TY - THES A1 - Settels, Volker T1 - Quantum chemical description of ultrafast exciton self-trapping in perylene based materials T1 - Quanten-chemische Beschreibung von ultraschnellem Self-trapping von Exzitonen in Perylen-basierten Materialien N2 - Im Rahmen dieser Dissertation wurden sehr lange Exzitonen-Diffusionslängen (LD) unter idealen Bedingungen für Perylen-basierte Materialien simuliert. Dies ist ein Indiz dafür, dass die sehr kurzen LD in realen Materialien aus einer extrinsischen sowie einer intrinsischen Immobilisierung resultieren. Letztere basiert auf einer Relaxation in sogenannten „Self-Trapping“-Zustände. Ein tieferes Verständnis der dem Self-Trapping zugrunde liegenden atomistischen Prozesse ist notwendig, um zukünftig Materialien mit langen LD entwickeln zu können, bei denen eine intrinsische Exzitonen-Immobilisierung verhindert wird. Für die Entwicklung eines solchen mechanistischen Verständnisses ist das Vorliegen einer eindeutigen Korrelation zwischen der molekularen Anordnung und der LD unabdingbar. Diese weisen Einkristalle von Diindenoperylen (DIP) und α-Perylen-tetracarboxyl-anhydrid (α-PTCDA) auf. Bei ersteren wurde eine außergewöhnlich lange LD von 90 nm und bei letzteren nur 22 nm gemessen. Teil dieser Arbeit war es, Gründe für diesen Unterschied in der LD zu finden. Nur Self-Trapping kommt als Ursache in Frage. Aus diesem Grund eignen sich diese Materialien, um ein atomistisches Verständnis des Self-Trappings exemplarisch an ihnen zu erarbeiten. Mutmaßlich könnten Differenzen in der elektronischen Struktur in DIP und α-PTCDA für das unterschiedliche Self-Trapping verantwortlich sein. Allerdings konnte gezeigt werden, dass es für viele Perylen-basierte Materialien keine signifikanten Unterschiede in der elektronischen Struktur gibt, wodurch diese für die Aufklärung von Immobilisierungsmechanismen zu vernachlässigen sind. Eine weitere mögliche Begründung wäre in Polarisationseffekten im Kristall zu suchen, welche die elektronische Struktur in Perylen-basierten Materialien unterschiedlich beeinflussen. Vor allem ihr Einfluss auf Ladungstrennungs-Zustände (CT), die oberhalb des optisch hellen Frenkel-Zustandes liegen, war fraglich, weil sie energetisch abgesenkt werden könnten. Ein signifikanter Einfluss von Polarisationseffekten konnte aber für alle Zustände mittels eines polarisierbaren Kontinuum-Modells ausgeschlossen werden. Die geringe LD im α-PTCDA ist folglich ein Indiz für ein Self-Trapping, das durch die Kristallstruktur aus π-Stapeln evoziert wird, welche in DIP fischgrätenartig ist. Da Polarisationseffekte auszuschließen sind, übt der Kristall lediglich durch sterische Restriktionen einen Einfluss auf das Dimer aus. Daher muss die Methode für die Beschreibung von Self-Trapping nur diese Effekte berücksichtigen, so dass sich für den Einsatz des mechanical embedding QM/MM-Ansatzes entschieden wurde. Nun konnten Potentialflächen berechnet werden, auf denen anschließend eine Wellenpaketdynamik durchgeführt wurde. Diese Methode erlaubt es erstmals, Mechanismen der Exzitonen-Immobilisierung in organischen Materialien auf einer atomistischen Ebene zu beschreiben. Als Erklärung für Self-Trapping in α-PTCDA dienten Potentialflächen, die eine intermolekulare Verschiebung des Dimers im Kristall abbilden. So wurde eine Exzitonen-Immobilisierung innerhalb von 500 fs gefunden, die aus einem irreversiblem Energieverlust und einer lokalen Verzerrung der Kristallstruktur resultiert und auf diese Weise den weiteren Transport des Exzitons verhindert. Im Fall von DIP kann diese Immobilisierung aufgrund hoher Energiebarrieren nicht stattfinden. Diese Barrieren resultieren aus der fischgrätenartigen Kristallstruktur des DIP. Diese Diskrepanzen in der Dynamik erklären die unterschiedlichen LD-Werte für DIP und α-PTCDA. In einem weiteren Fall wurde eine Exzitonen-Immobilisierung in helikalen π Aggregaten von Perylen-tetracarboxyl-bisimid (PBI) Molekülen festgestellt. Hier wird Self-Trapping durch einen Relaxationsmechanismus verursacht, in dem das Exziton durch geringe asymmetrische Schwingungen des Aggregats innerhalb von 200 fs von dem hellen Frenkel- in den dunklen Frenkel-Zustand transferiert wird, wobei dieser Übergang von einem CT-Zustand vermittelt wird. Der gesamte Vorgang ist nur bei helikalen Aggregaten möglich, weil nur hier CT-Zustände sehr dicht bei dem hellen Frenkel-Zustand vorhanden sind. Im finalen Frenkel-Zustand tritt eine Torsionsbewegung um die π-Stapelachse ein, so dass ein Energieverlust und eine lokale Änderung der Aggregatstruktur erfolgt – also ein Self-Trapping des Exzitons. Dieser modellierte Mechanismus steht im Einklang zu allen vorliegenden experimentellen Daten. Diese Erkenntnisse lassen die Schlussfolgerung zu, dass in künftigen Materialen für organische Solarzellen eine irreversible und ultraschnelle Deformation des Aggregats nach der Photoanregung vermieden werden muss - will man lange LD erreichen. Nur so kann Self-Trapping von Exzitonen verhindert werden. N2 - In the context of this dissertation very long ranged exciton diffusion lengths (LD) were simulated for perylene-based materials under ideal conditions. This leads to the conclusion that the short LD values in existing materials result from an extrinsic and intrinsic immobilization. The latter, which is a specific material property, is based on a relaxation of the exciton into self-trapping states. An in-depth understanding of the atomistic processes defining self-trapping is essential to developing materials with long LD in the future, in which intrinsic immobilization is prevented. For the development of such a mechanistic understanding it is crucial that a clear relationship between molecular structure and LD is available. This is given by single crystals of diindeno perylene (DIP) and α-perylene tetracarboxylic anhydride (α-PTCDA). An extraordinary large LD of 90 nm was measured for the first one, while the latter possesses only 22 nm. Part of this thesis was to deliver reasons for this discrepancy. Only self-trapping comes into question to explain the different LD values. One reason for the different self-trapping in DIP and α-PTCDA could lie in the electronic structure. However, it was possible to demonstrate that a wide range of perylene-based materials possess no significant differences in their electronic structures. Consequently, such differences can be neglected for the explanation of immobilization mechanisms for the exciton. A further possible explanation could be polarization effects in the crystal, which influences the electronic structure of perylene based materials differently. Especially their influence on charge transfer (CT) states, which are located above the optically bright Frenkel state, was in question because such states could be stabilized by a polarizable surrounding. A significant influence of polarization effects on all considered states were excluded by using a polarizable continuum model. Hence, the small LD values in α-PTCDA are an evidence for self-trapping, which produces a crystal structure built up by π-stacks, while the one of DIP is of herringbone type. Since polarization effects can be neglected, is the dimer only via steric restrictions influenced by the crystal. Hence, a method describing self-trapping has to consider such effects, so that a mechanical embedding QM/MM approach is sufficient. Now, potential energy surfaces were calculated, on which wave packet dynamics were subsequently performed. In this way, atomistic mechanisms for the immobilization of excitons were described for the first time in organic materials. Self-trapping was studied in crystals of α-PTCDA by potential energy surfaces, which map an intermolecular shift motion of the dimer in the crystal. An immobilization of excitons occurs within 500 fs, which results from an irreversible energy loss together with a local deformation of the crystal lattice. This prevents a further transport of the exciton. In the case of DIP, this immobilization does not proceed due to high barriers. These barriers result from the herringbone type packing motif in the DIP crystal. This discrepancy in the dynamics explains the different LD values in DIP and α-PTCDA. In a further example, an exciton immobilization was found in helical π-aggregates of perylene tetracarboxylic bisimide (PBI) molecules. Self-trapping is caused by a relaxation mechanism, in which the