TY - JOUR A1 - Rajendran, Ranjithkumar A1 - Rajendran, Vinothkumar A1 - Gupta, Liza A1 - Shirvanchi, Kian A1 - Schunin, Darja A1 - Karnati, Srikanth A1 - Giraldo-Velásquez, Mario A1 - Berghoff, Martin T1 - Interferon beta-1a versus combined interferon beta-1a and oligodendrocyte-specific FGFR1 deletion in experimental autoimmune encephalomyelitis JF - International Journal of Molecular Sciences N2 - Recombinant beta interferons-1 (IFNβ-1) are used as first line therapies in patients with relapsing multiple sclerosis (MS), a chronic inflammatory and neurodegenerative disease of the CNS. IFNβ-1a/b has moderate effects on the prevention of relapses and slowing of disease progression. Fibroblast growth factors (FGFs) and FGF receptors (FGFRs) are known to play a key role in the pathology of MS and its model EAE. To investigate the effects of short-term treatment with s.c. IFNβ-1a versus the combined application of s.c. IFNβ-1a and oligodendrocyte-specific deletion of FGFR1 (Fgfr1\(^{ind−/−}\) mice) in MOG\(_{35-55}\)-induced EAE. IFNβ-1a (30 mg/kg) was applied s.c. from days 0–7 p.i. of EAE in controls and Fgfr1\(^{ind−/−}\) mice. FGFR signaling proteins associated with inflammation/degeneration in MS/EAE were analyzed by western blot in the spinal cord. Further, FGFR1 in Oli-neu oligodendrocytes were inhibited by PD166866 and treated with IFNβ-1a (400 ng/mL). Application of IFNβ-1a over 8 days resulted in less symptoms only at the peak of disease (days 9–11) compared to controls. Application of IFNβ-1a in Fgfr1\(^{ind−/−}\) mice resulted in less symptoms primarily in the chronic phase of EAE. Fgfr1\(^{ind−/−}\) mice treated with IFNβ-1a showed increased expression of pERK and BDNF. In Oli-neu oligodendrocytes, treatment with PD166866 and IFNβ-1a also showed an increased expression of pERK and BDNF/TrkB. These data suggest that the beneficial effects in the chronic phase of EAE and on signaling molecules associated with ERK and BDNF expression are caused by the modulation of FGFR1 and not by interferon beta-1a. FGFR may be a potential target for therapy in MS. KW - FGFR1 KW - interferon beta-1a KW - oligodendrocytes KW - EAE KW - multiple sclerosis Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-290401 SN - 1422-0067 VL - 23 IS - 20 ER - TY - JOUR A1 - Rajendran, Ranjithkumar A1 - Böttiger, Gregor A1 - Dentzien, Niklas A1 - Rajendran, Vinothkumar A1 - Sharifi, Bischand A1 - Ergün, Süleyman A1 - Stadelmann, Christine A1 - Karnati, Srikanth A1 - Berghoff, Martin T1 - Effects of FGFR tyrosine kinase inhibition in OLN-93 oligodendrocytes JF - Cells N2 - Fibroblast growth factor (FGF) signaling is involved in the pathogenesis of multiple sclerosis (MS). Data from neuropathology studies suggest that FGF signaling contributes to the failure of remyelination in MS. In MOG\(_{35–55}\)-induced EAE, oligodendrocyte-specific deletion of FGFR1 and FGFR2 resulted in a less severe disease course, reduced inflammation, myelin and axon degeneration and changed FGF/FGFR and BDNF/TrkB signaling. Since signaling cascades in oligodendrocytes could not be investigated in the EAE studies, we here aimed to characterize FGFR-dependent oligodendrocyte-specific signaling in vitro. FGFR inhibition was achieved by application of the multi-kinase-inhibitor dovitinib and the FGFR1/2/3-inhibitor AZD4547. Both substances are potent inhibitors of FGF signaling; they are effective in experimental tumor models and patients with malignancies. Effects of FGFR inhibition in oligodendrocytes were studied by immunofluorescence microscopy, protein and gene analyses. Application of the tyrosine kinase inhibitors reduced FGFR1, phosphorylated ERK and Akt expression, and it enhanced BDNF and TrkB expression. Furthermore, the myelin proteins CNPase and PLP were upregulated by FGFR inhibition. In summary, inhibition