstehen, die dessen Wahrnehmung durch die Fliege verändern. Es konnte bereits grundlegend gezeigt werden, dass SVA ein fundamentaler Prozess ist, dessen Fehlfunktion auch die Eigenschaften anderer Verhaltensweisen wie z.B. Laufen beeinflusst. Die Existenz einer Aufmerksamkeitsspanne, die Abhängigkeit von SVA von Dopamin sowie deren Zugänglichkeit für pharmakologische Manipulationen, deren Nutzen für den Menschen in der Behandlung aufmerksamkeitsbezogener Erkrankungen liegt, deuten auf starke Ähnlichkeiten zwischen SVA in Menschen und in Drosophila hin. KW - Taufliege KW - Visueller Reiz KW - visuell KW - Selektive Wahrnehmung KW - Aufmerksamkeit KW - Drosophila Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-134452 ER -