TY - JOUR A1 - Drenckhahn, Detlev T1 - Zur Vegetation der Seedeiche der Nordseeküste Schleswig-Holsteins − Implikationen für die Umsetzung des Generalplans Küstenschutz T1 - On the vegetation of the sea dikes of the North Sea coast of Schleswig-Holstein − Implications for the implementation of the General Plan for Coastal Protection JF - Forum Geobotanicum N2 - Bis zum Jahr 2100 prognostiziert der Weltklimarat (IPCC 2021) einen Anstieg des Meeresspiegels von bis zu 63-101 cm gegenüber heutigen Wasserständen. Im Rahmen des Generalplans Küstenschutz Schleswig-Holstein(GKSH) soll als Klimafolgeanpassung eine Erhöhung und Profiländerung der meisten Nordseedeiche und Elbedeiche erfolgen (zusammen 363,3 km mit einer Vegetationsfläche von 3.500 ha). Diese Maßnahmen werden mit einem vollständigen Verlust der alten Deichvegetation einhergehen und zur Freisetzung von großen Mengen an CO₂ aus dem Bodenkohlenstoff führen. Die Seedeiche der Nordseeküste (262 km) zählen zu den artenreichen, semi-natürlichen und von Schafen beweideten Grasländern (Fläche von 2600 ha) in Schleswig-Holstein mit bis zu 18 Gras- und 64 zweikeim-blättrigen Blütenpflanzen und an die Vegetation gebundene 800-1000 Arten von Invertebraten (darunter 200 Käferarten). Auf die Außenböschung dringen Pflanzen der Salzwiesengesellschaften vor. Die steileren, wärmeexponierten (überwiegend nach Osten und Süden ausgerichtet) und durch Vertritt lückigen Innenböschungen der Seedeiche sind wertvolle Refugien wärmeliebender, konkurrenzschwacher Arten von Magerstandorten und Trittgesellschaften wie die folgenden mediterran-subatlantischen Arten: Knotenklettenkerbel (Torilis nodosa), Zwergklee/Armblütiger Klee (Trifolium micranthum) und Vogelfußklee (Trifolium ornithopodioides). Für die Erhaltung beider Kleearten (die aktuelle Verbreitung wird dokumentiert) besitzt Schleswig-Holstein eine nationale und nordwest-europäisch-kontinentale Verantwortlichkeit. Folgende Maßnahmen zum Schutz der reichhaltigen Deichvegetation und Teilen seiner Invertebratenfauna bei der Deichverstärkung im Rahmen des GKSH werden vorgeschlagen: 1. Abheben der Grasnarbe mit Wurzelraum und zeitnahe Wiederverlegung der alten Grasnarbe (Soden) auf das neue Deichprofil; das ist auch wichtig zum Erhalt des Bodenkohlenstoffs (Klimaschutz). 2. Einsaat von neuen Deichprofilen mit Saatgut von artenreichen Deichabschnitten. 3. Aufnahme substanzieller Forschungsprogramme/Forschungsförderung zur Ökologie der Seedeiche. Weiterhin sollte auf den Einsatz von Herbiziden auf Deichen zur Bekämpfung von Disteln verzichtet werden. N2 - Climate change is expected by the Intergovernmental Panel of Climate Change (IPCC 2021) to cause a rise in the sea level of up to 63-101 cm by 2100. The general plan for coastal protection in Schleswig-Holstein (GKSH) is to increase in the height of most of the North Sea-dikes and dikes of River Elbe (together 363.3 km with a vegetation cover of ca. 3,500 ha). These actions will be accompanied by a complete loss of old dike vegetation and will result in the release of large amounts of CO₂ from soil carbon. The sea dikes of the North Sea coast (262 km) are covered by a diverse semi-natural grassland (area of 2,600 ha) grazed by sheep and comprising up to 18 grass species, 64 dicotyledonous flowering plant species and 800-1000 invertebrate species (among them 200 beetle species). Plants of the salt marsh communities invade the vegetation on the lower outer slopes. The steeper, warmer, drier and wind-protected inner slopes of the sea dikes (oriented mainly to the East and South) contain frequent ground injuries (by sheep claws) and are preferentially settled by thermophilic and less competitive species such as the following Mediterranean-Subatlantic plants: Knotted hedgeparsley (Torilis nodosa), the rare Slender trefoil (Trifolium micranthum) and Bird's-foot clover (Trifolium ornithopodioides) (only natural sites in Germany, red list categories 1 and 2). Schleswig-Holstein has a great responsibility for the survival of these clover species at their continental North-Western boundary (the current distribution is documented). The following measures are proposed to protect the rich dike vegetation and parts of their invertebrate fauna during dike strengthening within the GKSH: 1. lifting of the turf with root space and re-laying of the old turf (sods) on the new dike profile which is also important for protection of soil carbon storage (climate protection). 2. Seeding of new dike profiles with seeds from species-rich dike sections. 