TY - THES A1 - Zelman-Femiak, Monika T1 - Single Particle Tracking ; Membrane Receptor Dynamics T1 - Einzelpartikelverfolgung ; Dynamik der Membranrezeptoren N2 - Single-molecule microscopy is one of the decisive methodologies that allows one to clarify cellular signaling in both spatial and temporal dimentions by tracking with nanometer precision the diffusion of individual microscopic particles coupled to relevant biological molecules. Trajectory analysis not only enables determination of the mechanisms that drive and constrain the particles motion but also to reveal crucial information about the molecule interaction, mobility, stoichiometry, all existing subpopulations and unique functions of particular molecules. Efficacy of this technique depends on two problematic issues the usage of the proper fluorophore and the type of biochemical attachment of the fluorophore to a biomolecule. The goal of this study was to evolve a highly specific labeling method suitable for single molecule tracking, internalization and trafficking studies that would attain a calculable 1:1 fluorophore-to-receptor stoichiometry. A covalent attachment of quantum dots to transmembrane receptors was successfully achieved with a techinque that amalgamates acyl carrier protein (ACP) system as a comparatively small linker and coenzyme A (CoA)-functionalized quantum dots. The necessity of optimization of the quantum dot usage for more precise calculation of the membrane protein stoichiometries in larger assemblies led to the further study in which methods maximizing the number of signals and the tracking times of diverse QD types were examined. Next, the optimized techniques were applied to analyze behavior of interleukin-5 β-common chain receptor (IL-5Rβc) receptors that are endogenously expressed at low level on living differentiated eosinophil-like HL-60 cells. Obtained data disclosed that perused receptors form stable and higher order oligomers. Additionally, the mobility analysis based on increased in number (>10%) uninterrupted 1000-step trajectories revealed two patterns of confined motion. Thereupon methods were developed that allow both, determination of stoichiometries of cell surface protein complexes and the acquisition of long trajectories for mobility analysis. Sequentially, the aforementioned methods were used to scrutinize on the mobility, internalization and recycling dynamics characterization of a G protein-coupled receptor (GPCRs), the parathyroid hormone receptor (PTHR1) and several bone morphogenetic proteins (BMPs), a member of the TGF-beta superfamily of receptors. These receptors are two important representatives of two varied membrane receptor classes. BMPs activate SMAD- and non-SMAD pathways and as members of the transforming growth factor β (TGF-β) superfamily are entailed in the regulation of proliferation, differentiation, chemotaxis, and apoptosis. For effective ligand induced and ligand independent signaling, two types of transmembrane serine/threonine kinases, BMP type I and type II receptors (BMPRI and BMPRII, respectively) are engaged. Apparently, the lateral mobility profiles of BMPRI and BMPRII receptors differ markedly, which determinate specificity of the signal. Non-SMAD signaling and subsequent osteoblastic differentiation of precursor cells particularly necessitate the confinement of the BMP type I receptor, resulting in the conclusion that receptor lateral mobility is a dominative mechanism to modulate SMAD versus non-SMAD signaling during differentiation. Confined motion was also predominantly observed in the studies devoted to, entailed in the regulation of calcium homeostasis and in bone remodeling, the parathyroid hormone receptor (PTHR1), in which stimulation with five peptide ligands, specific fragments of PTH: hPTH(1–34), hPTHrP(107–111)NH2; PTH(1–14); PTH(1–28) G1R19, bPTH(3–34), first four belonging to PTH agonist group and the last to the antagonist one, were tested in the wide concentration range on living COS-1 and AD293 cells. Next to the mobility, defining the internalization and recycling rates of the PTHR1 receptor maintained in this investigation one of the crucial questions. Internalization, in general, allows to diminish the magnitude of the receptor-mediated G protein signals (desensitization), receptor resensitization via recycling, degradation (down-regulation), and coupling to other signaling pathways (e.g. MAP kinases). Determinants of the internalization process are one of the most addressed in recent studies