TY - THES A1 - Schöppler, Friedrich Eugen T1 - Photolumineszenzmikroskopie und-spektroskopie halbleitender Kohlenstoffnanoröhren T1 - Photoluminescence microscopy and spectroscopy of semiconducting nanotubes N2 - Im Rahmen dieser Dissertation wurden optische Eigenschaften von halbleitenden, einwandigen Kohlenstoffnanoröhren (SWNTs) der (6,5)-Chiralität untersucht. Dies gelang durch Ensemblemessungen aber vor allem durch den Aufbau eines Mikroskops zur Messung an einzelnen SWNTs. Dieses Einzel- SWNT-Mikroskop ermöglichte nebst „normaler“ Bildgebung durch Sammlung und Abbildung der nahinfraroten Photolumineszenz (PL) der (6,5)-SWNTs auch die spektral- und zeitaufgelöste Untersuchung der PL. Durch Verwendung von Dichtegradientenultrazentrifugation (DGU) zur chiralen Aufreinigung des SWNT-Rohmaterials konnten alle Messungen unter Minimierung des störenden Einflusses von Aggregaten oder SWNTs anderer Chiralität durchgeführt werden. Untersucht und bestimmt wurde der Absorptionsquerschnitt und die Exzitonengröße, die PL-Eigenschaften aggregierter SWNTs und der Einfluß der Permittivität auf die PL einzelner SWNTs. N2 - Within the course of this work fundamental optical properties of semiconducting single-walled carbon nanotubes (SWNTs) of the (6,5)-chirality were examined by utilizing ensemble measurements and in particular a home-built microscope setup for measurements of individual SWNTs. This single-SWNTmicroscope allowed for „standard“ imaging of the near infrared photoluminescence (PL) signal of the (6,5)-SWNTs as well as for spectrally and timeresolved PL measurements. Facilitating density gradient ultracentrifugation (DGU) for chiral enrichment of the SWNT soot, all measurements were carried out with minimum influence of aggregates or minority species of other SWNT chiralities. The absorption cross section, the exciton size, PL-features of aggregated SWNTs and the influence of permittivity on SWNT-PL have been investigated. KW - Mikroskopie KW - Photolumineszenz KW - Photolumineszenzspektroskopie KW - Kohlenstoff-Nanoröhre KW - Halbleiter KW - Spektroskopie KW - NIR-Spektroskopie KW - Lebensdauer KW - Laserinduzierte Fluoreszenz KW - Aggregation KW - Exziton KW - Dielektrizitätszahl KW - microscopy KW - spectroscopy KW - carbon nanotubes KW - fluorescence Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-73329 ER - TY - THES A1 - Settels, Volker T1 - Quantum chemical description of ultrafast exciton self-trapping in perylene based materials T1 - Quanten-chemische Beschreibung von ultraschnellem Self-trapping von Exzitonen in Perylen-basierten Materialien N2 - Im Rahmen dieser Dissertation wurden sehr lange Exzitonen-Diffusionslängen (LD) unter idealen Bedingungen für Perylen-basierte Materialien simuliert. Dies ist ein Indiz dafür, dass die sehr kurzen LD in realen Materialien aus einer extrinsischen sowie einer intrinsischen Immobilisierung resultieren. Letztere basiert auf einer Relaxation in sogenannten „Self-Trapping“-Zustände. Ein tieferes Verständnis der dem Self-Trapping zugrunde liegenden atomistischen Prozesse ist notwendig, um zukünftig Materialien mit langen LD entwickeln zu können, bei denen eine intrinsische Exzitonen-Immobilisierung verhindert wird. Für die Entwicklung eines solchen mechanistischen Verständnisses ist das Vorliegen einer eindeutigen Korrelation zwischen der molekularen Anordnung und der LD unabdingbar. Diese weisen Einkristalle von Diindenoperylen (DIP) und α-Perylen-tetracarboxyl-anhydrid (α-PTCDA) auf. Bei ersteren wurde eine außergewöhnlich lange LD von 90 nm und bei letzteren nur 22 nm gemessen. Teil dieser Arbeit war es, Gründe für diesen Unterschied in der LD zu finden. Nur Self-Trapping kommt als Ursache in Frage. Aus diesem Grund eignen sich diese Materialien, um ein atomistisches Verständnis des Self-Trappings exemplarisch an ihnen zu erarbeiten. Mutmaßlich könnten Differenzen in der elektronischen Struktur in DIP und α-PTCDA für das unterschiedliche Self-Trapping verantwortlich sein. Allerdings konnte gezeigt werden, dass es für viele Perylen-basierte Materialien keine signifikanten Unterschiede in der elektronischen Struktur gibt, wodurch diese für die Aufklärung von Immobilisierungsmechanismen zu vernachlässigen sind. Eine weitere mögliche Begründung wäre in Polarisationseffekten im Kristall zu suchen, welche die elektronische Struktur in Perylen-basierten Materialien unterschiedlich beeinflussen. Vor allem ihr Einfluss auf