TY - JOUR A1 - Tuan, Dinh Van A1 - Scharf, Benedikt A1 - Žutič, Igor A1 - Dery, Hanan T1 - Marrying excitons and plasmons in monolayer transition-metal dichalcogenides JF - Physical Review X N2 - Just as photons are the quanta of light, plasmons are the quanta of orchestrated charge-density oscillations in conducting media. Plasmon phenomena in normal metals, superconductors, and doped semiconductors are often driven by long-wavelength Coulomb interactions. However, in crystals whose Fermi surface is comprised of disconnected pockets in the Brillouin zone, collective electron excitations can also attain a shortwave component when electrons transition between these pockets. In this work, we show that the band structure of monolayer transition-metal dichalcogenides gives rise to an intriguing mechanism through which shortwave plasmons are paired up with excitons. The coupling elucidates the origin for the optical sideband that is observed repeatedly in monolayers of WSe\(_2\) and WS\(_2\) but not understood. The theory makes it clear why exciton-plasmon coupling has the right conditions to manifest itself distinctly only in the optical spectra of electron-doped tungsten-based monolayers. KW - physics KW - excitons KW - plasmons KW - semiconductors KW - spintronics KW - valleytronics Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-173030 VL - 7 IS - 4 ER - TY - JOUR A1 - Suchomel, H. A1 - Brodbeck, S. A1 - Liew, T. C. H. A1 - Amthor, M. A1 - Klaas, M. A1 - Klembt, S. A1 - Kamp, M. A1 - Höfling, S. A1 - Schneider, C. T1 - Prototype of a bistable polariton field-effect transistor switch JF - Scientific Reports N2 - Microcavity exciton polaritons are promising candidates to build a new generation of highly nonlinear and integrated optoelectronic devices. Such devices range from novel coherent light emitters to reconfigurable potential landscapes for electro-optical polariton-lattice based quantum simulators as well as building blocks of optical logic architectures. Especially for the latter, the strongly interacting nature of the light-matter hybrid particles has been used to facilitate fast and efficient switching of light by light, something which is very hard to achieve with weakly interacting photons. We demonstrate here that polariton transistor switches can be fully integrated in electro-optical schemes by implementing a one-dimensional polariton channel which is operated by an electrical gate rather than by a control laser beam. The operation of the device, which is the polariton equivalent to a field-effect transistor, relies on combining electro-optical potential landscape engineering with local exciton ionization to control the scattering dynamics underneath the gate. We furthermore demonstrate that our device has a region of negative differential resistance and features a completely new way to create bistable behavior. KW - materials for optics KW - nanoscience and technology KW - optics and photonics KW - semiconductors Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-158323 VL - 7 IS - 5114 ER - TY - JOUR A1 - Peixoto, Thiago R. F. A1 - Bentmann, Hendrik A1 - Rüßmann, Philipp A1 - Tcakaev, Abdul-Vakhab A1 - Winnerlein, Martin A1 - Schreyeck, Steffen A1 - Schatz, Sonja A1 - Vidal, Raphael Crespo A1 - Stier, Fabian A1 - Zabolotnyy, Volodymyr A1 - Green, Robert J. A1 - Min, Chul Hee A1 - Fornari, Celso I. A1 - Maaß, Henriette A1 - Vasili, Hari Babu A1 - Gargiani, Pierluigi A1 - Valvidares, Manuel A1 - Barla, Alessandro A1 - Buck, Jens A1 - Hoesch, Moritz A1 - Diekmann, Florian A1 - Rohlf, Sebastian A1 - Kalläne, Matthias A1 - Rossnagel, Kai A1 - Gould, Charles A1 - Brunner, Karl A1 - Blügel, Stefan A1 - Hinkov, Vladimir A1 - Molenkamp, Laurens W. A1 - Friedrich, Reinert T1 - Non-local effect of impurity states on the exchange coupling mechanism in magnetic topological insulators JF - NPJ Quantum Materials N2 - Since the discovery of the quantum anomalous Hall (QAH) effect in the magnetically doped topological insulators (MTI) Cr:(Bi,Sb)\(_2\)Te\(_3\) and V:(Bi,Sb)\(_2\)Te\(_3\), the search for the magnetic coupling mechanisms underlying the onset of ferromagnetism has been a central issue, and a variety of different scenarios have been put forward. By combining resonant photoemission, X-ray magnetic circular dichroism and density functional theory, we determine the local electronic and magnetic configurations of V and Cr impurities in (Bi,Sb)\(_2\)Te\(_3\). State-of-the-art first-principles calculations find pronounced differences in their 3d densities of states, and show how these impurity states mediate characteristic short-range pd exchange interactions, whose strength sensitively varies with the position of the 3d states relative to the Fermi level. Measurements on films with varying host stoichiometry support this trend. Our results explain, in an unified picture, the origins of the observed magnetic properties, and establish the essential role of impurity-state-mediated exchange interactions in the magnetism of MTI. KW - shape-truncation functions KW - semiconductors Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-230686 VL - 5 ER - TY - JOUR A1 - Motyka, M. A1 - Dyksik, M. A1 - Ryczko, K. A1 - Weih, R. A1 - Dallner, M. A1 - Höfling, S. A1 - Kamp, M. A1 - Sęk, G. A1 - Misiewicz, J. T1 - Type-II quantum wells with tensile-strained GaAsSb layers for interband cascade lasers with tailored valence band mixing JF - Applied Physics Letters N2 - Optical properties of modified type II W-shaped quantum wells have been investigated with the aim to be utilized in interband cascade lasers. The results show that introducing a tensely strained GaAsSb layer, instead of a commonly used compressively strained GaInSb, allows employing the active transition involving valence band states with a significant admixture of the light holes. Theoretical predictions of multiband k.p theory have been experimentally verified by using photoluminescence and polarization dependent photoreflectance measurements. These results open a pathway for practical realization of mid-infrared lasing devices with uncommon polarization properties including, for instance, polarization-independent midinfrared light emitters. KW - modulation spectroscopy KW - semiconductors KW - Type-II quantum well KW - interband cascade laser KW - GaAsSb Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-189795 VL - 108 IS - 10 ER - TY - JOUR A1 - Margapoti, E. A1 - Alves, F. M. A1 - Mahapatra, S. A1 - Lopez-Richard, V. A1 - Worschech, L. A1 - Brunner, K. A1 - Qu, F. A1 - Destefani, C. A1 - Menendez-Proupin, E. A1 - Bougerol, C. A1 - Forchel, A. A1 - Marques, G. E. T1 - Paramagnetic shift in thermally annealed Cd\(_x\)Zn\(_{1-x}\)Se quantum dots JF - New Journal of Physics N2 - The photoluminescence of annealed Cd\(_x\)Zn\(_{1-x}\)Se quantum dots (QDs) under the influence of an external magnetic field has been studied in this paper. Post-growth annealing was performed for different annealing times. Above a critical annealing time, the QD luminescence shows a pronounced red-shift of the Zeeman split magnetic subcomponents. This observation is in contrast to the blue-shift caused by the diamagnetic behavior that is usually observed in non-magnetic QDs. We attribute our finding to the paramagnetism caused by the mixing of heavy and light hole states. Hence, post-growth thermal annealing treatment might be employed to render undoped epitaxial QDs intrinsically magnetic in a controlled manner. Two theoretical models were developed: a few-particle model to account for excitonic complex effects and a multiband calculation that describes the valence band hybridization. Contrasting the two models allowed us to unambiguously elucidate the nature of such an effect. KW - semiconductors Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-133294 VL - 14 IS - 043038 ER - TY - JOUR A1 - Maaß, Henriette A1 - Bentmann, Hendrik A1 - Seibel, Christoph A1 - Tusche, Christian A1 - Eremeev, Sergey V. A1 - Peixoto, Thiago R.F. A1 - Tereshchenko, Oleg E. A1 - Kokh, Konstantin A. A1 - Chulkov, Evgueni V. A1 - Kirschner, Jürgen A1 - Reinert, Friedrich T1 - Spin-texture inversion in the giant Rashba semiconductor BiTeI JF - Nature Communications N2 - Semiconductors with strong spin–orbit interaction as the underlying mechanism for the generation of spin-polarized electrons are showing potential for applications in spintronic devices. Unveiling the full spin texture in momentum space for such materials and its relation to the microscopic structure of the electronic wave functions is experimentally challenging and yet essential for exploiting spin–orbit effects for spin manipulation. Here we employ a state-of-the-art photoelectron momentum microscope with a multichannel spin filter to directly image the spin texture of the layered polar semiconductor BiTeI within the full two-dimensional momentum plane. Our experimental results, supported by relativistic ab initio calculations, demonstrate that the valence and conduction band electrons in BiTeI have spin textures of opposite chirality and of pronounced orbital dependence beyond the standard Rashba model, the latter giving rise to strong optical selection-rule effects on the photoelectron spin polarization. These observations open avenues for spin-texture manipulation by atomic-layer and charge carrier control in polar semiconductors. KW - applied physics KW - spintronics KW - semiconductors Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-173769 VL - 7 ER - TY - JOUR A1 - Astakhov, Georgy V. A1 - Fuchs, F. A1 - Soltamov, V. A. A1 - Väth, S. A1 - Baranov, P. G. A1 - Mokhov, E. N. A1 - Dyakonov, V. T1 - Silicon carbide light-emitting diode as a prospective room temperature source for single photons JF - Scientific Reports N2 - Generation of single photons has been demonstrated in several systems. However, none of them satisfies all the conditions, e.g. room temperature functionality, telecom wavelength operation, high efficiency, as required for practical applications. Here, we report the fabrication of light-emitting diodes (LEDs) based on intrinsic defects in silicon carbide (SiC). To fabricate our devices we used a standard semiconductor manufacturing technology in combination with high-energy electron irradiation. The room temperature electroluminescence (EL) of our LEDs reveals two strong emission bands in the visible and near infrared (NIR) spectral ranges, associated with two different intrinsic defects. As these defects can potentially be generated at a low or even single defect level, our approach can be used to realize electrically driven single photon source for quantum telecommunication and information processing. KW - semiconductors KW - inorganic LEDs KW - quantum optics KW - nanophotonics KW - plasmonics Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-96308 ER -