exciton is transferred by asymmetric vibrations of the aggregate from the bright to a dark Frenkel state within 200 fs, whereby the transition is mediated by a CT state. However, the CT state is almost non-populated during the whole mechanism so that its participation could not yet be proven experimentally. This entire procedure is solely possible in helical aggregates, because only for such structures is there a CT state located next to the bright Frenkel state. At the final Frenkel state a torsional motion around the π-stacking axis is possible so that the loss in energy and the local rearrangement of the aggregate structure occurs, which means a self-trapping of the exciton. This mechanism is in perfect agreement with all available experimental data. These insights allow the conclusion that in future materials for organic solar cells an irreversible and ultrafast deformation of aggregates after photo-absorption must be avoided. Only in this way long LD values can be achieved and exciton self-trapping can be prevented. However, small LD values are always predicted in helical aggregates of perylene-based materials, because exciton immobilization occurs already due to small molecular motions. For this reason such aggregates are inappropriate for the use in organic solar cells. Long LD values are expected for aggregate structures with long intermolecular shifts or molecules with bulky substituents. KW - Exziton KW - Quantenchemie KW - Angeregter Zustand KW - Self-Trapping KW - CC2 KW - exciton KW - self-trapping KW - quantum chemistry KW - excited state KW - Perylenderivate Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-69861 ER - TY - THES A1 - Steinbauer, Michael Christoph T1 - Ionen- und Elektronenimaging reaktiver Moleküle: Ethyl, Propargylen und Fulvenallenyl T1 - Ion- and electron imaging of reactive molecules: Ethyl, propargylen and fulvenallenyl N2 - Bei Verbrennungsprozessen im Otto-Motor, beim Raffinationsprozess in Erdölraffinerien, im interstellaren Raum oder in der Chemie der Erdatmosphäre spielen Moleküle, wie sie in dieser Arbeit untersucht wurden, eine wichtige Rolle. Allerdings stellt es eine große Herausforderung dar, solch reaktive Substanzen zu erzeugen und zu handhaben. Um das Ethyl-Radikal, ein wichtiges Intermediat z.B. in der Erzeugung von Ethylen, zu untersuchen, wurde eine bestehende Apparatur modifiziert. Diese ermöglicht es, die Geschwindigkeitsverteilung der Fragmente (Ionen oder Elektronen) zweidimensional aufzuzeichnen, die nach der Anregung mittels Laserlicht durch Photodissoziation entstehen. Diese velocity-map imaging Apparatur wurde in einem ersten Schritt mittels der Photodissoziation von Pyrrol bei 240 nm kalibriert. Cycloheptatrien konnte erfolgreich auf seine Photodissoziation untersucht werden, was als Test des VMI-Experiment genutzt wurde. Die gewonnenen Ergebnisse stimmten mit Resultaten überein, welche durch Doppler-Fragmentspektroskopie in dieser und früheren Arbeiten gewonnen wurden. Zwischen 11 und 13 % der Überschussenergie gehen dabei in die Translation des H-Atoms. • Das Ethyl-Radikal zeigte, als das erste mit unserer VMI-Apparatur untersuchte Radikal, eine interessante Photodissoziation: Wird es bei 250 nm angeregt, ergeben sich zwei Dissoziationskanäle, wobei ein bekannter Kanal nach schneller interner Konversion in den Grundzustand Fragmente mit geringer Translationsenergie erzeugt. Der zweite Kanal zeigt anisotropes Verhalten und erzeugt Wasserstoffatome mit hoher Translationsenergie, die mehr als die Hälfte der Überschussenergie abführen. Die Erklärung dieses Prozesses erweist sich schwierig in Anbetracht von durchgeführten Isotopenmarkierungsexperimenten sowie der beobachteten Ratenkonstanten für die Photodissoziation. Eine Interaktion von Valenz- und Rydbergzuständen im Ethyl-Radikal könnte eine Erklärung darstellen. In Zukunft kann beim VMI-Experiment in Würzburg versucht werden, die Auflösung weiter zu verbessern. Dabei ergäben sich im Idealfall zwei scharfe Ringe der H-Atome durch die Spin-Bahn-Aufspaltung von Brom, welche eine sehr genaue Kalibrierung ermöglichen. Neben den Ergebnissen auf dem Gebiet der Photodissoziation, die mit der VMI-Apparatur erzielt wurden, konnten mittels Synchrotronstrahlung und Aufzeichnen der Photoelektronen mittels VMI und der TPEPICO-Technik die folgenden Ergebnisse erhalten werden: • Von Propargylen, einem von drei C3H2 Isomeren, konnte die adiabatische Ionisierungsenergie (IEad) mit 8.99 eV bestimmt werden. Der Vorläufer Diazopropin, eine sehr instabile Substanz, wurde dazu synthetisiert und mit Synchrotronlicht untersucht. Allerdings war es nicht möglich, die Schwingungen im Kation oder die dissoziative Photoionisation (DPI) des Carbens zu untersuchen, da Diazopropin seinerseits bereits bei Energien von 9 eV durch DPI zerfällt. Allerdings konnte ein Peak im TPES des zyklischen Isomers aus einer früheren Messung eindeutig dem Propargylen zugeordnet werden. Ein Ausweg die DPI zu umgehen stellt die Verwendung eines anderen Vorläufers dar. Beispielsweise wurde dazu Propargylchlorid getestet, welches aber nicht das Propargylen erzeugt, sondern das zyklische Isomer Cyclopropenyliden. Daneben können durch ein Doppel-Imaging Experiment, bei dem die Ionen genauso wie die Elektronen mit einem bildgebenden Detektor aufgezeichnet werden, Ionen mit kinetischer Energie aus DPI von Ionen aus der Ionisation ohne kinetischer Energie unterschieden werden. • Von den substituierten Methyl-Radikalen Brommethyl sowie Cyanomethyl konnte die IEad (8.62 bzw. 10.28 eV) und vom Brommethyl die DPI (AE0K = 13.95 eV) bestimmt werden. Daraus konnte der Einfluss der Substituenten auf die IEad im Vergleich zum Methyl-Radikal (IE = 9.84 eV) gezeigt werden. Das zeigt, dass der Brom-Substituent das Kation, der Cyano-Rest dagegen das Radikal stabilisiert. Ebenso konnten aus den Ergebnissen beim Brommethyl thermodynamische Daten wie die Standardbildungsenthalpie des Radikals (ΔH0f= 174.5 kJ/mol) oder Bindungsenergien gewonnen werden. Letztere betragen 334 kJ/mol für die C-Br Bindung im Brommethyl-Radikal sowie 505 kJ/mol im Kation. • Das Fulvenallen (C7H6) wurde aus Phthalid durch Pyrolyse erzeugt und dessen IEad mit 8.22 eV bestimmt. Schwingungen konnten im Kation aufgelöst und zugeordnet werden. Außerdem konnte erstmals die IEad des Fulvenallenyl-Radikals (C7H5) mit 8.19 eV festgelegt werden. Im Vergleich zu früheren Messungen zeigte sich, dass aus Toluol in der Pyrolyse ebenfalls die beiden C7H5/C7H6 Isomere entstehen. Um verschiedene C7H5/C7H6 Isomere in einem Verbrennungsprozess zu unterscheiden, wäre es vorteilhaft, experimentell bestimmte Ionisierungsenergien von anderen Isomeren zu kennen. N2 - In the present work several hydrocarbons have been studied for their intrinsic properties like photoionization, photodissociation or dissociative photoionization. These radicals and carbenes are important in several fields of research: combustion processes (Otto engine), refining processes in oil refineries, interstellar space or chemistry in the Earth’s atmosphere. Molecules like the ones presented in this work play an important role in all these fields of science. However, it poses a great challenge to produce and handle such reactive substances. An apparatus was modified to study the ethyl radical, an important intermediate e.g. in the production of ethylene, in more detail. This experiment allows to record the velocity distribution of the fragment ions, which are produced after excitation with laser light. In a first step this VMI machine was calibrated by the measurement of pyrrol’s photodissociation at an excitation wavelength of 240 nm. In a second step the setup was tested with the photodissociation of cycloheptatriene. Results obtained by Doppler fragment spectroscopy in this and older piece of work were confirmed. About 11 to 13 % of the excess energy are converted to translational energy of the H atom. • The ethyl radical’s photodissociation after excitation at 250 nm was quite interesting. This radical, being the first one studied with this VMI apparatus, showed two dissociation channels: One produces slow H-atoms with an isotropic distribution. This channel was known to the literature and explained by a redistribution of energy on the ground state potential energy surface after fast internal conversion. A second dissociation channel was also observed. Fast H atoms with an anisotropic