Ladungstrennungs-Zustände (CT), die oberhalb des optisch hellen Frenkel-Zustandes liegen, war fraglich, weil sie energetisch abgesenkt werden könnten. Ein signifikanter Einfluss von Polarisationseffekten konnte aber für alle Zustände mittels eines polarisierbaren Kontinuum-Modells ausgeschlossen werden. Die geringe LD im α-PTCDA ist folglich ein Indiz für ein Self-Trapping, das durch die Kristallstruktur aus π-Stapeln evoziert wird, welche in DIP fischgrätenartig ist. Da Polarisationseffekte auszuschließen sind, übt der Kristall lediglich durch sterische Restriktionen einen Einfluss auf das Dimer aus. Daher muss die Methode für die Beschreibung von Self-Trapping nur diese Effekte berücksichtigen, so dass sich für den Einsatz des mechanical embedding QM/MM-Ansatzes entschieden wurde. Nun konnten Potentialflächen berechnet werden, auf denen anschließend eine Wellenpaketdynamik durchgeführt wurde. Diese Methode erlaubt es erstmals, Mechanismen der Exzitonen-Immobilisierung in organischen Materialien auf einer atomistischen Ebene zu beschreiben. Als Erklärung für Self-Trapping in α-PTCDA dienten Potentialflächen, die eine intermolekulare Verschiebung des Dimers im Kristall abbilden. So wurde eine Exzitonen-Immobilisierung innerhalb von 500 fs gefunden, die aus einem irreversiblem Energieverlust und einer lokalen Verzerrung der Kristallstruktur resultiert und auf diese Weise den weiteren Transport des Exzitons verhindert. Im Fall von DIP kann diese Immobilisierung aufgrund hoher Energiebarrieren nicht stattfinden. Diese Barrieren resultieren aus der fischgrätenartigen Kristallstruktur des DIP. Diese Diskrepanzen in der Dynamik erklären die unterschiedlichen LD-Werte für DIP und α-PTCDA. In einem weiteren Fall wurde eine Exzitonen-Immobilisierung in helikalen π Aggregaten von Perylen-tetracarboxyl-bisimid (PBI) Molekülen festgestellt. Hier wird Self-Trapping durch einen Relaxationsmechanismus verursacht, in dem das Exziton durch geringe asymmetrische Schwingungen des Aggregats innerhalb von 200 fs von dem hellen Frenkel- in den dunklen Frenkel-Zustand transferiert wird, wobei dieser Übergang von einem CT-Zustand vermittelt wird. Der gesamte Vorgang ist nur bei helikalen Aggregaten möglich, weil nur hier CT-Zustände sehr dicht bei dem hellen Frenkel-Zustand vorhanden sind. Im finalen Frenkel-Zustand tritt eine Torsionsbewegung um die π-Stapelachse ein, so dass ein Energieverlust und eine lokale Änderung der Aggregatstruktur erfolgt – also ein Self-Trapping des Exzitons. Dieser modellierte Mechanismus steht im Einklang zu allen vorliegenden experimentellen Daten. Diese Erkenntnisse lassen die Schlussfolgerung zu, dass in künftigen Materialen für organische Solarzellen eine irreversible und ultraschnelle Deformation des Aggregats nach der Photoanregung vermieden werden muss - will man lange LD erreichen. Nur so kann Self-Trapping von Exzitonen verhindert werden. N2 - In the context of this dissertation very long ranged exciton diffusion lengths (LD) were simulated for perylene-based materials under ideal conditions. This leads to the conclusion that the short LD values in existing materials result from an extrinsic and intrinsic immobilization. The latter, which is a specific material property, is based on a relaxation of the exciton into self-trapping states. An in-depth understanding of the atomistic processes defining self-trapping is essential to developing materials with long LD in the future, in which intrinsic immobilization is prevented. For the development of such a mechanistic understanding it is crucial that a clear relationship between molecular structure and LD is available. This is given by single crystals of diindeno perylene (DIP) and α-perylene tetracarboxylic anhydride (α-PTCDA). An extraordinary large LD of 90 nm was measured for the first one, while the latter possesses only 22 nm. Part of this thesis was to deliver reasons for this discrepancy. Only self-trapping comes into question to explain the different LD values. One reason for the different self-trapping in DIP and α-PTCDA could lie in the electronic structure. However, it was possible to demonstrate that a wide range of perylene-based materials possess no significant differences in their electronic structures. Consequently, such differences can be neglected for the explanation of immobilization mechanisms for the exciton. A further possible explanation could be polarization effects in the crystal, which