of FGFR signaling in oligodendrocytes can be achieved by application of tyrosine kinase inhibitors. Decreased phosphorylation of ERK and Akt is associated with an upregulation of BDNF/TrkB signaling, which may be responsible for the increased production of myelin proteins. Furthermore, these data suggest that application of FGFR inhibitors may have the potential to promote remyelination in the CNS. KW - multiple sclerosis KW - oligodendrocytes KW - dovitinib KW - AZD4547 KW - FGFR signaling KW - myelin Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-239600 SN - 2073-4409 VL - 10 IS - 6 ER - TY - JOUR A1 - Rajendran, Ranjithkumar A1 - Böttiger, Gregor A1 - Stadelmann, Christine A1 - Karnati, Srikanth A1 - Berghoff, Martin T1 - FGF/FGFR pathways in multiple sclerosis and in its disease models JF - Cells N2 - Multiple sclerosis (MS) is a chronic inflammatory and neurodegenerative disease of the central nervous system (CNS) affecting more than two million people worldwide. In MS, oligodendrocytes and myelin sheaths are destroyed by autoimmune-mediated inflammation, while remyelination is impaired. Recent investigations of post-mortem tissue suggest that Fibroblast growth factor (FGF) signaling may regulate inflammation and myelination in MS. FGF2 expression seems to correlate positively with macrophages/microglia and negatively with myelination; FGF1 was suggested to promote remyelination. In myelin oligodendrocyte glycoprotein (MOG)\(_{35–55}\)-induced experimental autoimmune encephalomyelitis (EAE), systemic deletion of FGF2 suggested that FGF2 may promote remyelination. Specific deletion of FGF receptors (FGFRs) in oligodendrocytes in this EAE model resulted in a decrease of lymphocyte and macrophage/microglia infiltration as well as myelin and axon degeneration. These effects were mediated by ERK/Akt phosphorylation, a brain-derived neurotrophic factor, and downregulation of inhibitors of remyelination. In the first part of this review, the most important pharmacotherapeutic principles for MS will be illustrated, and then we will review recent advances made on FGF signaling in MS. Thus, we will suggest application of FGFR inhibitors, which are currently used in Phase II and III cancer trials, as a therapeutic option to reduce inflammation and induce remyelination in EAE and eventually MS. KW - FGF KW - FGFR KW - multiple sclerosis KW - EAE KW - ERK KW - Akt KW - BDNF KW - LINGO-1 KW - SEMA3A Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-236594 SN - 2073-4409 VL - 10 IS - 4 ER - TY - JOUR A1 - Kamali, Salar A1 - Rajendran, Ranjithkumar A1 - Stadelmann, Christine A1 - Karnati, Srikanth A1 - Rajendran, Vinothkumar A1 - Giraldo‐Velasquez, Mario A1 - Berghoff, Martin T1 - Oligodendrocyte‐specific deletion of FGFR2 ameliorates MOG\(_{35-55}\)‐induced EAE through ERK and Akt signalling JF - Brain Pathology N2 - Fibroblast growth factors (FGFs) and their receptors (FGFRs) are involved in demyelinating pathologies including multiple sclerosis (MS). In our recent study, oligodendrocyte‐specific deletion of FGFR1 resulted in a milder disease course, less inflammation, reduced myelin and axon damage in EAE. The objective of this study was to elucidate the role of oligodendroglial FGFR2 in MOG\(_{35-55}\)‐induced EAE. Oligodendrocyte‐specific knockout of FGFR2 (Fgfr2\(^{ind-/-}\)) was achieved by application of tamoxifen; EAE was induced using the MOG\(_{35-55}\) peptide. EAE symptoms were monitored over 62 days. Spinal cord tissue was analysed by histology, immunohistochemistry and western blot. Fgfr2\(^{ind-/-}\) mice revealed a milder disease course, less myelin damage and enhanced axonal density. The number of oligodendrocytes was not affected in demyelinated areas. However, protein expression of FGFR2, FGF2 and FGF9 was downregulated in Fgfr2\(^{ind-/-}\) mice. FGF/FGFR