3. Inclusion of substantial research programs/funding on the ecology of sea dikes. Furthermore, the use of herbicides on dikes to control thistles should be avoided. KW - Sea dikes KW - biodiversity KW - climate KW - Trifolium micranthum KW - Trifolium ornithopodioides KW - Seedeich KW - Vegetation KW - Küstenschutz KW - Schleswig-Holstein KW - Biodiversität Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-243795 UR - http://www.forum-geobotanicum.net/articles/vol_10-2021/drenckhahn_seedeiche/FG---drenckhahn_vegetation_der_seedeiche.pdf SN - 1867-9315 VL - 10 ER - TY - JOUR A1 - Sponsler, Douglas B. A1 - Requier, Fabrice A1 - Kallnik, Katharina A1 - Classen, Alice A1 - Maihoff, Fabienne A1 - Sieger, Johanna A1 - Steffan‐Dewenter, Ingolf T1 - Contrasting patterns of richness, abundance, and turnover in mountain bumble bees and their floral hosts JF - Ecology N2 - Environmental gradients generate and maintain biodiversity on Earth. Mountain slopes are among the most pronounced terrestrial environmental gradients, and the elevational structure of species and their interactions can provide unique insight into the processes that govern community assembly and function in mountain ecosystems. We recorded bumble bee–flower interactions over 3 years along a 1400‐m elevational gradient in the German Alps. Using nonlinear modeling techniques, we analyzed elevational patterns at the levels of abundance, species richness, species β‐diversity, and interaction β‐diversity. Though floral richness exhibited a midelevation peak, bumble bee richness increased with elevation before leveling off at the highest sites, demonstrating the exceptional adaptation of these bees to cold temperatures and short growing seasons. In terms of abundance, though, bumble bees exhibited divergent species‐level responses to elevation, with a clear separation between species preferring low versus high elevations. Overall interaction β‐diversity was mainly caused by strong turnover in the floral community, which exhibited a well‐defined threshold of β‐diversity rate at the tree line ecotone. Interaction β‐diversity increased sharply at the upper extreme of the elevation gradient (1800–2000 m), an interval over which we also saw steep decline in floral richness and abundance. Turnover of bumble bees along the elevation gradient was modest, with the highest rate of β‐diversity occurring over the interval from low‐ to mid‐elevation sites. The contrast between the relative robustness bumble bee communities and sensitivity of plant communities to the elevational gradient in our study suggests that the strongest effects of climate change on mountain bumble bees may be indirect effects mediated by the responses of their floral hosts, though bumble bee species that specialize in high‐elevation habitats may also experience significant direct effects of warming. KW - alpine plants KW - climate KW - elevation gradient KW - mountain ecology KW - pollination network Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-287199 VL - 103 IS - 7 ER - TY - JOUR A1 - Ganuza, Cristina A1 - Redlich, Sarah A1 - Uhler, Johannes A1 - Tobisch, Cynthia A1 - Rojas-Botero, Sandra A1 - Peters, Marcell K. A1 - Zhang, Jie A1 - Benjamin, Caryl S. A1 - Englmeier, Jana A1 - Ewald, Jörg A1 - Fricke, Ute A1 - Haensel, Maria A1 - Kollmann, Johannes A1 - Riebl, Rebekka A1 - Uphus, Lars A1 - Müller, Jörg A1 - Steffan-Dewenter, Ingolf T1 - Interactive effects of climate and land use on pollinator diversity differ among taxa and scales JF - Science Advances N2 - Changes in climate and land use are major threats to pollinating insects, an essential functional group. Here, we unravel the largely unknown interactive effects of both threats on seven pollinator taxa using a multiscale space-for-time approach across large climate and land-use gradients in a temperate region. Pollinator community composition, regional gamma diversity, and community dissimilarity (beta diversity) of pollinator taxa were shaped by climate-land-use interactions, while local alpha diversity was solely explained by their additive effects. Pollinator diversity increased with reduced land-use intensity (forest < grassland < arable land < urban) and high flowering-plant diversity at different spatial scales, and higher temperatures homogenized pollinator communities across regions. Our study reveals declines in pollinator diversity with land-use intensity at multiple spatial scales and regional community homogenization in warmer and drier climates. Management options at several scales are highlighted to mitigate impacts of climate change on pollinators and their ecosystem