influences the electronic structure of perylene based materials differently. Especially their influence on charge transfer (CT) states, which are located above the optically bright Frenkel state, was in question because such states could be stabilized by a polarizable surrounding. A significant influence of polarization effects on all considered states were excluded by using a polarizable continuum model. Hence, the small LD values in α-PTCDA are an evidence for self-trapping, which produces a crystal structure built up by π-stacks, while the one of DIP is of herringbone type. Since polarization effects can be neglected, is the dimer only via steric restrictions influenced by the crystal. Hence, a method describing self-trapping has to consider such effects, so that a mechanical embedding QM/MM approach is sufficient. Now, potential energy surfaces were calculated, on which wave packet dynamics were subsequently performed. In this way, atomistic mechanisms for the immobilization of excitons were described for the first time in organic materials. Self-trapping was studied in crystals of α-PTCDA by potential energy surfaces, which map an intermolecular shift motion of the dimer in the crystal. An immobilization of excitons occurs within 500 fs, which results from an irreversible energy loss together with a local deformation of the crystal lattice. This prevents a further transport of the exciton. In the case of DIP, this immobilization does not proceed due to high barriers. These barriers result from the herringbone type packing motif in the DIP crystal. This discrepancy in the dynamics explains the different LD values in DIP and α-PTCDA. In a further example, an exciton immobilization was found in helical π-aggregates of perylene tetracarboxylic bisimide (PBI) molecules. Self-trapping is caused by a relaxation mechanism, in which the exciton is transferred by asymmetric vibrations of the aggregate from the bright to a dark Frenkel state within 200 fs, whereby the transition is mediated by a CT state. However, the CT state is almost non-populated during the whole mechanism so that its participation could not yet be proven experimentally. This entire procedure is solely possible in helical aggregates, because only for such structures is there a CT state located next to the bright Frenkel state. At the final Frenkel state a torsional motion around the π-stacking axis is possible so that the loss in energy and the local rearrangement of the aggregate structure occurs, which means a self-trapping of the exciton. This mechanism is in perfect agreement with all available experimental data. These insights allow the conclusion that in future materials for organic solar cells an irreversible and ultrafast deformation of aggregates after photo-absorption must be avoided. Only in this way long LD values can be achieved and exciton self-trapping can be prevented. However, small LD values are always predicted in helical aggregates of perylene-based materials, because exciton immobilization occurs already due to small molecular motions. For this reason such aggregates are inappropriate for the use in organic solar cells. Long LD values are expected for aggregate structures with long intermolecular shifts or molecules with bulky substituents. KW - Exziton KW - Quantenchemie KW - Angeregter Zustand KW - Self-Trapping KW - CC2 KW - exciton KW - self-trapping KW - quantum chemistry KW - excited state KW - Perylenderivate Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-69861 ER - TY - THES A1 - Stich, Dominik T1 - Zur Exziton- und Ladungsträgerdynamik in einwandigen Kohlenstoffnanoröhren T1 - Exciton and charge carrier dynamics in single-wall carbon nanotubes N2 - In dieser Dissertation wurde die Exziton- und Ladungsträgerdynamik in halbleitenden und metallischen einwandigen Kohlenstoffnanoröhren (SWNTs) mittels zeitkorreliertem Einzelphotonenzählen (TCSPC) und transienter Absorptionsspektroskopie untersucht. Die Experimente wurden an Tensid- oder DNA-stabilisierten SWNT-Proben in Suspension durchgeführt, in denen durch Dichtegradientenultrazentrifugation (DGU) halbleitende (6,5)-Röhren oder metallische (9,9)-Röhren angereichert wurden. Für die Herstellung der metallischen SWNT-Proben wurde das DGU-Verfahren optimiert. Metallische SWNT-Proben wiesen eine Verunreinigung von etwa 3% halbleitenden SWNTs auf. Von den angereicherten metallischen SWNTs war die (9,9)-Röhre mit einem relativen Anteil