distribution carry away the vast majority of excess energy. Considering some isotopic labeling experiments and rate constants of the dissoziation the explanation of the second channel is quite challenging. An interaction of Rydberg- and valence states could be a possible explanation. In the future, one can try to improve the resolution of the VMI-experiment in Würzburg further. Besides the results obtained with the VMI machine on the photodissociation some more results were obtained with the help of photoelectron VMI, synchrotron radiation and the TPEPICO imaging technique: The adiabatic ionization energy of propargylene - one of three C3H2 isomers - could be determined to be 8.99 eV. Its precursor diazopropyne could be synthesized, but it came out that this substance is very unstable. The experiments were carried out with synchrotron radiation. Because of the precursor’s DPI, the vibrations of the proparglyene cation could not be resolved. However, one peak could be explained in the threshold electron spectrum of cyclopropenylidene in an earlier experiment, which was assigned the propargylene. One way to circumvent the DPI is to use a different precursor. Therefore, propargyl chloride was tested. Unfortunately, it produced the cyclic isomer cyclopropenylidene. If a doubleimaging experiment would be used, in which ions and electrons are detected by VMI, one could distinguish ions with kinetic energy (by DPI) from those without kinetic energy. • The IEad of two substituted methyl radicals could be determined. The cyanomethyl (10.28 eV) and the bromomethyl radical (8.62 eV) showed differences in their photoionization compared to the methyl radical (9.84 eV). This shows the stabilization effect of the cyano substituent on the radical and of the bromine on the cation. The DPI of bromomethyl could be allocated to 13.95 eV. This allowed us to calculate thermodynamic data like the radical’s heat of formation (ΔH0f =174.5 kJ/mol) or dissociation energies of the C-Br bonding. The latter are 334 kJ/mol in the bromomethyl radical respectively 505 kJ/mol in the cation. • Fulvenallen (C7H6) was produced from phthalide by pyrolysis. The IEad of the stable species was determined to be 8.22 eV. A vibrational progression of the cation could be resolved and assigned. Furthermore, the IEad of the radical fulvenallenyl (C7H5) could be determined to be 8.19 eV. Compared to earlier results obtained on the pyrolysis products of toluene it showed that both C7H5/C7H6 isomers are produced. To distinguish different C7H5/C7H6 isomers in combustion processes, experimentally determined IEs of other isomers would be useful. Unfortunately, the precursors for these are connected to time-consuming synthesis. Although fulvenallenyl is of great interest for scientists, only little has been published in literature. Besides the photoionization, a VMI-experiment could allow a closer look on the photodissociation of this radical to verify and improve kinetic models and calculations in the near future. However, one has to know the properties of its excited states. KW - Radikal KW - Photodissoziation KW - Ionisationsenergie KW - REMPI KW - Synchrotron KW - Abstimmbarer Laser KW - Ultraviolettlaser KW - Laser KW - Pyrolyse KW - Velocity-Map-Imaging KW - dissoziative Photoionisation KW - Vakuum Jet-Flash Pyrolyse KW - Velocity-Map-Imaging KW - dissoziative Photoionisation Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-75649 ER - TY - THES A1 - Grebner, Christoph T1 - New Tabu-Search Algorithms for the Exploration of Energy Landscapes of Molecular Systems T1 - Neue Tabu-Search Algorithmen zur Untersuchung von Energielandschaften molekularer Systeme N2 - The visualization of energy functions is based on the possibility of separating different degrees of freedom. The most important one is the Born-Oppenheimer-approximation, which separates nucleus and electron movements. This allows the illustration of the potential energy as a function of the nuclei coordinates. Minima of the surface correspond to stable points like isomers or conformers. They are important for predicting the stability or thermodynamical of a system. Stationary points of first order correspond to transition points. They describe phase transitions, chemical reaction, or conformational changes. Furthermore, the partition function connects the potential hypersurface to the free energy of the system. The aim of the present work is the development and application of new approaches for the efficient exploration of multidimensional hypersurfaces. Initially, the Conformational Analysis and Search Tool (CAST) program was developed to create a basis for the new methods and algorithms. The development of CAST in object oriented C++ included, among other things, the implementation of a force field, different interfaces to external programs, analysis tools, and optimization libraries. Descriptions of an energy landscape require knowledge about the most stable minima. The Gradient Only Tabu Search (GOTS) has been shown to be very efficient in the optimization of mathematical test functions. Therefore, GOTS was taken as a starting point. Tabu-Search is based on the steepest descent - modest ascent strategy. The steepest descent is used for finding local minima, while the modest ascent is taken for leaving a minimum quickly. Furthermore, Tabu-Search is combined with an adaptive memory design to avoid cycling or returning. The highly accurate exploration of the phase space by Tabu-Search is often too expensive for complex optimization problems. Therefore, an algorithm for diversification of the search is required. After exploration of the proximity of the search space, the algorithm would guide the search to new and hopefully promising parts of the phase space. First application of GOTS to conformational search revealed weaknesses in the diversification search and the modest ascent part. On the one hand, the original methodology for diversification is insufficiently diverse. The algorithm is considerably improved by combining the more local GOTS with the wider searching Basin Hopping (BH) approach. The second weak point is a too inaccurate and inefficient modest ascent strategy. Analysis of common transition state search algorithms lead to the adaption of the Dimer-method to the Tabu-Search approach. The Dimer-method only requires the first derivatives for locating the closest transition state. For conformational search, dihedral angles are usually the most flexible degrees of freedom. Therefore, only those are used in the Dimer-method for leaving a local minimum. Furthermore, the exact localization of the reaction pathway and the transition state is not necessary as the local minimum position should only be departed as fast as possible. This allows for larger step sizes during the Dimer-search. In the following optimization step, all coordinates are relaxed to remove possible strains in the system. The new Tabu-Search method with Dimer-search delivers more and improved minima. Furthermore, the approach is faster for larger systems. For a system with approximately 1200 atoms, an acceleration of 40 was measured. The new approach was compared to Molecular Dynamics with optimization (MD), Simulated Annealing (SA), and BH with the help of conformational search problems of bio-organic systems. In all cases, a better performance was found. A comparison to the Monte Carlo Multiple Minima/Low Mode Sampling (MCMM/LM) method proved the outstanding performance of the new Tabu-Search approach. The solvation of the chignolin protein further revealed the possibility of uncovering discrepancies between the employed theoretical model and the experimental starting structure. Ligand optimization for improvement of x-ray structures was one further new application field. Besides the global optimization, the search for transition states and reaction pathways is also of paramount importance. These points describe different transitions of stable states. Therefore, a new approach for the exploration of such cases was developed. The new approach is based on a global minimization of a hyperplane being perpendicular to the reaction coordinate. Minima of this reduced phase space belong to traces of transition states between reactant and product states on the unchanged hypersurface. Optimization to the closest transition state using the Dimer-method delivers paths lying