TY - JOUR A1 - Papenfort, Kai A1 - Vogel, Jörg T1 - Small RNA functions in carbon metabolism and virulence of enteric pathogens JF - Frontiers in Cellular and Infection Microbiology N2 - Enteric pathogens often cycle between virulent and saprophytic lifestyles. To endure these frequent changes in nutrient availability and composition bacteria possess an arsenal of regulatory and metabolic genes allowing rapid adaptation and high flexibility. While numerous proteins have been characterized with regard to metabolic control in pathogenic bacteria, small non-coding RNAs have emerged as additional regulators of metabolism. Recent advances in sequencing technology have vastly increased the number of candidate regulatory RNAs and several of them have been found to act at the interface of bacterial metabolism and virulence factor expression. Importantly, studying these riboregulators has not only provided insight into their metabolic control functions but also revealed new mechanisms of post-transcriptional gene control. This review will focus on the recent advances in this area of host-microbe interaction and discuss how regulatory small RNAs may help coordinate metabolism and virulence of enteric pathogens. KW - sRNA KW - carbon metabolism KW - Hfq KW - CsrA KW - virulence Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-197520 SN - 2235-2988 VL - 4 IS - 91 ER - TY - JOUR A1 - Cull, Benjamin A1 - Lima Prado Godinho, Joseane A1 - Fernandes Rodrigues, Juliany Cola A1 - Frank, Benjamin A1 - Schurigt, Uta A1 - Williams, Roderick AM A1 - Coombs, Graham H A1 - Mottram, Jeremy C T1 - Glycosome turnover in Leishmania major is mediated by autophagy JF - Autophagy N2 - Autophagy is a central process behind the cellular remodeling that occurs during differentiation of Leishmania, yet the cargo of the protozoan parasite's autophagosome is unknown. We have identified glycosomes, peroxisome-like organelles that uniquely compartmentalize glycolytic and other metabolic enzymes in Leishmania and other kinetoplastid parasitic protozoa, as autophagosome cargo. It has been proposed that the number of glycosomes and their content change during the Leishmania life cycle as a key adaptation to the different environments encountered. Quantification of RFP-SQL-labeled glycosomes showed that promastigotes of L. major possess ~20 glycosomes per cell, whereas amastigotes contain ~10. Glycosome numbers were significantly greater in promastigotes and amastigotes of autophagy-defective L. major Δatg5 mutants, implicating autophagy in glycosome homeostasis and providing a partial explanation for the previously observed growth and virulence defects of these mutants. Use of GFP-ATG8 to label autophagosomes showed glycosomes to be cargo in ~15% of them; glycosome-containing autophagosomes were trafficked to the lysosome for degradation. The number of autophagosomes increased 10-fold during differentiation, yet the percentage of glycosome-containing autophagosomes remained constant. This indicates that increased turnover of glycosomes was due to an overall increase in autophagy, rather than an upregulation of autophagosomes containing this cargo. Mitophagy of the single mitochondrion was not observed in L. major during normal growth or differentiation; however, mitochondrial remnants resulting from stress-induced fragmentation colocalized with autophagosomes and lysosomes, indicating that autophagy is used to recycle these damaged organelles. These data show that autophagy in Leishmania has a central role not only in maintaining cellular homeostasis and recycling damaged organelles but crucially in the adaptation to environmental change through the turnover of glycosomes. KW - ATG8 KW - Leishmania KW - TEM KW - glycosome KW - protozoan parasite KW - ATG KW - autophagy-related KW - GFP KW - green fluorescent protein KW - MVT KW - multivesicular tubule KW - RFP KW - red fluorescent protein KW - transmission electron microscopy KW - adaptation KW - autophagy KW - mC KW - mCherry KW - fluorescent protein Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-150277 VL - 10 IS - 12 ER - TY - THES A1 - Westermann, Alexander J. T1 - Dual RNA-seq of pathogen and host T1 - Duale RNA-Sequenzierung eines Pathogens und seines Wirts N2 - The infection of a eukaryotic host cell by a bacterial pathogen is one of the most intimate examples of cross-kingdom interactions in biology. Infection processes are highly relevant from both a basic research as well as a clinical point of view. Sophisticated