von 40% die vorherrschende Chiralität. Für transiente Absorptionsmessungen wurden die metallischen SWNT-Proben zudem durch Filtration aufkonzentriert. Halbleitende (6,5)-Proben wurden mit einem standardmäßig verwendeten Rezept hergestellt. Mit TCSPC-Messungen an (6,5)-Proben wurde erstmals gezeigt, dass halbleitende SWNTs neben der kurzlebigen Fluoreszenz des S1-Exzitons, die auf der ps-Zeitskala abläuft, auch eine langlebig Fluoreszenzkomponente aufweisen. Diese klingt mit t^−1 ab und stammt ebenfalls aus dem S1-Exzitonzustand. Das relative Gewicht der langlebigen Komponente an der Quantenausbeute beträgt (7 ± 2)%. Bei der langlebige Fluoreszenzkomponente handelt es sich um verzögerte Fluoreszenz. Diese entsteht durch die Wiederbesetzung des S1-Zustands aus einem tiefergelegenen Triplettzustand. Der vorherrschende Zerfall des Tripletts skaliert mit t^-0,5 und ist auf das nicht-Fick’sche Diffusionsverhalten der Tripletts zurückzuführen, die an Störstellen gefangen werden und abreagieren. Wird vor dem Übergang in den Grundzustand ein weiteres Triplett eingefangen, so kommt es zu einer Triplett-Triplett-Annihilation, die eine Wiederbesetzung des S1-Zustandes bewirkt. Für die transienten Absorptionsexperimente wurde ein Messaufbau verwirklicht, der Anregung und Abfrage im VIS und NIR Spektralbereich mit einer Zeitauflösung von bis zu 50 fs ermöglicht. Die Detektion des Abfragelichts erfolgt spektral aufgelöst mit einer CCD-Kamera. Der Aufbau ermöglicht Nachweisempfindlichkeiten von bis zu 0,2 mOD bei einer Integrationszeit von einer Sekunde. Durch unterschiedliche Modulation von Anregungs- und Abfragestrahl ist eine Detektion auf der Differenzfrequenz der Modulationen möglich, wodurch Einflüsse des Anregungslichts im Abfragespektrum effizient unterdrückt werden. In transienten Absorptionsexperimenten wurde die Exziton- und Ladungsträgerdynamik der (9,9)-Röhre untersucht. Die transienten Absorptionsdaten wurden mit einer globalen Fitroutine angepasst, der ein Vierniveausystem zugrunde lag. Aus dem globalen Fit sind die Photoanregungsspektren (PAS) - die Beiträge der drei angeregten Niveaus zu den transienten Absorptionsspektren - sowie die Zerfallszeiten zugänglich. Die PAS sind durch die Exzitonresonanz gekennzeichnet. Breite PB-Banden aufgrund der Besetzungsänderung der linearen E00-Bänder sind im Gegensatz zu transienten Absorptionsmessungen an Graphen oder Graphit nicht erkennbar. Die PAS des schnellen und mittleren Zerfalls sind ähnlich und weisen eine starkes PB-Signal bei der Energie des M1-Exzitons der (9,9)-Röhre auf, das von PA-Banden bei höheren undtieferen Energien begleitet wird. Der langsame Zerfall ist hingegen durch eine blauverschobene PB-Bande gekennzeichnet, die nur auf der niederenergetischen Seite mit einem PA-Signal einhergeht. Die Zerfallszeiten nehmen mit steigender Anregungsleistung zu und liegen im Bereich von 30 fs bis 120 fs, 500 fs bis 1000 fs und 40 ps. Die schnelle Zerfallskomponente wird mit der Dissoziation der Exzitonen sowie der Thermalisierung der freien Ladungsträgen in den linearen Leitungsbändern zu einer heißen Ladungsträgerverteilung assoziiert. Die mittlere Zerfallskomponente beschreibt die Abkühlung und Rekombination der freien Elektronen und Löcher. Entscheidender Mechanismus ist hierbei die Streuung an hochenergetischen optischen Phononmoden. Die langsame Zerfallskomponente kann durch langlebige, wahrscheinlich an Störstellen gefangene Ladungsträger erklärt werden, deren elektrische Felder durch den Stark-Effekt das ableitungsähnliche transiente Absorptionsspektrum erzeugen. Mittels transienter Absorptionsmessungen an (6,5)-Röhren wurde aus dem anregungsleistungsabhängigen maximalen PB-Signal des S1-Exzitons die Größe des S1-Exzitons zu (7,2 ± 2,5) nm bestimmt. Aus dem Vergleich der leistungsabhängigen maximalen PB-Signale bei Anregung in das S1- und das S2-Exziton ergibt sich, dass die Konversionseffizienz aus dem S2- in den S1-Zustand 1 ± 0,1 beträgt und innerhalb der experimentellen Zeitauflösung von 60 fs vollständig abläuft. Die Exzitongröße in metallischen (9,9)-Röhren wurde bei Exzitonlebensdauern von 15 fs bis 30 fs zu etwa 7 nm bis 12 nm abgeschätzt. N2 - Within the course of this work, the electron- and exciton-dynamics in metallic and semiconducting single-wall carbon nanotubes (SWNTs) were examined by timecorrelated single-photon counting (TCSPC) spectroscopy and transient absorption spectroscopy. In the experiments