dependent signalling proteins were differentially regulated; pAkt was upregulated and pERK was downregulated in Fgfr2\(^{ind-/-}\) mice. The number of CD3(+) T cells, Mac3(+) cells and B220(+) B cells was less in demyelinated lesions of Fgfr2\(^{ind-/-}\) mice. Furthermore, expression of IL‐1β, TNF‐α and CD200 was less in Fgfr2\(^{ind-/-}\) mice than controls. Fgfr2ind−/− mice showed an upregulation of PLP and downregulation of the remyelination inhibitors SEMA3A and TGF‐β expression. These data suggest that cell‐specific deletion of FGFR2 in oligodendrocytes has anti‐inflammatory and neuroprotective effects accompanied by changes in FGF/FGFR dependent signalling, inflammatory cytokines and expression of remyelination inhibitors. Thus, FGFRs in oligodendrocytes may represent potential targets for the treatment of inflammatory and demyelinating diseases including MS. KW - experimental autoimmune encephalomyelitis KW - FGF/FGFR signalling KW - multiple sclerosis KW - oligodendrocytes Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-224354 VL - 31 SP - 297 EP - 311 ER - TY - JOUR A1 - Rottlaender, Andrea A1 - Kuerten, Stefanie T1 - Stepchild or prodigy? Neuroprotection in multiple sclerosis (MS) research JF - International Journal of Molecular Sciences N2 - Multiple sclerosis (MS) is an autoimmune disorder of the central nervous system (CNS) and characterized by the infiltration of immune cells, demyelination and axonal loss. Loss of axons and nerve fiber pathology are widely accepted as correlates of neurological disability. Hence, it is surprising that the development of neuroprotective therapies has been neglected for a long time. A reason for this could be the diversity of the underlying mechanisms, complex changes in nerve fiber pathology and the absence of biomarkers and tools to quantify neuroregenerative processes. Present therapeutic strategies are aimed at modulating or suppressing the immune response, but do not primarily attenuate axonal pathology. Yet, target-oriented neuroprotective strategies are essential for the treatment of MS, especially as severe damage of nerve fibers mostly occurs in the course of disease progression and cannot be impeded by immune modulatory drugs. This review shall depict the need for neuroprotective strategies and elucidate difficulties and opportunities. KW - experimental autoimmune encephalomyelitis KW - white matter KW - lesions KW - remyelination KW - multiple sclerosis KW - regeneration KW - neuroprotection KW - degeneration KW - axonal damage KW - neurodegeneration KW - pathology KW - sodium channels KW - axonal injury KW - central nervous system Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148416 VL - 16 ER - TY - JOUR A1 - Rovituso, Damiano M. A1 - Duffy, Catharina E. A1 - Schroeter, Michael A1 - Kaiser, Claudia C. A1 - Kleinschnitz, Christoph A1 - Bayas, Antonios A1 - Elsner, Rebecca A1 - Kuerten, Stefanie T1 - The brain antigen-specific B cell response correlates with glatiramer acetate responsiveness in relapsing-remitting multiple sclerosis patients JF - Scientific Reports N2 - B cells have only recently begun to attract attention in the immunopathology of multiple sclerosis (MS). Suitable markers for the prediction of treatment success with immunomodulatory drugs are still missing. Here we evaluated the B cell response to brain antigens in n = 34 relapsing-remitting MS (RRMS) patients treated with glatiramer acetate (GA) using the enzyme-linked immunospot technique (ELISPOT). Our data demonstrate that patients can be subdivided into responders that show brain-specific B cell reactivity in the blood and patients without this reactivity. Only in patients that classified as B cell responders, there was a significant positive correlation between treatment duration and the time since last