mechanisms have evolved in the pathogen to manipulate the host response and vice versa host cells have developed a wide range of anti-microbial defense strategies to combat bacterial invasion and clear infections. However, it is this diversity and complexity that makes infection research so challenging to technically address as common approaches have either been optimized for bacterial or eukaryotic organisms. Instead, methods are required that are able to deal with the often dramatic discrepancy between host and pathogen with respect to various cellular properties and processes. One class of cellular macromolecules that exemplify this host-pathogen heterogeneity is given by their transcriptomes: Bacterial transcripts differ from their eukaryotic counterparts in many aspects that involve both quantitative and qualitative traits. The entity of RNA transcripts present in a cell is of paramount interest as it reflects the cell’s physiological state under the given condition. Genome-wide transcriptomic techniques such as RNA-seq have therefore been used for single-organism analyses for several years, but their applicability has been limited for infection studies. The present work describes the establishment of a novel transcriptomic approach for infection biology which we have termed “Dual RNA-seq”. Using this technology, it was intended to shed light particularly on the contribution of non-protein-encoding transcripts to virulence, as these classes have mostly evaded previous infection studies due to the lack of suitable methods. The performance of Dual RNA-seq was evaluated in an in vitro infection model based on the important facultative intracellular pathogen Salmonella enterica serovar Typhimurium and different human cell lines. Dual RNA-seq was found to be capable of capturing all major bacterial and human transcript classes and proved reproducible. During the course of these experiments, a previously largely uncharacterized bacterial small non-coding RNA (sRNA), referred to as STnc440, was identified as one of the most strongly induced genes in intracellular Salmonella. Interestingly, while inhibition of STnc440 expression has been previously shown to cause a virulence defect in different animal models of Salmonellosis, the underlying molecular mechanisms have remained obscure. Here, classical genetics, transcriptomics and biochemical assays proposed a complex model of Salmonella gene expression control that is orchestrated by this sRNA. In particular, STnc440 was found to be involved in the regulation of multiple bacterial target mRNAs by direct base pair interaction with consequences for Salmonella virulence and implications for the host’s immune response. These findings exemplify the scope of Dual RNA-seq for the identification and characterization of novel bacterial virulence factors during host infection. N2 - Die Infektion einer eukaryontischen Wirtszelle mit einem bakteriellen Pathogen ist eines der komplexesten Beispiele einer Domänen-überschreitenden Wechselwirkung zweier Organismen. Infektionsprozesse sind in höchstem Maße relevant, sowohl in der Grundforschung als auch von einem klinischen Blickwinkel aus betrachtet. Im Laufe der Evolution entstanden komplizierte Mechanismen, die es einem Pathogen erlauben, die Wirtsantwort zu manipulieren. Umgekehrt haben potentielle Wirtszellen eine Reihe von anti-mikrobiellen Verteidigungsstrategien entwickelt, um bakterielle Infektionen zu bekämpfen und letztlich zu beseitigen. Es sind jedoch genau diese Verschiedenheit und Komplexität, welche die Infektionsforschung so anspruchsvoll und technisch schwer analysierbar machen. Gängige Analysemethoden wurden zumeist entweder für bakterielle oder aber eukaryontische Organismen entwickelt. Dagegen werden Techniken benötigt, welche es erlauben, mit den mitunter extremen Unterschieden zwischen Wirt und Pathogen umzugehen, die sich in etlichen zellulären Eigenschaften und Prozessen manifestieren. Eine Klasse zellulärer Makromoleküle, die diese Heterogenität zwischen Wirt und Pathogen widerspiegelt, sind ihre jeweiligen Transkriptome: Bakterielle Transkripte unter-scheiden sich von ihren eukaryontischen Pendants in vielerlei Hinsicht, was sowohl quantitative als auch qualitative Aspekte miteinschließt. Die Gesamtheit zellulärer Transkripte ist von größter Bedeutung, da sie den physiologischen Zustand der jeweiligen Zelle unter den gegebenen Bedingungen reflektiert. Aus diesem Grund werden Genom-weite Transkriptom-techniken wie etwa die RNA-Sequenzierung