services. KW - climate KW - land use KW - pollinator diversity Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-301303 VL - 8 IS - 18 ER - TY - JOUR A1 - Fricke, Ute A1 - Redlich, Sarah A1 - Zhang, Jie A1 - Tobisch, Cynthia A1 - Rojas-Botero, Sandra A1 - Benjamin, Caryl S. A1 - Englmeier, Jana A1 - Ganuza, Cristina A1 - Riebl, Rebekka A1 - Uhler, Johannes A1 - Uphus, Lars A1 - Ewald, Jörg A1 - Kollmann, Johannes A1 - Steffan-Dewenter, Ingolf T1 - Plant richness, land use and temperature differently shape invertebrate leaf-chewing herbivory on plant functional groups JF - Oecologia N2 - Higher temperatures can increase metabolic rates and carbon demands of invertebrate herbivores, which may shift leaf-chewing herbivory among plant functional groups differing in C:N (carbon:nitrogen) ratios. Biotic factors influencing herbivore species richness may modulate these temperature effects. Yet, systematic studies comparing leaf-chewing herbivory among plant functional groups in different habitats and landscapes along temperature gradients are lacking. This study was conducted on 80 plots covering large gradients of temperature, plant richness and land use in Bavaria, Germany. We investigated proportional leaf area loss by chewing invertebrates (‘herbivory’) in three plant functional groups on open herbaceous vegetation. As potential drivers, we considered local mean temperature (range 8.4–18.8 °C), multi-annual mean temperature (range 6.5–10.0 °C), local plant richness (species and family level, ranges 10–51 species, 5–25 families), adjacent habitat type (forest, grassland, arable field, settlement), proportion of grassland and landscape diversity (0.2–3 km scale). We observed differential responses of leaf-chewing herbivory among plant functional groups in response to plant richness (family level only) and habitat type, but not to grassland proportion, landscape diversity and temperature—except for multi-annual mean temperature influencing herbivory on grassland plots. Three-way interactions of plant functional group, temperature and predictors of plant richness or land use did not substantially impact herbivory. We conclude that abiotic and biotic factors can assert different effects on leaf-chewing herbivory among plant functional groups. At present, effects of plant richness and habitat type outweigh effects of temperature and landscape-scale land use on herbivory among legumes, forbs and grasses. KW - climate KW - ecosystem function KW - land use KW - plant guilds KW - plant–insect interactions Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-325079 VL - 199 IS - 2 ER - TY - JOUR A1 - Steininger, Michael A1 - Abel, Daniel A1 - Ziegler, Katrin A1 - Krause, Anna A1 - Paeth, Heiko A1 - Hotho, Andreas T1 - ConvMOS: climate model output statistics with deep learning JF - Data Mining and Knowledge Discovery N2 - Climate models are the tool of choice for scientists researching climate change. Like all models they suffer from errors, particularly systematic and location-specific representation errors. One way to reduce these errors is model output statistics (MOS) where the model output is fitted to observational data with machine learning. In this work, we assess the use of convolutional Deep Learning climate MOS approaches and present the ConvMOS architecture which is specifically designed based on the observation that there are systematic and location-specific errors in the precipitation estimates of climate models. We apply ConvMOS models to the simulated precipitation of the regional climate model REMO, showing that a combination of per-location model parameters for reducing location-specific errors and global model parameters for reducing systematic errors is indeed beneficial for MOS performance. We find that ConvMOS models can reduce errors considerably and perform significantly better than three commonly used MOS approaches and plain ResNet and U-Net models in most cases. Our results show that non-linear MOS models underestimate the number of extreme precipitation events, which we alleviate by training models specialized towards extreme precipitation events with the imbalanced regression method DenseLoss. While we consider climate MOS, we argue that aspects of ConvMOS may also be beneficial in other domains with geospatial data, such as air pollution modeling or weather forecasts. KW - Klima KW - Modell KW - Deep learning KW - Neuronales Netz KW - climate KW - neural networks KW - model output statistics Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-324213 SN - 1384-5810 VL - 37 IS - 1 ER -