between the initial and the final state. An iterative approach finally yields complex reaction pathways with many intermediate local minima. The PathOpt algorithm was tested by means of rearrangements of argon clusters showing very promising results. N2 - Die visuelle Darstellung von Energiefunktionen basiert auf der Möglichkeit, verschiedene Freiheitsgrade zu separieren. Die wichtigste Näherung ist dabei die Born-Oppenheimer-Näherung. Sie erlaubt damit die Darstellung der potentiellen Energie als Funktion der Kernkoordinaten. Die daraus entstehende mehrdimensionale Hyperfläche entspricht der Summenformel eines beliebigen Systems. Minima der Fläche entsprechen stabilen Punkten wie Isomeren oder Konformeren. Diese sind wichtig für Aussagen über die Stabilität oder die Thermodynamik eines Systems. Stationäre Punkte erster Ordnung entsprechen Übergangsstrukturen und beschreiben Phasenübergänge, chemische Reaktionen aber auch Konformationsänderungen. Über die Zustandssumme ist die Hyperfläche zudem mit der freien Energie verknüpft. Das Ziel dieser Arbeit ist die Entwicklung und Anwendung neuer Methoden zur effizienten Untersuchung mehrdimensionaler Hyperflächen. Dabei wurde zunächst das Conformational Analysis and Search Tool (CAST)-Programm entwickelt. Die Entwicklung des CAST-Programms in objektorientiertem C++ beinhaltete unter anderem die Implementierung eines Kraftfeldes, verschiedene Schnittstellen zu externen Programmen, Analysealgorithmen und verschiedene Optimierungsmodule. Um Aussagen über eine Energielandschaft treffen zu können, müssen zuerst die stabilsten Minima gefunden werden. Der Gradient Only Tabu Search (GOTS) hat sich als sehr effizient in der Optimierung von mathematischen Funktionen erwiesen. Daher wurde GOTS als Startpunkt verwendet. Tabu-Search basiert auf dem steepest descent – modest ascent Prinzip. Zum Finden neuer Minima wird der steilste Abstieg (steepest descent) verwendet, ein Minimum wird auf dem Weg des geringsten Anstiegs (modest ascent) wieder verlassen. Tabu-Search ist zudem mit einem lernfähigen Speicherdesign kombiniert, wodurch ein Zurück- und im Kreis laufen vermieden wird. Der Phasenraum wird von Tabu-Search sehr genau untersucht, was für komplexere Probleme zu aufwendig wird. Daher bedarf es eines Diversifizierungsschritts, welcher nach Absuchen eines Teils des Phasenraums, die Suche in neue vielversprechende Bereiche bringt. Erste Anwendungen auf Konformationssuchen zeigten, dass GOTS Schwächen im Diversifizierungsschritt und der modest ascent Strategie besitzt. Zum einen ist die ursprünglich verwendete Methodik für die Diversifizierung zu wenig divers. Eine Kombination des mehr lokalen GOTS mit der weiträumiger suchenden Basin Hopping (BH) Methode brachte eine erhebliche Verbesserung. Der zweite Schwachpunkt besteht aus einer zu ungenauen und ineffizienten modest ascent Methode. Daher wurde die Dimer-Methode für Tabu-Search adaptiert. Diese benötigt lediglich die erste Ableitung, um zum Übergangszustand erster Ordnung zu konvergieren. Dabei werden in der Dimer-Methode nur Diederwinkel variiert. Zudem muss der Reaktionspfad und der Übergangszustand nicht exakt getroffen werden, da das Minimum nur möglichst schnell verlassen werden soll. Dies erlaubt größere Schrittweiten in der Dimer-Suche. Im nachfolgenden Optimierungsschritt werden alle Koordinaten relaxiert. Die neue Tabu-Search-Methode mit Dimer-Suche liefert mehr und deutlich verbesserte Minima. Zudem ist sie für größere Systeme deutlich schneller. Für ein System mit circa 1200 Atomen wurde eine Beschleunigung um den Faktor 40 erzielt. Die neue Methode wurde am Beispiel der Konformationssuche von bio-organischen Systemen mit Molekulardynamik mit Optimierung (MD), Simulated Annealing (SA) und BH verglichen, wobei sich in allen Fällen eine bessere Effizienz zeigte. Ein Vergleich zur Monte Carlo Multiple Minima/Low Mode Sampling Methode anhand der Optimierung von peptidischen Ligand-Rezeptor-Komplexen belegte ebenfalls die hervorragende Effizienz des neuen Ansatzes. Die Solvatisierung des Chignolin-Proteins mit Tabu-Search deckte die Möglichkeit auf, Differenzen zwischen der verwendeten theoretischen Methode und der experimentellen Startstruktur aufzudecken. Als weiterer neuer Anwendungsbereich wurde die Optimierung von Ligand-Enzym-Komplexen zur Verbesserung von Röntgenstrukturen untersucht. Neben der globalen Optimierung ist auch die Suche nach Übergangszuständen und Reaktionspfaden von größter Wichtigkeit. Diese beschreiben verschiedene Übergänge zwischen stabilen Zuständen. Daher wurde ein neuer Ansatz zur Untersuchung dieser Fragestellungen entwickelt. Dieser basiert auf einer globalen Minimierung einer Hyperfläche, welche senkrecht zum Reaktionspfad steht. Die Minima des reduzierten Phasenraums gehören zu Spuren zu Übergangszuständen zwischen dem Edukt und dem Produkt. Durch Optimierung dieser Punkte mittels der Dimer-Methode werden also Pfade gefunden, die zwischen Anfangs- und Endpunkt liegen. Ein iteratives Vorgehen liefert letztendlich komplexe Reaktionspfade. PathOpt wurde an Umlagerungen von Argon-Clustern evaluiert, welche sehr vielversprechende Ergebnisse lieferten. KW - Globale Optimierung KW - Kraftfeld-Rechnung KW - Übergangszustand KW - Computational chemistry KW - Tabu-Search KW - Methodenentwicklung KW - Dimermethode KW - Basin-Hopping KW - Energielandschaft KW - Theoretische Chemie KW - Tabu-Search KW - method development KW - dimer method KW - basin hopping KW - energy landscapes Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-75591 ER - TY - THES A1 - Quast, Tatjana T1 - Spectroscopic investigation of charge-transfer processes and polarisation pulse shaping in the visible spectral range T1 - Spektroskopische Untersuchung von Ladungstransferprozessen und Polarisationspulsformung im sichtbaren Spektralbereich N2 - The first part deals with the spectroscopic investigation of ultrafast light-induced charge-transfer processes in different molecular compounds. In the second part, the question of the generation and characterisation of broadband visible polarisation-shaped laser pulses is treated. N2 - Der erste Teil der Arbeit behandelt die spektroskopische Untersuchung von ultraschnellen lichtinduzierten Ladungstransferprozessen in unterschiedlichen molekularen Verbindungen. Im zweiten Teil wird die Erzeugung und Charakterisierung von breitbandigen polarisationsgeformten Laserpulsen im sichtbaren Spektralbereich diskutiert. KW - Polarisiertes Licht KW - Ladungstransfer KW - Optische Spektroskopie KW - transiente Absorptionsspektroskopie KW - Polarisationspulsformung KW - transient absorption spectroscopy KW - polarisation pulse shaping Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-74265 ER - TY - THES A1 - Kröker, Kristin T1 - DNA-Kohlenstoffnanorohr-Konjugate - Biokompatibilität, ex vivo-Verhalten, Funktionalisierung T1 - DNA-carbon nanotube conjugates - biocompatibility, ex vivo behavior, funtionalization N2 - Einzelstrang-DNA-dispergierte und individualisierte (6,5)-chirale Kohlenstoffnanoröhren bilden als Konjugatsystem den Ausgangspunkt dieser Dissertation. Im Vordergrund stehen dabei Untersuchungen zur Biokompatibilität dieser ssDNA-SWNT-Konjugate sowie deren Verhalten nach Zellpenetration und eine Funktionalisierbarkeit zum Wirkstofftransportsystem. Das erste Projekt widmet sich in Kapitel 4 dem Studium der Konjugatstabilität unter physiologischen Bedingungen und einer Verträglichkeit gegenüber zellulären Systemen. Experimente zur Biokompatibilität werden erstmals an Nanorohrkonjugaten durchgeführt, welche nach Ultrazentrifugation im Dichtegradienten sorgfältig individualisiert vorliegen. Die umgebungssensitiven photophysikalischen Charakteristika vereinzelter (6,5)-SWNTs können zu einer Beurteilung der Konjugatintegrität in physiologischem Milieu genutzt werden. Die Stabilität von ssDNA-SWNT-Strukturen wird in Anwesenheit des Restriktionsenzyms DNase I und dem in Zellnährmedien enthaltenen protein- und nukleasereichem Serum FBS auf die Probe gestellt. In beiden Fällen kann eine ausreichende ssDNA-SWNT-Integrität attestiert werden, die eine Verwendung unter Zellkultivierungsbedingungen erlaubt. Unter Berücksichtigung verschiedener in Zellen vorliegender pH-Umgebungen werden die Konjugate ebenfalls dieser Variation ausgesetzt. Bei Vorliegen stark saurer und basischer pH-Werte kann die Integrität von ssDNA-SWNT-Konjugaten nicht