relapse in our study. This correlation was GA-specific because it was absent in a control group that consisted of interferon-\(\beta\) (IFN-\(\beta\))-treated RRMS patients (n = 23). These data suggest that GA has an effect on brain-reactive B cells in a subset of patients and that only this subset benefits from treatment. The detection of brain-reactive B cells is likely to be a suitable tool to identify drug responders. KW - cortical pathology KW - natural history KW - disability KW - expression KW - antibodies KW - disease KW - lesions KW - trial KW - multiple sclerosis Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148172 VL - 5 IS - 14265 ER - TY - JOUR A1 - Bail, Kathrin A1 - Notz, Quirin A1 - Rovituso, Damiano M. A1 - Schampel, Andrea A1 - Wunsch, Marie A1 - Koeniger, Tobias A1 - Schropp, Verena A1 - Bharti, Richa A1 - Scholz, Claus-Juergen A1 - Foerstner, Konrad U. A1 - Kleinschnitz, Christoph A1 - Kuerten, Stefanie T1 - Differential effects of FTY720 on the B cell compartment in a mouse model of multiple sclerosis. JF - Journal of Neuroinflammation N2 - Background: MP4-induced experimental autoimmune encephalomyelitis (EAE) is a mouse model of multiple sclerosis (MS), which enables targeted research on B cells, currently much discussed protagonists in MS pathogenesis. Here, we used this model to study the impact of the S1P1 receptor modulator FTY720 (fingolimod) on the autoreactive B cell and antibody response both in the periphery and the central nervous system (CNS). Methods: MP4-immunized mice were treated orally with FTY720 for 30 days at the peak of disease or 50 days after EAE onset. The subsequent disease course was monitored and the MP4-specific B cell/antibody response was measured by ELISPOT and ELISA. RNA sequencing was performed to determine any effects on B cell-relevant gene expression. S1P\(_{1}\) receptor expression by peripheral T and B cells, B cell subset distribution in the spleen and B cell infiltration into the CNS were studied by flow cytometry. The formation of B cell aggregates and of tertiary lymphoid organs (TLOs) was evaluated by histology and immunohistochemistry. Potential direct effects of FTY720 on B cell aggregation were studied in vitro. Results: FTY720 significantly attenuated clinical EAE when treatment was initiated at the peak of EAE. While there was a significant reduction in the number of T cells in the blood after FTY720 treatment, B cells were only slightly diminished. Yet, there was evidence for the modulation of B cell receptor-mediated signaling upon FTY720 treatment. In addition, we detected a significant increase in the percentage of B220\(^{+}\) B cells in the spleen both in acute and chronic EAE. Whereas acute treatment completely abrogated B cell aggregate formation in the CNS, the numbers of infiltrating B cells and plasma cells were comparable between vehicle- and FTY720-treated mice. In addition, there was no effect on already developed aggregates in chronic EAE. In vitro B cell aggregation assays suggested the absence of a direct effect of FTY720 on B cell aggregation. However, FTY720 impacted the evolution of B cell aggregates into TLOs. Conclusions: The data suggest differential effects of FTY720 on the B cell compartment in MP4-induced EAE. KW - B cells KW - EAE KW - FTY720 KW - fingolimod KW - multiple sclerosis KW - TLO Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-157869 VL - 14 IS - 148 ER - TY - JOUR A1 - Rovituso, Damiano M. A1 - Scheffler, Laura A1 - Wunsch, Marie A1 - Kleinschnitz, Christoph A1 - Dörck, Sebastian A1 - Ulzheimer, Jochen A1 - Bayas, Antonios A1 - Steinman, Lawrence A1 - Ergün, Süleyman A1 - Kuerten, Stefanie T1 - CEACAM1 mediates B cell aggregation in central nervous system autoimmunity JF - Scientific Reports N2 - B cell aggregates in the central nervous system (CNS) have