seit etlichen Jahren erfolgreich angewandt, um biologische Prozesse zu untersuchen – jedoch ist deren Eignung für Infektionsstudien in starkem Maße limitiert. Die vorliegende Arbeit beschreibt die Etablierung eines neuartigen Ansatzes, „Duale RNA-Sequenzierung“ genannt, der Transkriptomstudien mit der Infektionsbiologie kompatibel macht. Mithilfe dieser Technologie wurde hier im Besonderen versucht, die Rolle nicht-proteinkodierender RNA-Moleküle für die Virulenz zu beleuchten, da die Charakterisierung dieser RNA-Klassen bisherigen Infektionsstudien weitgehend verwehrt blieb. Die Anwendbar-keit der Dualen RNA-Sequenzierung wurde innerhalb eines In-vitro-Infektionsmodells getestet, welches auf dem wichtigen, fakultativ intrazellulären Pathogen Salmonella enterica serovar Tyhimurium und verschiedenen humanen Zelllinien basiert. Die Duale RNA-Sequenzierung zeigte sich dabei in der Lage alle wesentlichen bakteriellen sowie humanen Transkriptklassen zu erfassen und erwies sich als reproduzierbar. Im Zuge dieser Experimente wurde ein Gen für eine zuvor kaum beschriebene kleine nicht-kodierende RNA (STnc440) als eines der am stärksten induzierten Gene intrazellulärer Salmonellen identifiziert. Interessanterweise hatten vorherige Studien gezeigt, dass die Inaktivierung dieses Gens zu einem Virulenzdefizit innerhalb unterschiedlicher Tiermodelle für Salmonellose führt. Die zugrunde liegenden molekularen Mechanismen blieben jedoch unbekannt. In der vorliegenden Arbeit wurden genetische, Transkriptom- sowie biochemische Analysen eingesetzt um das komplexe Regulationsnetzwerk dieser kleinen RNA erstmals näher zu beleuchten. Im Einzelnen konnte gezeigt werden, dass STnc440 die Expression mehrerer bakterieller mRNAs durch das Ausbilden zwischen-molekularer Basenpaarungen reguliert, was weitreichende Konsequenzen sowohl für die Virulenz des Pathogens als auch die Immunantwort des Wirts hat. Diese Ergebnisse veranschaulichen das Potential der Dualen RNA-Sequenzierung für das Auffinden und Charakterisieren neuer bakterieller Virulenzfaktoren während der Wirtsinfektion. KW - Transkriptomanalyse KW - Dual RNA-seq KW - Salmonella enterica KW - Wirtszelle Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-112462 ER - TY - JOUR A1 - Vembar, Shruti S. A1 - Scherf, Artur A1 - Siegel, T. Nicolai T1 - Noncoding RNAs as emerging regulators of Plasmodium falciparum virulence gene expression JF - Current Opinion in Microbiology N2 - The eukaryotic unicellular pathogen Plasmodium falciparum tightly regulates gene expression, both during development and in adaptation to dynamic host environments. This regulation is evident in the mutually exclusive expression of members of clonally variant virulence multigene families. While epigenetic regulators have been selectively identified at active or repressed virulence genes, their specific recruitment remains a mystery. In recent years, noncoding RNAs (ncRNAs) have emerged as lynchpins of eukaryotic gene regulation; by binding to epigenetic regulators, they provide target specificity to otherwise non-specific enzyme complexes. Not surprisingly, there is great interest in understanding the role of ncRNA in P. falciparum, in particular, their contribution to the mutually exclusive expression of virulence genes. The current repertoire of P. falciparum ncRNAs includes, but is not limited to, subtelomeric ncRNAs, virulence gene-associated ncRNAs and natural antisense RNA transcripts. Continued improvement in high-throughput sequencing methods is sure to expand this repertoire. Here, we summarize recent advances in P. falciparum ncRNA biology, with an emphasis on ncRNA-mediated epigenetic modes of gene regulation. Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-121416 SN - 1369-5274 VL - 20 IS - 100 ER - TY - JOUR A1 - Jäger, Dominik A1 - Förstner, Konrad U. A1 - Sharma, Cynthia M. A1 - Santangelo, Thomas J. A1 - Reeve, John N. T1 - Primary transcriptome map of the hyperthermophilic archaeon Thermococcus kodakarensis JF - BMC Genomics N2 - Background Prokaryotes have relatively small genomes, densely-packed with protein-encoding sequences. RNA sequencing has, however, revealed surprisingly complex transcriptomes and here we report the transcripts present in the model hyperthermophilic Archaeon, Thermococcus kodakarensis, under different physiological conditions. Results Sequencing cDNA libraries, generated from RNA isolated from cells under different growth and metabolic conditions has identified >2,700 sites of transcription