surfactant- or DNA-stabilized SWNT-suspensions were used in which the semiconducting (6,5)-chirality or the metallic (9,9)-chirality were enriched by means of density gradient ultracentrifugation. The preparation method for metallic samples was optimized. It yields samples that contain 40% of the predominant (9,9)-chirality and show a contamination with semiconducting SWNTs of only 3%. Metallic SWNT samples for transient absorption experiments were concentrated by filtration. Semiconducting (6,5)-samples were prepared following a standard recipe. TCSPC-measurements on (6,5)-samples revealed that semiconducting SWNTs also exhibit a long-lived fluorescence component besides the short-lived fluorescence of the S1-exciton which emits on the ps-timescale. The long-lived component shows a t^−1 powerlaw decay behavior. It also stems from the S1-exciton state and accounts for (7 ± 2) % of the total quantum yield. The long-lived component is due to delayed fluorescence which is caused by the repopulation of the S1-exciton state from a lower-lying triplet state. The decay of the triplet state scales with t^−0,5 and is due to non-Fickian diffusion of the triplets which eventually get trapped at defect sites and decay. In the case that a second triplet is captured at an already occupied defect site, triplet-triplet-annihilation occurs, which leads to the reoccupation of the S1-exciton state. A transient absorption experiment was set up which allows pumping and probing in the visible and near-infrared spectral range with a temporal resolution of up to 60 fs. The spectrally resolved probe light is detected by a CCD-camera. The experimental setup reaches a detection sensitivity of up to 0,2 mOD at an integration time of one second. The experimental setup also allows for the detection on the difference frequency of the modulated pump- and probe-beams. This strongly suppresses contributions of stray light from the pump beam in the transient absorption spectrum. The exciton and charge carrier dynamics in metallic (9,9)-SWNTs were investigated with transient absorption measurements. A global fit routine, based on a four level model, was applied to the data. The decay times as well as the photo excitation spectra – the contributions of each of the three excited levels to the transient absorption spectra - are directly accessible from the global fit. All photo excitation spectra are dominated by PA- and PB-contributions from the exciton resonance. Broad PB-features due to the population of the linear E00-bands, as evidenced in graphene or graphite, were not found. The photo excitation spectra of the fast and medium decay component are similar. Both exhibit a strong PB-signal at the energy of the M1-excitons of the (9,9)-tube, which is accompanied by PA-Bands on the high and the low energy sides. The slow decay component is characterized by a blue-shifted PB-peak with a PA-band on the low energy side only. The decay times increase with rising excitation power and are in the range of 30 fs to 120 fs, 500 fs to 1000 fs, and 40 ps, respectively. The fast decay is associated with rapid exciton dissociation and thermalization of the charge carriers in the linear bands. The medium decay is governed by cooling of the hot charge carrier distribution and recombination of electrons and holes. Both processes are mediated by high energy optical phonons. The slow decay originates from long-lived charge carriers, likely trapped at defect sites. The derivative-like photo excitation spectrum is a sign of the Stark-effect, caused by the electric field of the charge carriers. Using transient absorption measurements, the size of the S1-exciton in (6,5)-tubes was determined from the excitation dependent maximum of the S1-PB-signal to be (7,2 ± 2,5) nm. Comparing the excitation dependent maximum PB-signal after exciting the S1- or the S2-exciton-states shows that the conversion efficency from the S2- into the S1-exciton state is 1 ± 0,1 and is completed within the experimental temporal resolution of 60 fs. The exciton size in metallic (9,9)-tubes is in the range from 7 nm to 12 nm for excitonic lifetimes of 15 fs to 30 fs. KW - Kohlenstoff-Nanoröhre KW - Verzögerte Fluoreszenz KW - Exziton KW - Kohlenstoffnanoröhre KW - metallisch KW - Exziton KW - verzögerte Fluoreszenz KW - single-wall carbon nanotube KW - metallic KW - exciton KW - delayed fluorescence Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-70193 ER -