as key factors for clearer understanding of the process and linking it with biological responses evoked by the signal transduction. The internalization of the PTH-receptor complex occurs via the clathrin-coated pit pathway involving β-arrestin2 and is initiated through the agonist occupancy of the PTHR1 leading to activation of adenylyl cyclase (via Gs), and phosphatidylinositol-specific phospholipase Cβ (via Gq). Taken together, this work embodies complex study of the interleukin-5 β-common chain receptor (IL-5Rβc) receptors, bone morphogenetic proteins (BMPs) and the parathyroid hormone receptor with the application of single-molecule microscopy with the newly attained ACP-quantum dot labeling method and standard techniques. N2 - Die Einzelmolekül-Mikroskopie, das Verfolgen der Diffusion einzelner, mikroskopischer Partikel, welche an relevanten biologischen Molekülen gekoppelt sind, ist eine der entscheidenden Verfahren zur räumlichen und zeitlichen Quantifizierung der Zellsignalisierung und hat eine Genauigkeit im Nanometerbereich. Die so gewonnene Trajektorienanalyse ermöglicht nicht nur die Bestimmung der Mechanismen, die der Bewegung der Partikel zugrunde liegen, sondern liefert auch wichtige Informationen über die molekulare Wechselwirkungen, Bewegungsfreiheit und Stöchiometrie sowie über alle existierenden Subpopulationen und besondere Funktionen der einzelnen Moleküle. Die Wirksamkeit dieser Technik hängt von der Verwendung des geeigneten Flurophors und der Art seiner biochemischen Anhaftung ab. Das Ziel dieser Arbeit war die Entwicklung eines hochspezifischen Markierungsverfahrens, das zur Verwendung der Einzelmolekül-Mikroskopie für Studien im Bereich Endozytose geeignet ist und gleichzeitig eine Fluorophore-Rezeptor Stöchiometrie von 1:1 erreicht. Eine kovalente Anhaftung von Quantenpunkten an Membranrezeptoren wurde erfolgreich in einer Methode realisiert, die ACP-Systeme (Engl. Acyl-Carrier-Protein) mit Koenzym A (CoA-) funktionalisierten Quantenpunkten amalgamiert. Die notwendige Optimierung der Verwendung von Quantenpunkten mit dem Ziel einer genaueren Berechnung der Stöchiometrie von Membranproteinen sehr großer Anzahl führte zu weiteren Studien. In diesem Zusammenhang wurden Methoden zur Maximierung der Signalanzahl und Beobachtungszeiten diverser Quantenpunktentypen untersucht. Im nächsten Schritt wurden die optimierten Verfahren angewendet, um das Verhalten von IL-5Rßc (Engl. Interleukin-5 ß-common chain receptor) Rezeptoren, die endogen auf niedriger Stufe auf lebende differenzierte eosinophile-ähnlichen HL-60 Zellen existieren, zu analysieren. Die gewonnenen Daten haben gezeigt, dass die Rezeptoren sich in stabilen Oligomeren hoher Ordnung bilden, was zusätzlich mit den Ergebnissen der Analyse der Mobilität, die auf einer hohen Anzahl unterbrochener 1000-Schritt Trajektorien basiert, zwei abgegrenzte Bewegungsmuster ergab. Daraufhin wurden Methoden entwickelt, die eine Bestimmung der Stöchiometrie von Zelloberflächen-Proteinkomplexen und die Erfassung umfangreicher Trajektorien zur Bewegungsanalyse ermöglichen. Im Weiteren wurden die zuvor genannten Methoden zur genauen Überprüfung der Mobilität, Endozytose und der Charakterisierung der rückläufigen Dynamik der repräsentativen Rezeptoren von zwei verschiedenen Membranrezeptoren Klassen, des Parathormon-Rezeptors (Engl. the parathyroid hormone receptor), der zu der G-Protein-gekoppelter Rezeptor Gruppe (GPCRs) gehört und der Rezeptoren der knochenmorphogenetischen Proteine (BMPs) verwendet. BMPs aktivieren SMAD- und non-SMAD Signalkaskaden und als ein Bestandteil des TGF-β-Signalszstem sind sie in die Proliferation, die Differenyiation, die Chemotaxis und die Apoptose involviert. Zwei BMP Rezeptor Typen, BMP Typ I und BMP Typ II (BMPRI und BMPRII) sind nötig für die effektive Signalwirkung. Offenbar sind die Bewegungsmuster für BMPRI und BMPRII sehr unterschiedlich, was hier die Genauigkeit des Signals festlegt. Non-SMAD Kaskade und die nachfolgende Differenzierung von den Osteoblastenzellen benötigt das abgegrenzte Bewegungsmuster von BMPRI. Daraus folgert, dass die laterale Mobilität ein Hauptmechanismus in der SMAD gegen non-SMAD Signalwirkung während der Differenziation ist. Das abgegrenzte Bewegungsmuster war auch für den Parathormon Rezeptor (Engl. the parathyroid hormone receptor) (PTHR1), der in die Calcium Homeostase und den Knochenumbau involviert ist, in den Studien zu beobachten. In diesen Studien wurden fünf Peptide Ligande, spezifische Teile von dem PTH: hPTH(1–34), hPTHrP(107–111)NH2; PTH(1–14); PTH(1–28) G1R19, bPTH(3–34), von denen die ersten vier zu der Agonistengruppe und der Letzte zu der Antagonistengruppe gehören, in verschiedenen Konzentrationen mit lebenden COS-1 und AD293 Zellen verwendet. (oder aufgebracht) Eine der Hauptfragen war die Festlegung der Rate der PTHR1 Internalisierung und des Recycling in dieser Forschung. Im Allgemeinen reduziert Internalisierung die Stärke der Signale, die von den G Proteinen kommen und durch die Rezeptoren übermittelt (die Desensibilisierung) werden. Durch den Rücklauf werden die Rezeptoren wieder sensibilisiert, degradiert und können somit an anderen Signalkaskaden ankoppeln (zB. MAP-Kinase ). Die Determinanten der Internalisierung sind das Hauptthema in den aktuellen Studien, da sie der Schlüssel zum besseren Verständnis der Internalisierung und zu den nachfolgenden biologischen Antworten sind. Die Internalisierung von dem PTH Rezeptor verläuft entsprechend des Clathrin-coated Pit Weges mit der Teilnahme von β-arrestin2 und ist durch den Ligand eingeleitet, der zur Aktivierung von adenylyl cyclase (via Gs), und phosphatidylinositol-specific phospholipase Cβ (via Gq) führt. Zusammenfassend ist diese Arbeit unter Verwendung von Einzelmolekül-Mikroskopie mit der neuen ACP-Quantumpunktmethoden sowie standard Markierungsmethoden ein komplexes Studium über die IL-5Rßc Rezeptoren, die BMP Rezeptoren und den PTH Rezeptor. KW - Einzelmolekülmikroskopie KW - Membranrezeptor KW - Dynamik KW - Einzelpartikelverfolgung KW - Dynamik von Membranrezeptoren KW - Mikroskopie KW - Single Particle Tracking KW - Membrane Receptor Dynamics KW - Microscopy Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-65420 ER - TY - THES A1 - Proppert, Sven Martin T1 - Design, implementation and characterization of a microscope capable of three-dimensional two color super-resolution fluorescence imaging T1 - Design, Implementierung und Charakterisierung eines Mikroskops für dreidimensionale zwei Farben superhochauflösende Fluoreszenz-Bildgebung N2 - This thesis reviews the fundamentals of three-dimensional super-resolution localization imaging. In order to infer the axial coordinate of the emission of single fluorophores, the point spread function is engineered following a technique usually referred to as astigmatic imaging by the introduction of a cylindrical lens to the detection path of a microscope. After giving a short introduction to optics and localization microscopy, I outline sources of aberrations as frequently encountered in 3D-localization microscopy and will discuss their respective impact on the precision and accuracy of the localization process. With the knowledge from these considerations, experiments were designed and conducted to verify the validity of the conclusions and to demonstrate the abilities of the proposed microscope to resolve biological structures in the three spatial dimensions. Additionally, it is demonstrated that measurements of huge volumes with virtually no aberrations is in principle feasible. During the course of this thesis, a new method was introduced for inferring axial coordinates. This interpolation method based on cubic B-splines shows superior performance in the calibration of a microscope and the evaluation of subsequent measurement and will therefore be used and explained in this work. Finally, this work is also meant to give future students some guidance for entering the field of 3D localization microscopy and therefore, detailed protocols are provided covering the specific aspects of two color 3D localization imaging. N2 - In dieser Arbeit werden die Grundlagen der dreidimensionalen hochauflösenden Lokalisationsmikroskopie erarbeitet und daraus Spezifikationen für ein geeignetes Mikroskop abgeleitet. Zur Gewinnung der axialen Koordinate der Emission einzelner Farbstoffe wird die Punktspreizfunktion in der Detektion astigmatisch mithilfe einer zylindrischen Linse verändert. Nach einer kurzen Einleitung in die Grundzüge der Optik und der Lokalisationsmikroskopie werden die Ursachen für typische Aberrationen besprochen, wie sie in der 3D-Lokalisationsmikroskopie häufig auftreten. Weiterhin wird der Einfluss dieser Aberrationen auf die erreichbare Präzision und Exaktheit des Lokalisationsprozesses behandelt. Mit dem Wissen aus diesen Überlegungen wurden Experimente entworfen und durchgeführt um die getroffenen Schlussfolgerungen zu validieren und zu demonstrieren, dass das vorgeschlagene Mikroskop dazu in der Lage ist, biologische Strukturen