initiation, established a genome-wide map of transcripts, and consensus sequences for transcription initiation and post-transcription regulatory elements. The primary transcription start sites (TSS) upstream of 1,254 annotated genes, plus 644 primary TSS and their promoters within genes, are identified. Most mRNAs have a 5'-untranslated region (5'-UTR) 10 to 50 nt long (median = 16 nt), but ~20% have 5'-UTRs from 50 to 300 nt long and ~14% are leaderless. Approximately 50% of mRNAs contain a consensus ribosome binding sequence. The results identify TSS for 1,018 antisense transcripts, most with sequences complementary to either the 5'- or 3'-region of a sense mRNA, and confirm the presence of transcripts from all three CRISPR loci, the RNase P and 7S RNAs, all tRNAs and rRNAs and 69 predicted snoRNAs. Two putative riboswitch RNAs were present in growing but not in stationary phase cells. The procedure used is designed to identify TSS but, assuming that the number of cDNA reads correlates with transcript abundance, the results also provide a semi-quantitative documentation of the differences in T. kodakarensis genome expression under different growth conditions and confirm previous observations of substrate-dependent specific gene expression. Many previously unanticipated small RNAs have been identified, some with relative low GC contents (≤50%) and sequences that do not fold readily into base-paired secondary structures, contrary to the classical expectations for non-coding RNAs in a hyperthermophile. Conclusion The results identify >2,700 TSS, including almost all of the primary sites of transcription initiation upstream of annotated genes, plus many secondary sites, sites within genes and sites resulting in antisense transcripts. The T. kodakarensis genome is small (~2.1 Mbp) and tightly packed with protein-encoding genes, but the transcriptomes established also contain many non-coding RNAs and predict extensive RNA-based regulation in this model Archaeon. KW - riboswitch KW - hyperthermophile KW - hydrogen regulation KW - transcriptome KW - archaea KW - promoters KW - antisense RNAs KW - small non-coding RNAs Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-120966 SN - 1471-2164 VL - 15 IS - 684 ER - TY - JOUR A1 - Siegel, T. Nicolai A1 - Hon, Chung-Chau A1 - Zhang, Qinfeng A1 - Lopez-Rubio, Jose-Juan A1 - Scheidig-Benatar, Christine A1 - Martins, Rafeal M. A1 - Sismeiro, Odile A1 - Coppée, Jean-Yves T1 - Strand-specific RNA-Seq reveals widespread and developmentally regulated transcription of natural antisense transcripts in Plasmodium falciparum JF - BMC Genomics N2 - Background Advances in high-throughput sequencing have led to the discovery of widespread transcription of natural antisense transcripts (NATs) in a large number of organisms, where these transcripts have been shown to play important roles in the regulation of gene expression. Likewise, the existence of NATs has been observed in Plasmodium but our understanding towards their genome-wide distribution remains incomplete due to the limited depth and uncertainties in the level of strand specificity of previous datasets. Results To gain insights into the genome-wide distribution of NATs in P. falciparum, we performed RNA-ligation based strand-specific RNA sequencing at unprecedented depth. Our data indicate that 78.3% of the genome is transcribed during blood-stage development. Moreover, our analysis reveals significant levels of antisense transcription from at least 24% of protein-coding genes and that while expression levels of NATs change during the intraerythrocytic developmental cycle (IDC), they do not correlate with the corresponding mRNA levels. Interestingly, antisense transcription is not evenly distributed across coding regions (CDSs) but strongly clustered towards the 3′-end of CDSs. Furthermore, for a significant subset of NATs, transcript levels correlate with mRNA levels of neighboring genes. Finally, we were able to identify the polyadenylation sites (PASs) for a subset of NATs, demonstrating that at least some NATs are polyadenylated. We also mapped the PASs of 3443 coding genes, yielding an average 3′ untranslated region length of 523 bp. Conclusions Our strand-specific analysis of the P. falciparum transcriptome expands and strengthens the existing body of evidence that antisense transcription is a substantial phenomenon in P. falciparum. For a subset of neighboring genes we find that sense and antisense transcript levels are intricately linked while other NATs appear