TY - JOUR A1 - Rudelius, Martina A1 - Rosenfeldt, Mathias Tillmann A1 - Leich, Ellen A1 - Rauert-Wunderlich, Hilka A1 - Solimando, Antonio Giovanni A1 - Ott, German A1 - Rosenwald, Andreas A1 - Beilhack, Andreas T1 - Inhibition of focal adhesion kinase overcomes resistance of mantle cell lymphoma to ibrutinib in the bone marrow microenvironment JF - Haematologica N2 - Mantle cell lymphoma and other lymphoma subtypes often spread to the bone marrow, and stromal interactions mediated by focal adhesion kinase frequently enhance survival and drug resistance of the lymphoma cells. To study the role of focal adhesion kinase in mantle cell lymphoma, immunohistochemistry of primary cases and functional analysis of mantle cell lymphoma cell lines and primary mantle cell lymphoma cells co-cultured with bone marrow stromal cells (BMSC) using small molecule inhibitors and RNAi-based focal adhesion kinase silencing was performed. We showed that focal adhesion kinase is highly expressed in bone marrow infiltrates of mantle cell lymphoma and in mantle cell lymphoma cell lines. Stroma-mediated activation of focal adhesion kinase led to activation of multiple kinases (AKT, p42/44 and NF-kappa B), that are important for prosurvival and proliferation signaling. Interestingly, RNAi-based focal adhesion kinase silencing or inhibition with small molecule inhibitors (FAKi) resulted in blockage of targeted cell invasion and induced apoptosis by inactivation of multiple signaling cascades, including the classic and alternative NF-kappa B pathway. In addition, the combined treatment of ibrutinib and FAKi was highly synergistic, and ibrutinib resistance of mantle cell lymphoma could be overcome. These data demonstrate that focal adhesion kinase is important for stroma-mediated survival and drug resistance in mantle cell lymphoma, providing indications for a targeted therapeutic strategy. KW - NF-Kappa-B KW - Stromal cells KW - Induced apoptosis KW - Fak regulation KW - Phase- KW - Multiple KW - Activation KW - Mechanisms KW - Migration KW - Pathogenesis Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-227117 VL - 103 IS - 1 ER -