in den drei räumlichen Dimensionen aufzulösen. Weiterhin wird gezeigt, dass beinahe aberrationsfreie Mikroskopie großer Volumina prinzipiell möglich ist. Während der Arbeit an dieser Promotion wurde eine neue Methode zur Gewinnung der axialen Koordinaten eingeführt. Diese auf kubischen B-splines basierende Interpolationsmethode stellte sich als anderen Routinen überlegen in der Kalibration eines Mikroskops und der anschließenden Auswertung von Messungen heraus. Deshalb wird dieses Verfahren in der vorliegenden Arbeit verwendet und erklärt. Da diese Doktorarbeit auch den Anspruch hat, zukünftigen Studenten den Einstieg in die hochauflösende 3D Mikroskopie zu erleichtern, werden abschließend detaillierte Protokolle für spezifische Aspekte der zwei Farben 3D Lokalisationsmikroskopie zur Verfügung gestellt. KW - Dimension 3 KW - aberration KW - Einzelmolekülmikroskopie KW - single molecule microscopy KW - 3D KW - super-resolution KW - Mikroskopie KW - Hochauflösendes Verfahren KW - Aberration Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-107905 ER - TY - THES A1 - Franke, Christian T1 - Advancing Single-Molecule Localization Microscopy: Quantitative Analyses and Photometric Three-Dimensional Imaging T1 - Weiterentwicklung von Einzel-Molekül Lokalisations-Mikroskopie: Quantitative Analysen und photometrische drei-dimensionale Bildgebung N2 - Since its first experimental implementation in 2005, single-molecule localization microscopy (SMLM) emerged as a versatile and powerful imaging tool for biological structures with nanometer resolution. By now, SMLM has compiled an extensive track-record of novel insights in sub- and inter- cellular organization.\\ Moreover, since all SMLM techniques rely on the analysis of emission patterns from isolated fluorophores, they inherently allocate molecular information $per$ $definitionem$.\\ Consequently, SMLM transitioned from its origin as pure high-resolution imaging instrument towards quantitative microscopy, where the key information medium is no longer the highly resolved image itself, but the raw localization data set.\\ The work presented in this thesis is part of the ongoing effort to translate those $per$ $se$ molecular information gained by SMLM imaging to insights into the structural organization of the targeted protein or even beyond. Although largely consistent in their objectives, the general distinction between global or segmentation clustering approaches on one side and particle averaging or meta-analyses techniques on the other is usually made.\\ During the course of my thesis, I designed, implemented and employed numerous quantitative approaches with varying degrees of complexity and fields of application.\\ \\ In my first major project, I analyzed the localization distribution of the integral protein gp210 of the nuclear pore complex (NPC) with an iterative \textit{k}-means algorithm. Relating the distinct localization statistics of separated gp210 domains to isolated fluorescent signals led, among others, to the conclusion that the anchoring ring of the NPC consists of 8 homo-dimers of gp210.\\ This is of particular significance, both because it answered a decades long standing question about the nature of the gp210 ring and it showcased the possibility to gain structural information well beyond the resolution capabilities of SMLM by crafty quantification approaches.\\ \\ The second major project reported comprises an extensive study of the synaptonemal complex (SNC) and linked cohesin complexes. Here, I employed a multi-level meta-analysis of the localization sets of various SNC proteins to facilitate the compilation of a novel model of the molecular organization of the major SNC components with so far unmatched extend and detail with isotropic three-dimensional resolution.\\ In a second venture, the two murine cohesin components SMC3 and STAG3 connected to the SNC were analyzed. Applying an adapted algorithm, considering the disperse nature of cohesins, led to the realization that there is an apparent polarization of those cohesin complexes in the SNC, as well as a possible sub-structure of STAG3 beyond the resolution capabilities of SMLM.\\ \\ Other minor projects connected to localization quantification included the study of plasma membrane glycans regarding their overall localization distribution and particular homogeneity as well as the investigation of two flotillin proteins in the membrane of bacteria, forming clusters of distinct shapes and sizes.