to be regulated independently of mRNA transcription. Our deep strand-specific dataset will provide a valuable resource for the precise determination of expression levels as it separates sense from antisense transcript levels, which we find to often significantly differ. In addition, the extensive novel data on 3′ UTR length will allow others to perform searches for regulatory motifs in the UTRs and help understand post-translational regulation in P. falciparum. KW - directional RNA-Seq KW - ncRNA KW - natural antisense transcripts KW - 3′ UTR KW - polyadenylation sites KW - genes KW - antisense RNA KW - plasmodium falciparum Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-119892 VL - 15 ER - TY - JOUR A1 - Adelfinger, Marion A1 - Gentschev, Ivaylo A1 - de Guibert, Julio Grimm A1 - Weibel, Stephanie A1 - Langbein-Laugwitz, Johanna A1 - Härtl, Barbara A1 - Escobar, Hugo Murua A1 - Nolte, Ingo A1 - Chen, Nanhai G. A1 - Aguilar, Richard J. A1 - Yu, Yong A. A1 - Zhang, Qian A1 - Frentzen, Alexa A1 - Szalay, Aladar A. T1 - Evaluation of a New Recombinant Oncolytic Vaccinia Virus Strain GLV-5b451 for Feline Mammary Carcinoma Therapy JF - PLoS ONE N2 - Virotherapy on the basis of oncolytic vaccinia virus (VACV) infection is a promising approach for cancer therapy. In this study we describe the establishment of a new preclinical model of feline mammary carcinoma (FMC) using a recently established cancer cell line, DT09/06. In addition, we evaluated a recombinant vaccinia virus strain, GLV-5b451, expressing the anti-vascular endothelial growth factor (VEGF) single-chain antibody (scAb) GLAF-2 as an oncolytic agent against FMC. Cell culture data demonstrate that GLV-5b451 virus efficiently infected, replicated in and destroyed DT09/06 cancer cells. In the selected xenografts of FMC, a single systemic administration of GLV-5b451 led to significant inhibition of tumor growth in comparison to untreated tumor-bearing mice. Furthermore, tumor-specific virus infection led to overproduction of functional scAb GLAF-2, which caused drastic reduction of intratumoral VEGF levels and inhibition of angiogenesis. In summary, here we have shown, for the first time, that the vaccinia virus strains and especially GLV-5b451 have great potential for effective treatment of FMC in animal model. KW - antibodies KW - cancer treatment KW - carcinomas KW - vaccinia virus KW - oncolytic viruses KW - viral replication KW - cell cultures KW - enzyme-linked immunoassays Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-119387 VL - 9 IS - 8 ER - TY - JOUR A1 - Li, Lei A1 - Wong, Hin-chung A1 - Nong, Wenyan A1 - Cheung, Man Kit A1 - Law, Patrick Tik Wan A1 - Kam, Kai Man A1 - Kwan, Hoi Shan T1 - Comparative genomic analysis of clinical and environmental strains provides insight into the pathogenicity and evolution of Vibrio parahaemolyticus JF - BMC Genomics N2 - Background: Vibrio parahaemolyticus is a Gram-negative halophilic bacterium. Infections with the bacterium could become systemic and can be life-threatening to immunocompromised individuals. Genome sequences of a few clinical isolates of V. parahaemolyticus are currently available, but the genome dynamics across the species and virulence potential of environmental strains on a genome-scale have not been described before. Results: Here we present genome sequences of four V. parahaemolyticus clinical strains from stool samples of patients and five environmental strains in Hong Kong. Phylogenomics analysis based on single nucleotide polymorphisms revealed a clear distinction between the clinical and environmental isolates. A new gene cluster belonging to the biofilm associated proteins of V. parahaemolyticus was found in clincial strains. In addition, a novel small genomic island frequently found among clinical isolates was reported. A few environmental strains were found harboring virulence genes and prophage elements, indicating their virulence potential. A unique biphenyl degradation pathway was also reported. A database for V. parahaemolyticus (http://kwanlab.bio.cuhk.edu.hk/vp webcite) was constructed here as a platform to access and analyze genome sequences and annotations of the bacterium. Conclusions: We have performed a comparative genomics analysis of clinical and environmental strains of V. parahaemolyticus. Our analyses could facilitate understanding of the phylogenetic diversity and niche adaptation of this bacterium. " KW - comparative genomics KW - clinical KW - environment KW - vibrio