gewährleistet werden, was sich durch Aggregation bemerkbar macht. Innerhalb des breiten pH-Bereichs zwischen den Werten 3 und 11 hingegen kann eine gute Stabilität bestätigt werden. Für zelluläre Anwendungen bedeutet dieser Befund keine Einschränkung, da in Kulturen lediglich neutrale bis schwach saure pH-Werte oberhalb von 4.5 zu finden sind. Nachdem die Biostabilität der ssDNA-SWNT-Konjugate gewährleistet ist, kann in Zytotoxizitätsstudien eine ex vivo-Verträglichkeit des Nanomaterials getestet werden. Erste Untersuchungen mit der Mausmakrophagenlinie J774.1 weisen wie auch ausführliche Studien gegenüber menschlichen Epithelzellen HeLa auf eine uneingeschränkte Kompatibilität in den eingesetzten Konzentrationen hin. HeLa-Zellen, die mit DGU-gereinigten Nanorohrproben behandelt werden, zeigen eine geringfügig höhere Vitalität als nach Inkubation mit einer Rohdispersion undefinierter SWNT-Bündel. Im Gesamtbild ergibt sich somit eine zufriedenstellende Biokompatibilität individualisierter ssDNA-SWNT-Konjugate, womit das in dieser Arbeit zentrale Kohlenstoffnanorohrsystem den Anforderungen für dessen biomedizinische Verwendbarkeit gerecht wird. Der Schwerpunkt weiterer Untersuchungen liegt im zweiten Projekt aus Kapitel 5 auf dem Verhalten von ssDNA-SWNT-Konjugaten nach deren Aufnahme in HeLa-Zellen. Auch hier kann die starke Sensitivität der optischen Eigenschaften individualisierter (6,5)-Kohlenstoffnanoröhren gegenüber Umgebungseinflüssen genutzt werden, um Veränderungen im Emissionsverhalten von SWNTs nach deren zellulärer Aufnahme gegenüber dem Ausgangszustand zu beobachten. Nach ausführlicher Weißlicht-, Fluoreszenz- und SWNT-Photolumineszenzmikroskopie, aus deren Resultaten eine erfolgreiche Internalisierung von ssDNA-SWNTs in HeLa-Zellen eindeutig hervorgeht, stehen PL-spektroskopische Untersuchungen der Kohlenstoffnanoröhren im Vordergrund. Durch einen Vergleich des Emissionsverhaltens der ssDNA-SWNT-Konjugate in und außerhalb von Zellen können spektrale Verschiebungen, Linienverbreiterungen und verkürzte Fluoreszenzlebensdauern nach zellulärer Aufnahme festgestellt werden. Sowohl eine Aggregation von SWNTs als auch eine Beeinflussung durch die pH-Umgebung reichen nicht für eine vollständige Erklärung des Befunds aus. Vielmehr kann die in endosomalen Kompartimenten durch das Größenverhältnis von Endosomen zu SWNTs entstehende räumliche Nähe einer großen Nanorohrmenge untereinander als Ursache für eine Veränderung der dielektrischen Umgebung und folglich des Emissionsverhaltens betrachtet werden. Durch Verwendung der Kohlenstoffnanoröhren als Marker und Sensor können ssDNA-SWNT-Konjugate in Zellen somit nicht nur lokalisiert, sondern darüber hinaus hinsichtlich einer möglichen Aggregation untersucht werden. Aus den in dieser Arbeit vorgestellten Daten kann zwar eine vollständige Aggregation der SWNTs durch deren Aufnahme in Zellen ausgeschlossen werden, sie muss jedoch in geringfügigem Ausmaß neben einer Beeinflussung durch die pH-Umgebung und die große räumliche Nähe durchaus in Betracht gezogen werden. Individualisierte ssDNA-SWNT-Konjugate können damit erstmals zeitaufgelöst PL-mikrospektroskopisch in HeLa-Zellen charakterisiert werden. Für das letzte Projekt werden in Kapitel 6 neuartige Funktionalisierungsmöglichkeiten von ssDNA-SWNT-Konjugaten zu zellulären Transportsystemen unter Erhalt der photophysikalischen Eigenschaften erforscht. Dazu soll das Dispergiermittel DNA als Kupplungsstelle für eine kovalente Anbindung eines Agenz genutzt werden. Anstelle eines Wirkstoffes werden die Untersuchungen mit einem Fluorophor als Modellverbindung durchgeführt, welcher den Vorteil einer einfachen Detektierbarkeit liefert. Prinzipiell besteht die Möglichkeit, das Oligomer mit dem Fluorophor vorzufunktionalisieren und anschließend auf die Oberfläche der SWNTs zu bringen. Als effektiver erweist sich die Methode der direkten Kupplung des Farbstoffs an bereits DNA-dispergierte SWNTs. Der Erfolg in der Präparation von FluorophorssDNA- SWNT-Konjugaten wird über die Emission des Fluorophors mit entsprechenden Referenzexperimenten gemessen. Der Versuch einer Quantifizierung liefert jedoch sehr hohe Werte, die lediglich als eine obere Grenze für die gefundene Anzahl gebundener Fluorophore pro Nanoröhre angesehen werden können. Im Verlauf des Projekts kann eine Funktionalisierbarkeit der Nanoröhren über das Dispergieradditiv DNA als neue Strategie aufgezeigt werden. Im Gegensatz zu bekannten Wirkstofftransportsystemen bietet dieser Funktionalisierungsansatz den Vorteil, dass die optischen Eigenschaften der individualisierten ssDNA-SWNT-Konjugate erhalten bleiben, welche wieder um einen gleichzeitigen Einsatz der Nanoröhren als Transporter und Marker bzw. Sensor erlauben. Die vorliegende Dissertation liefert neben dieser bisher unbekannten Funktionalisierungsstrategie neue Erkenntnisse über die Biokompatibilität speziell von individualisierten ssDNA-SWNT-Konjugaten und deren Verhalten in HeLa-Zellen. Mit diesem Wissen kann der gezielte Wirkstofftransport durch Kohlenstoffnanoröhren als biokompatibles und zellgängiges Trägersystem anvisiert werden. N2 - The key element of this thesis is a conjugate system of single-stranded DNA and individualized (6,5) single-wall carbon nanotubes. The investigations are mainly focused on the biocompatibility of ssDNA-SWNT conjugates, as well as their behavior after cell penetration and general ability to be functionalized for drug delivery. Within the first project, chapter 4 contributes to the study the conjugate stability under physiological conditions and compatibility towards cellular structures. For the first time, such biocompatibility experiments are carried out with nanotube conjugates, which are thoroughly individualized by ultracentrifugation assisted density gradient. The photophysical characteristics of isolated (6,5) SWNTs are highly sensitive towards their environment and can thus be used to evaluate the state of conjugate integrity in a physiological milieu. The stability of ssDNA-SWNT structures is tested in the presence of restriction enzyme DNase I and FBS serum, an important nutrient medium ingredient rich in proteins and nucleases. In either case, the integrity of ssDNA-SWNT conjugates is not affected. With respect to the pH variety occuring in cell structures, the conjugate stability is also investigated in acid and base milieu. Both strong acid and alkaline pH environments influence the integrity of ssDNA-SWNT, leading to aggregation of nanotubes. Conversely, good conjugate stability can be evaluated in a wide pH range between 3 and 11, revealing unlimited applicability towards cells, where the pH environment is known to vary between neutral and weakly acid pH values above 4.5. After evaluation of the biostability of ssDNA-SWNT conjugates, they have to be tested in ex vivo cytotoxicity assays. Studies are primarily carried out with murine macrophage-like cells J774.1 and in more detail with the human cervix carcinoma cell line HeLa. Both indicate no cytotoxic effects with applied SWNT concentrations. Within the HeLa cell studies, the impact of DGU preparation on SWNT cytotoxicity is a further point of interest. As a result, slightly enhanced cell viability can be observed with DGU purified samples as compared to raw dispersion consisting of non-defined SWNT bundles. Overall, ssDNA-SWNT conjugates can be assumed to be sufficiently biostable and thus suitable for biomedical applications. Further investigations in the second part of this work in chapter 5 are focused on the behavior of ssDNA-SWNT conjugates after cellular uptake. Again, the strong environmental sensitivity of optical properties of individualized (6,5) carbon nanotubes can be used to detect changes of the SWNT emission after internalization. Different techniques have been employed to visualize ssDNA-SWNT structures in HeLa cells using white light, fluorescence, and SWNT photoluminescence microscopy. By PL spectroscopy of ssDNA-SWNTs in cells spectral shifts, line-broadening and shortened lifetimes are observed when comparing SWNT emission inside and outside of cell culture. Neither nanotube aggregation nor the influence of the cell-specific pH environment are sufficient explanations for such spectral behavior. Indeed, the spatial proximity of SWNTs with each other in small sized endosomal cell compartiments is supposed to cause nanotube-nanotube