been associated with rapid disease progression in patients with multiple sclerosis (MS). Here we demonstrate a key role of carcinoembryogenic antigen-related cell adhesion molecule1 (CEACAM1) in B cell aggregate formation in MS patients and a B cell-dependent mouse model of MS. CEACAM1 expression was increased on peripheral blood B cells and CEACAM1\(^+\) B cells were present in brain infiltrates of MS patients. Administration of the anti-CEACAM1 antibody T84.1 was efficient in blocking aggregation of B cells derived from MS patients. Along these lines, application of the monoclonal anti-CEACAM1 antibody mCC1 was able to inhibit CNS B cell aggregate formation and significantly attenuated established MS-like disease in mice in the absence of any adverse effects. CEACAM1 was co-expressed with the regulator molecule T cell immunoglobulin and mucin domain −3 (TIM-3) on B cells, a novel molecule that has recently been described to induce anergy in T cells. Interestingly, elevated coexpression on B cells coincided with an autoreactive T helper cell phenotype in MS patients. Overall, these data identify CEACAM1 as a clinically highly interesting target in MS pathogenesis and open new therapeutic avenues for the treatment of the disease. KW - autoimmunity KW - multiple sclerosis KW - neuroimmunology Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-147690 VL - 6 ER - TY - JOUR A1 - Arndt, Andreas A1 - Hoffacker, Peter A1 - Zellmer, Konstantin A1 - Goecer, Oktay A1 - Recks, Mascha S. A1 - Kuerten, Stefanie T1 - Conventional Housing Conditions Attenuate the Development of Experimental Autoimmune Encephalomyelitis JF - PLoS ONE N2 - BACKGROUND: The etiology of multiple sclerosis (MS) has remained unclear, but a causative contribution of factors outside the central nervous system (CNS) is conceivable. It was recently suggested that gut bacteria trigger the activation of CNS-reactive T cells and the development of demyelinative disease. METHODS: C57BL/6 (B6) mice were kept either under specific pathogen free or conventional housing conditions, immunized with the myelin basic protein (MBP)-proteolipid protein (PLP) fusion protein MP4 and the development of EAE was clinically monitored. The germinal center size of the Peyer's patches was determined by immunohistochemistry in addition to the level of total IgG secretion which was assessed by ELISPOT. ELISPOT assays were also used to measure MP4-specific T cell and B cell responses in the Peyer's patches and the spleen. Ear swelling assays were performed to determine the extent of delayed-type hypersensitivity reactions in specific pathogen free and conventionally housed mice. RESULTS: In B6 mice that were actively immunized with MP4 and kept under conventional housing conditions clinical disease was significantly attenuated compared to specific pathogen free mice. Conventionally housed mice displayed increased levels of IgG secretion in the Peyer's patches, while the germinal center formation in the gut and the MP4-specific TH17 response in the spleen were diminished after immunization. Accordingly, these mice displayed an attenuated delayed type hypersensitivity (DTH) reaction in ear swelling assays. CONCLUSIONS: The data corroborate the notion that housing conditions play a substantial role in the induction of murine EAE and suggest that the presence of gut bacteria might be associated with a decreased immune response to antigens of lower affinity. This concept could be of importance for MS and calls for caution when considering the therapeutic approach to treat patients with antibiotics." KW - B cells KW - secretion KW - multiple sclerosis KW - enzyme-linked immunoassays KW - Peyer's patches KW - gut bacteria KW - T cells KW - immune response Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-119603 VL - 9 IS - 6 ER -