parahaemolyticus Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-118080 SN - 1471-2164 VL - 15 IS - 1135 ER - TY - JOUR A1 - Reynolds, David A1 - Cliffe, Laura A1 - Förstner, Konrad U. A1 - Hon, Chung-Chau A1 - Siegel, T. Nicolai A1 - Sabatini, Robert T1 - Regulation of transcription termination by glucosylated hydroxymethyluracil, base J, in Leishmania major and Trypanosoma brucei JF - Nucleic Acids Research N2 - Base J, beta-d-glucosyl-hydroxymethyluracil, is an epigenetic modification of thymine in the nuclear DNA of flagellated protozoa of the order Kinetoplastida. J is enriched at sites involved in RNA polymerase ( RNAP) II initiation and termination. Reduction of J in Leishmania tarentolae via growth in BrdU resulted in cell death and indicated a role of J in the regulation of RNAP II termination. To further explore J function in RNAP II termination among kinetoplastids and avoid indirect effects associated with BrdU toxicity and genetic deletions, we inhibited J synthesis in Leishmania major and Trypanosoma brucei using DMOG. Reduction of J in L. major resulted in genome-wide defects in transcription termination at the end of polycistronic gene clusters and the generation of antisense RNAs, without cell death. In contrast, loss of J in T. brucei did not lead to genome-wide termination defects; however, the loss of J at specific sites within polycistronic gene clusters led to altered transcription termination and increased expression of downstream genes. Thus, J regulation of RNAP II transcription termination genome-wide is restricted to Leishmania spp., while in T. brucei it regulates termination and gene expression at specific sites within polycistronic gene clusters. KW - RNA-polymerase-II KW - variant surface glycoprotein KW - SWI2/SNF2-like protein KW - messenger RNA KW - polycistronic transcription KW - DNA glycosation KW - hela cells KW - gene expression KW - genome KW - 5-bromodeoxyuridine Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-117863 VL - 42 IS - 15 ER - TY - JOUR A1 - Jun, Kyong-Hwa A1 - Gholami, Spedideh A1 - Song, Tae-Jin A1 - Au, Joyce A1 - Haddad, Dana A1 - Carson, Joshua A1 - Chen, Chun-Hao A1 - Mojica, Kelly A1 - Zanzonico, Pat A1 - Chen, Nanhai G. A1 - Zhang, Qian A1 - Szalay, Aladar A1 - Fong, Yuman T1 - A novel oncolytic viral therapy and imaging technique for gastric cancer using a genetically engineered vaccinia virus carrying the human sodium iodide symporter JF - Journal of Experimental & Clinical Cancer Research N2 - Background: Gastric cancers have poor overall survival despite recent advancements in early detection methods, endoscopic resection techniques, and chemotherapy treatments. Vaccinia viral therapy has had promising therapeutic potential for various cancers and has a great safety profile. We investigated the therapeutic efficacy of a novel genetically-engineered vaccinia virus carrying the human sodium iodide symporter (hNIS) gene, GLV-1 h153, on gastric cancers and its potential utility for imaging with Tc-99m pertechnetate scintigraphy and I-124 positron emission tomography (PET). Methods: GLV-1 h153 was tested against five human gastric cancer cell lines using cytotoxicity and standard viral plaque assays. In vivo, subcutaneous flank tumors were generated in nude mice with human gastric cancer cells, MKN-74. Tumors were subsequently injected with either GLV-1 h153 or PBS and followed for tumor growth. Tc-99m pertechnetate scintigraphy and I-124 microPET imaging were performed. Results: GFP expression, a surrogate for viral infectivity, confirmed viral infection by 24 hours. At a multiplicity of infection (MOI) of 1, GLV-1 h153 achieved > 90% cytotoxicity in MNK-74, OCUM-2MD3, and AGS over 9 days, and >70% cytotoxicity in MNK-45 and TMK-1. In vivo, GLV-1 h153 was effective in treating xenografts (p < 0.001) after 2 weeks of treatment. GLV-1 h153-infected tumors were readily imaged by Tc-99m pertechnetate scintigraphy and I-124 microPET imaging 2 days after treatment. Conclusions: GLV-1 h153 is an effective oncolytic virus expressing the hNIS protein that can efficiently regress gastric tumors and allow deep-tissue imaging. These data encourages its continued investigation in clinical settings. KW - oncolytic viral therapy KW - GLV-1 h153 KW - gastric cancer KW - human sodium iodide symporter (hNIS) KW - radioiodine therapy KW - gene therapy KW - expression KW - replication KW - stomach KW - tumors KW - surgery Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-117716 SN - 1756-9966 VL - 33 IS - 2 ER -