interactions that change the dielectric environment and thus the emission behavior of SWNTs. Within the use of carbon nanotubes as marker and sensor, ssDNA-SWNT conjugates cannot only be localized, but also characterized, with regard to possible nanotube aggregation. The data presented in this work can, on the one hand, exclude a total aggregation of SWNTs within their cellular uptake. But, on the other hand, a small extent of aggregation, pH environmental effects, and the spatial proximity of a high amount of SWNTs in comparatively small endosomes have to be considered as factors that influence SWNT emission properties. In this study, individualized ssDNA-SWNT conjugates can be characterized via time-resolved PL microspectroscopy for the first time. The last project in chapter 6 addresses to new functionalization routes of ssDNA-SWNT conjugate with respect to drug delivery applications while retaining the photophysical characteristics. The SWNT dispersion additive DNA serves as binding site for covalent attachment of agents. For a convenient sample characterization, a fluorophor is used as model compound instead of a specific drug. In general, fluorophor-ssDNA-SWNT systems can be obtained by pre-functionalization of oligomers with dye, followed by attachment of the modified DNA on the nanotube surface. More promising, however, is the route via a direct coupling reaction of activated fluorophor molecules with specific ssDNA-SWNT conjugates. The successful sample functionalization can be evaluated from the fluorescence of the dye in comparision with corresponding control experiments. An attempt for quantification of functionalization is found to be problematic as the revealed values are too high and can thus only be regarded as upper limits for the number of fluorophors per nanotube. A new functionalization method for SWNTs can be established using noncovalently bound DNA as the coupling point. Compared to well-known drug delivery systems, the optical properties of SWNTs can be retained with this procedure, allowing the simultaneous use of nanotubes as cellular transporter and marker or sensor. In addition to the new functionalization strategy, further knowledge about biocompatibility of well-isolated ssDNA-SWNT conjugates and their behavior after cellular uptake can be obtained through this thesis. Thus, a targeted drug delivery with isolated carbon nanotubes as biocompatible and a cell penetrating carrier system could be aimed for future work. KW - Biokompatibilität KW - DNS KW - Nanopartikel KW - Funktionalisierung KW - HeLa-Zelle KW - NIR-Spektroskopie KW - Photolumineszenz KW - Kohlenstoffnanoröhre KW - Dichtegradientenultrazentrifugation KW - carbon nanotube KW - density gradient ultracentrifugation Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-74552 ER - TY - THES A1 - Selig-Parthey, Ulrike T1 - Methods of Nonlinear Femtosecond Spectroscopy in the Visible and Ultraviolet Regime and their Application to Coupled Multichromophore Systems T1 - Methoden der nichtlinearen Femtosekundenspektroskopie im sichtbaren und ultravioletten Spektralbereich und ihre Anwendung auf gekoppelte Multichromophor-Systeme N2 - Time-resolved spectroscopic studies of energy transfer between molecules in solution form a basis for both, our understanding of fundamental natural processes like photosynthesis as well as directed synthetic approaches to optimize organic opto-electronic devices. Here, coherent two-dimensional (2D) spectroscopy opens up new possibilities, as it reveals the correlation between absorption and emission frequency and hence the full cause-and-effect chain. In this thesis two optical setups were developed and implemented, permitting the recording of electronic 2D spectra in the visible and in the hitherto unexplored ultraviolet spectral range. Both designs rely on the exclusive manipulation of beam pairs, which reduces the signal modulation to the difference between the transition frequency of the system and the laser frequency. Thus - as has been shown experimentally and theoretically - the timing precision as well as mechanical stability requirements are greatly reduced, from fractions of the oscillation period of the exciting light wave to fractions of the pulse duration. Two-dimensional spectroscopy and femtosecond transient absorption (TA) as well as different theoretical approaches and simulation models were then applied to coupled multichromophore systems of increasing complexity. Perylene bisimide-perylene monoimide dyads were investigated in cooperation with Prof. Dr. Frank Würthner and Prof. Dr. Bernd Engels at the University of Würzburg. In these simplest systems studied, global analysis of six different TA experiments unequivocally revealed an ultrafast interchromophoric energy transfer in the 100 fs range. Comparison between the obtained transfer rates and the predictions of Förster theory suggest a breakdown of this point-transition-dipole-based picture at the donor-acceptor distances realized in our compounds. Furthermore, a model including conformational changes and an interchromophoric charge transfer has been derived to consistently describe the observed pico- to nanosecond dynamics and fluorescence quantum yields. A second collaboration with Prof. Dr. Gregory Scholes (University of Toronto, Canada) and Prof. Dr. Paul Burn (University of Queensland, Australia) addressed the photophysics of a series of uorene-carbazole dendrimers. Here, a combination of 2D-UV spectroscopy and femtosecond ansiotropy decay experiments revealed the initial delocalization of the excited state wave function that saturates with the second generation. In room temperature solution, disorder-induced localization takes place on the time scales comparable to our instrument response, i.e. 100 fs, followed by energy transfer via incoherent hopping processes. Lastly, in tubular zinc chlorin aggregates, semi-synthetic analogues of natural lightharvesting antennae that had again been synthesized in the group of Prof. Dr. Frank Würthner, the interchromophoric coupling is so strong that coherently coupled domains prevail even at room temperature. From an analysis of intensity-dependent TA measurements the dimensions of these domains, the exciton delocalization length, could be determined to span 5-20 monomers. In addition, 2D spectra uncovered efficient energy transfer between neighboring domains, i.e. ultrafast exciton diffusion. N2 - Zeitaufgelöste spektroskopische Untersuchungen zu Energietransferprozessen zwischen Molekülen in Lösung bilden die Grundlage nicht nur für unser Verständnis elementarer natürlicher Vorgänge wie der Photosynthese, sondern auch für gerichtete Synthesen zur Optimierung organischer opto-elektronischer Bauteile. Die kohärente zweidimensionale (2D) Spektroskopie eröffnet hier neue Möglichkeiten, da sie - durch Aufdeckung der Korrelation zwischen Absorptions- und Emissionsfrequenz - die konventionelle transiente Absorption (TA) um die Offenbarung der Ursache erweitert. Im Rahmen dieser Arbeit wurden zwei optische Aufbauten entworfen und umgesetzt, die die Aufnahme von elektronischen 2D Spektren im sichtbaren und im bis dahin unerschlossenen ultravioletten Spektralbereich ermöglichen. Beide Designs beruhen auf dem Prinzip der ausschließlich paarweisen Strahlführung, wodurch die Modulation des Signals auf die Differenz zwischen Übergangsfrequenz des Systems und Laserfrequenz reduziert wird. Damit verringern sich - wie theoretisch und experimentell gezeigt - die Anforderungen sowohl an die mechanische Stabilität der Laborumgebung als auch an die Genauigkeit der verwendeten Verzögerungsbühnen erheblich, von Bruchteilen der Oszillationsperiode des anregenden Lichts auf Bruchteile der Laserpulsdauer. Sowohl die 2D Spektroskopie als auch die transiente Absorption sowie unterschiedliche theoretische Ansätze und Simulationsmodelle wurden in den weiteren Teilen dieser Arbeit auf gekoppelte Multichromophor-Systeme unterschiedlicher Komplexität angewandt. Im einfachsten dieser Systeme, einem Perylen-basierten Heterodimer, einer Kooperation mit Prof. Dr. Frank Würthner und Prof. Dr. Bernd Engels an der Universität Würzburg, konnte durch globale Analyse von sechs verschiedenen TA-Messungen ein ultraschneller Energietransfer im 100 fs Bereich zweifelsfrei identifiziert werden. Ein Vergleich mit Vorhersagen aus der Förster-Theorie legt einen Zusammenbruch dieser auf punktförmigen Übergangsdipolen beruhenden Theorie bei den vorliegenden Interchromophor- Abständen nahe. Darüber hinaus wurde für die Piko- bis Nanosekunden-Zeitskalen ein Schema vorgestellt, das Konformationsänderungen sowie einen Ladungstransfer beinhaltet und das die beobachtete Dynamik wie auch die gemessenen Fluoreszenz-Quantenausbeuten konsistent beschreibt. In einer weiteren Kooperation wurden in Zusammenarbeit mit der Gruppe von Prof. Dr. Gregory Scholes (University of Toronto, Kanada) Fluoren-Carbazol-Makromoleküle untersucht, die in der Gruppe von Prof. Dr. Paul Burn (University of Queensland, Australien) synthetisiert worden waren. In diesen sogenannten Dendrimeren konnte durch die Kombination von 2D Spektroskopie und Femtosekunden-Anisotropie-Zerfalls-Experimenten eine anfängliche Delokalisierung der Wellenfunktion des angeregten Zustands abgeleitet werden, die mit der zweiten Generation saturiert. Die Umgebungsunordnung in Raumtemperatur-Lösung führt hier zu einer ultraschnellen Lokalisierung innerhalb der Zeitauflösung des Experiments, gefolgt von inkohärenten Energietransfer-Prozessen. In tubularen Zink Chlorin Aggregaten schließlich, semisynthetischen Analoga zu den Lichtsammelantennen natürlicher Chlorosome, die ebenfalls von Prof. Dr. Frank Würthner's Gruppe bereitgestellt wurden, ist die Kopplung zwischen den einzelnen Molekülen so stark, dass kohärent gekoppelte Segmente selbst bei Raumtemperatur Bestand haben. Die Ausdehnung dieser kohärenten Domänen, die Exzitonen-Delokalisierungslänge, konnte aus der Intensitätsabhängigkeit des transienten Absorptionssignals auf 5-20 Monomere bestimmt werden. 2D Spektren zeigten dabei den effizienten Energietransfer zwischen benachbarten Domänen im Aggregat, also einen ultraschnellen Exzitonen-Diffusionsprozess. KW - Femtosekundenspektroskopie KW - UV-VIS-Spektroskopie KW - Polychromophores System KW - Spektroskopie KW - femtosecond spectroscopy Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-74356 ER - TY - THES A1 - Schubert, Alexander T1 - Kohärente und dissipative Wellenpaketdynamik und zeitaufgelöste Spektroskopie: Von zweiatomigen Molekülen zu molekularen Aggregaten T1 - Coherent and dissipative wave-packet dynamics and time-resolved spectroscopy: From diatomic molecules to molecular aggregates N2 - Unter dem Gesichtspunkt kohärenter Wellenpaketdynamik werden in dieser Arbeit zwei Themenfelder untersucht: Zum einen die Auswirkungen von Kernfreiheitsgraden auf die zweidimensionale vibronische Spektroskopie (2D-Spektroskopie) und zum anderen photoinduzierte Energieverlustmechanismen in organischen Halbleitern. Im ersten Abschnitt wird am numerischen Beispiel zweiatomiger Moleküle gezeigt, dass sich die Anharmonizität der Wellenpaketbewegung durch Variation der Verzögerungszeit der Femtosekundenpulse in der komplexwertigen Spektralfunktion, die aus der störungstheoretischen Berechnung der Polarisationsfunktion hervorgeht, widerspiegelt. Die zeitliche Entwicklung besetzter Vibrationszustände zeigt sich in der Struktur des Signals anhand sogenannter Quantenphasen. Durch Variation der Pulsparameter und -reihenfolge kann dabei die Quantendynamik in unterschiedlichen elektronischen Zuständen charakterisiert werden. Im zweiten Teil der Arbeit wird für molekulare Aggregate (3,4,9,10-Perylentetracarbonsäurediimid und 3,4,9,10-Perylentetracarbonsäuredianhydrid) ein zeitaufgelöstes, atomistisches Bild intra- und intermolekularer Strukturverzerrungen vorgestellt. Letztere induzieren eine ultraschnelle Depopulation der durch Photoabsorption angeregten elektronischen Zustände, was mit einer deutlichen Abnahme der Anregungsenergie einhergeht. N2 - In the present work two topics were examined within the framework of coherent wave-packet dynamics: First, the appearance of fingerprints of nuclear degrees-of-freedom in two-dimensional vibronic spectra (2D spectra), and second, photoinduced energy quenching processes in organic semi-conductors. Using the numerical example of diatomic molecules, it is shown in the first part that a variation of the delay-time between femtosecond laser pulses reveals the anharmonicity of the wave packet motion by influencing the complex-valued spectral function, which stems from a calculation of the perturbative polarization function. The time-evolution of vibrational states is monitored in the signal structure by so-called quantum phases. Different electronic states are accessible through variation of the parameters and the order of involved laser pulses. In the second part, a time-resolved atomistic picture of intra- and intermolecular structural deformations in molecular aggregates (3,4,9,10-perylene tetracarboxylic acid bisimide and 3,4,9,10-perylene tetracarboxylic acid dianhydride) is presented. The latter induce an ultrafast depopulation of the photoexcited electronic states, which goes in hand with a considerable loss of excitation energy. KW - Kurzzeitphysik KW - Physikalische Chemie KW - Molekularbewegung KW - Wellenpaket KW - Quantendynamik KW - Theoretische Physik KW - Quantisierung KW - Physikalische Theorie KW - Physik KW - Computerphysik KW - quantum dynamics Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-74258 ER - TY - THES A1 - Schöppler, Friedrich Eugen T1 - Photolumineszenzmikroskopie und-spektroskopie halbleitender Kohlenstoffnanoröhren T1 - Photoluminescence microscopy and spectroscopy of semiconducting nanotubes N2 - Im Rahmen dieser Dissertation wurden optische Eigenschaften von halbleitenden, einwandigen Kohlenstoffnanoröhren (SWNTs) der (6,5)-Chiralität untersucht. Dies gelang durch Ensemblemessungen aber vor allem durch den Aufbau eines Mikroskops zur Messung an einzelnen SWNTs. Dieses Einzel- SWNT-Mikroskop ermöglichte nebst „normaler“ Bildgebung durch Sammlung und Abbildung der nahinfraroten Photolumineszenz (PL) der (6,5)-SWNTs auch die spektral- und zeitaufgelöste Untersuchung der PL. Durch Verwendung von Dichtegradientenultrazentrifugation (DGU) zur chiralen Aufreinigung des SWNT-Rohmaterials konnten alle Messungen unter Minimierung des störenden Einflusses von Aggregaten oder SWNTs anderer Chiralität durchgeführt werden. Untersucht und bestimmt wurde der Absorptionsquerschnitt und die Exzitonengröße, die PL-Eigenschaften aggregierter SWNTs und der Einfluß der Permittivität auf die PL einzelner SWNTs. N2 - Within the course of this work fundamental optical properties of semiconducting single-walled carbon nanotubes (SWNTs) of the (6,5)-chirality were examined by utilizing ensemble measurements and in particular a home-built microscope setup for measurements of individual SWNTs. This single-SWNTmicroscope allowed for „standard“ imaging of the near infrared photoluminescence (PL) signal of the (6,5)-SWNTs as well as for spectrally and timeresolved PL measurements. Facilitating density gradient ultracentrifugation (DGU) for chiral enrichment of the SWNT soot, all measurements were carried out with minimum influence of aggregates or minority species of other SWNT chiralities. The absorption cross section, the exciton size, PL-features of aggregated SWNTs and the influence of permittivity on SWNT-PL have been investigated. KW - Mikroskopie KW - Photolumineszenz KW - Photolumineszenzspektroskopie KW - Kohlenstoff-Nanoröhre KW - Halbleiter KW - Spektroskopie KW - NIR-Spektroskopie KW - Lebensdauer KW - Laserinduzierte Fluoreszenz KW - Aggregation KW - Exziton KW - Dielektrizitätszahl KW - microscopy KW - spectroscopy KW - carbon nanotubes KW - fluorescence Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-73329 ER - TY - THES A1 - Kritzer, Robert T1 - Quantum dynamics in dissipative environments T1 - Quantendynamik in dissipativer Umgebung N2 - In this thesis, the influence of an environment on molecules and, in particular, on the quantum control of such systems is investigated. Different approaches to describe system-bath dynamics are implemented and applied. The inclusion of a dissipation term in the system Hamiltonian leads to energy loss and relaxation to the ground state. As a first application, the isomerisation reaction in an aromatic complex is treated. It is shown that this simple model is able to reproduce results of time-resolved spectroscopic measurements. Next, the influence of noise is investigated. The incorporation of fluctuations reveals that energy is not conserved and coherences are destroyed. As an example, the quantum control of a population transfer in Na2 is examined. The efficiency of control processes is studied in dependence on the strength of the noise and different system-bath couplings. Starting with the unperturbed system, Local Control Theory is applied to construct a field which selectively transfers population into a single excited electronic state. The coupling to the bath is then switched on to monitor the dependence of the coupling strength on the transfer efficiency. The perturbation of the bath effects the Na2 molecule in such a way that potential energy curves and transition dipole moments are distorted. An important result is that already elastic collisions lead to a substantial loss of control efficiency. The most promising approach used in this thesis is the stochastic Schrödinger equation. It is equivalent to the commonly employed descriptions of system-bath dynamics within the reduced density matrix formalism. It includes decoherences and dissipation caused by elastic and inelastic collisions. Our contribution is the incorporation of laser excitation into the kinetic Monte-Carlo scheme. Thus we are able to apply this stochastic approach to the quantum control of population transfer in the sodium dimer. Because within our description it is possible to separate pure dephasing, inelastic transitions, and coherent time-evolution, we can identify the relative influence of these processes on the control efficiency. This leads to a far more physical picture of the basic processes underlying the perturbations of an environment then what a reduced density matrix description can provide. In utilising the stochastic wave function approach instead of the density matrix formalism, the computations are quite efficient. The stochastic Schrödinger equation is realised by N independent runs, where, in our case, an ensemble size of N = 1000 gives converged results. The efficiency of the laser control process is studied as a function of temperature and collision rates. A rise in temperature (or collision rate) reeffects a stronger fluctuation and thus results in a less efficient transfer by the control field. Though the Gaussian fluctuations used here do not strictly represent 'white'- noise, since a deterministic machine is not able to produce uncorrelated random numbers, an acceptable distribution is achieved by simple procedures. An improvement of the here applied algorithms would, for instance, include a more sophisticated sampling of the dephasing rates. Only one example of a control process is studied here and an application of the developed approach to other problems of quantum control is to be performed. This thesis established a systematic approach to understand quantum control in the presence of an environment. N2 - In der vorliegenden Arbeit wird der Einfluss der Umgebung auf Moleküle und insbesondere der Quantenkontrolle solcher Systeme untersucht. Unterschiedliche Herangehensweisen, System-Bad-Kopplungen zu beschreiben, werden implementiert und angewendet. Die Berücksichtigung eines Dissipationstermes im System-Hamiltonoperator führt zu Energieabgabe und Relaxation in den Grundzustand. Als eine erste Anwendung wird die Isomerisation eines aromatischen Komplexes behandelt. Anhand dieses einfachen Modells ist es möglich, Resultate zeitaufgelöster, spektroskopischer Messungen zu reproduzieren. Weiterhin wird der Einfluss des Rauschens untersucht. Die Einführung von Fluktuationen führt dazu, dass Energie nicht erhalten bleibt und Kohärenz verloren geht. Als ein Beispiel dient hier die Quantenkontrolle eines Populationstransferprozesses im Na2 Molekül. Die Effizienz eines Kontrollprozesses wird in Abhängigkeit der Rauschstärke und verschiedener System-Bad-Kopplungen untersucht. Ausgehend vom ungestörten System wird die Lokale Kontrolltheorie benutzt, um ein Feld, welches selektiv Population in einen einzigen, angeregten Zustand transferiert, zu konstruieren. Die Kopplung an das Bad wird daraufhin eingeschaltet, um die Abhängigkeit der Kopplungsstärke auf die Transfereffizienz zu charakterisieren. Die Störung des Bades beeinflusst das Na2-Molekül dahingehend, dass Potentialkurven und Übergangsdipolmomente verzerrt werden. Eine wichtige Erkenntnis ist, dass bereits elastische Stöße zu einem substantiellen Verlust der Kontrolleffizienz führen. Die am meisten versprechende Methode, welche in dieser Arbeit Verwendung findet, ist die der stochastischen Schrödingergleichung. Sie ist der weitläufig gebräuchlichen Beschreibung von System-Bad-Wechselwirkungen innerhalb des Formalismus der reduzierten Dichtematrix gleichwertig. Dekohärenzen und Dissipationseffekte ausgelöst durch elastische und inelastische Stöße werden innerhalb der stochastischen Gleichungen separat berücksichtigt. Unser Beitrag ist die Einbindung der Laseranregung in das kinetische Monte-Carlo-Schema. Dies ermöglicht die Anwendung des stochastischen Ansatzes auf die Quantenkontrolle des Populationstransfers eines Natriumdimers. Da es innerhalb unserer Beschreibung möglich ist, reine Dephasierungen, inelastische Übergänge und kohärente Entwicklung in der Zeit zu beschreiben, können wir den relativen Einfluss jener Prozesse auf die Kontrolleffizienz identifizieren. Dies führt zu einer physikalischeren Beschreibung der zugrunde liegenden Prozesse, welche die Störungen der Umgebung bewirken, als sich aus einer reduzierten Dichtematrizendarstellung ergibt. Durch Benutzung des stochastischen Wellenfunktionsansatzes anstelle des Dichtematrizenformalismus ergeben sich effiziente Berechnungen. Die stochastische Schrödingergleichung wird für N unabhängige Programmdurchläufe gelöst, wobei in unserem Fall eine Ensemblegröße von N = 1000 konvergente Resultate liefert. Die Wirksamkeit des Laserkontrollprozesses wird anhand von Temperatur und Stoßrate untersucht. Ein Anstieg der Temperatur (oder der Stoßrate) spiegelt höhere Fluktuationen wider und resultiert daher in einem weniger effizienten, von einem Kontrollfeld hervorgerufenen Transfer. Obwohl die gaußverteilten Fluktuationen, welche hier benutzt werden, strenggenommen kein 'Weisses Rauschen' repräsentieren, da eine deterministische Rechenmaschine keine unkorrellierten Zufallszahlen generieren kann, wird dennoch eine akzeptable Verteilung aus einfachen Prozeduren erhalten. Eine Verbesserung der hier angewendeten Algorithmen würde zum Beispiel aus einer verfeinerten Implementierung der Dephasierungsraten bestehen. Lediglich ein Beispiel eines Kontrollprozesses wird hier untersucht und die Anwendung der erarbeiteten Methodik auf andere Fragestellungen der Quantenkontrolle ist noch offen. Diese Dissertation stellt somit eine systematische Annäherung dar, um die Quantenkontrolle in Anwesenheit von Umgebungseinflüssen zu verstehen. KW - Quantenmechanisches System KW - Dissipatives System KW - Quantenkontrolle KW - dissipative Umgebung KW - Quantum dynamics KW - dissipative environments Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-73456 ER - TY - THES A1 - Falge, Mirjam T1 - Dynamik gekoppelter Elektronen-Kern-Systeme in Laserfeldern T1 - Dynamics of Coupled Electron-Nuclei-Systems in Laser Fields N2 - Die vorliegende Arbeit beschäftigt sich mit der theoretischen Untersuchung zweier Themenkomplexe: der Erzeugung Hoher Harmonischer in Molekülen und dem Einfluss von gekoppelter Elektronen-Kern-Dynamik auf Ultrakurzpuls-Ionisationsprozesse und Quantenkontrolle. Während bei der Untersuchung der Hohen Harmonischen die Auswirkungen der Kernbewegung auf die Spektren im Mittelpunkt des Interesses stehen, wird bei der Analyse der gekoppelter Elektronen-Kern-Dynamik das Hauptaugenmerk auf die nicht-adiabatischen Effekte gerichtet, die auftreten, wenn Kern- und Elektronenbewegung sich nicht, wie es im Rahmen der Born-Oppenheimer-Näherung in der Quantenchemie häufig angenommen wird, voneinander trennen lassen. N2 - This work aims at the theoretical analysis of high harmonic generation in molecules and the influence of coupled electron and nuclear dynamics on ultra-short pulse ionization processes. KW - Nichtadiabatischer Prozess KW - Laserstrahlung KW - Quantenmechanik KW - Molekulardynamik KW - Quantendynamik KW - nicht-adiabatische Effekte KW - Hohe Harmonische KW - Photoelektronenspektroskopie KW - quantum dynamics KW - nonadiabatic effects KW - high harmonic generation KW - photoelectron spectroscopy Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-72889 ER -