\\ \\ Finally, a novel approach to three-dimensional SMLM is presented, employing the precise quantification of single molecule emitter intensities. This method, named TRABI, relies on the principles of aperture photometry which were improved for SMLM.\\ With TRABI it was shown, that widely used Gaussian fitting based localization software underestimates photon counts significantly. This mismatch was utilized as a $z$-dependent parameter, enabling the conversion of 2D SMLM data to a virtual 3D space. Furthermore it was demonstrated, that TRABI can be combined beneficially with a multi-plane detection scheme, resulting in superior performance regarding axial localization precision and resolution.\\ Additionally, TRABI has been subsequently employed to photometrically characterize a novel dye for SMLM, revealing superior photo-physical properties at the single-molecule level.\\ Following the conclusion of this thesis, the TRABI method and its applications remains subject of diverse ongoing research. N2 - Seit ihrer ersten experimentellen Umsetzung in 2005 hat sich die Einzel-Molekül Lokalisations-Mikroskopie (\textit{engl.} single-molecule localization microscopy (SMLM)) als vielseitig einsetzbares Verfahren in der biologischen Bildgebung etabliert, vor allem aufgrund ihres hohen Auflösungsvermögens im Nanometer Bereich. Bis heute wurde eine Reihe neuer Erkenntnisse bezüglich der sub- und inter- zellulären Organisation durch den Einsatz der SMLM erlangt.\\ Aufgrund der Tatsache, dass alle SMLM Techniken auf dem Prinzip basieren, isolierte Fluorophore zu detektieren und zu analysieren, beinhalten SMLM Daten $per$ $definitionem$ molekulare Informationen.\\ Folgerichtig entwickelte sich das Feld der SMLM vom reinen Bildgebungsinstrument mit Nanometer-Auflösung hin zu quantitativer Mikroskopie, bei welcher der Fokus nicht länger vornehmlich auf dem hochaufgelöstem Bild, sondern vielmehr auf den Lokalisationsdaten liegt.\\ Die vorliegende Arbeit ist als Teil der anhaltenden Bestrebungen zu sehen, aus den $per$ $se$ molekularen Informationen der SMLM weiterführende Erkenntnisse über die strukturelle Organisation der markierten Proteine zu gewinnen. Obwohl mit der gleichen prinzipiellen Zielsetzung versehen, unterscheiden sich hierbei globale oder Segmentierungs- Clusteranalysen von Lokalisations-Meta-Analysen oder so genannten \textit{particle averaging} Ansätzen.\\ Während meiner Doktorarbeit habe ich verschiedene Quantifizierungs Ansätze entworfen, implementiert und angewendet, mit unterschiedlichen Graden an Komplexität und Breite des Anwendungsgebietes.\\ \\ In meinem ersten wesentlichem Projekt analysierte ich mit einem iterativen \textit{k}-means Algorithmus die Lokalisationsverteilung des integralen Proteins gp210, welches Teil des Kernporenkomplexes ist (\textit{engl.} nuclear pore complex (NPC)). Durch den Vergleich der charakteristischen Lokalisations-Statistik von separierten gp210 Domänen mit isolierten Fluoreszenzmarkern konnte unter anderem festgestellt werden, dass der Verankerungsring des NPC aus acht gp210 Homodimeren bestehen muss.\\ Diese Erkenntnis beantwortet zum einen eine jahrzehntealte Frage nach der Zusammensetzung des gp210 Rings und zum anderen liefert sie ein Beispiel dafür, dass durch eine geschickte Analyse der Lokalisationsstatistik strukturelle Informationen erlangt werden können, die jenseits des räumlichen Auflösungsvermögens von SMLM liegen.\\ \\ Das zweite hier vorgestellte wesentliche Projekt beinhaltet eine umfassende Studie des Synaptonemalen Komplexes (\textit{engl.} synaptonemal complex (SNC)) und damit verbundenen Cohesin Komplexen. Um die molekulare Organisation des SNC zu untersuchen, implementierte ich eine multi-level Meta-Analyse der Lokalisationsdaten mehrerer SNC Komponenten. Aus dessen Ergebnissen konnte ein neues drei dimensionales molekulares Modell des SNC erstellt werden.\\ Nachfolgend wurden die beiden murinen Cohesine SMC3 und STAG3 mit adaptierter Methodik untersucht. Hierbei musste die starke intrinsische Dispersion der Cohesin-Signale berücksichtigt werden. Die Analyse ergab deutliche Hinweise auf eine Polarisation der Cohesine innerhalb des SNC. Zudem zeigte sich eine mögliche Substruktur in der Organisation von STAG3, die unterhalb der Auflösungsgrenze von SMLM liegt.\\ \\ Weitere Nebenprojekte im Zusammenhang mit quantitativer Lokalisationsanalyse umfassten die Untersuchung der Lokalisationsverteilung von Plasma-Membran Glykanen, sowie zweier Flotillin Proteine in den Membranen von Bakterien, welche Cluster unterschiedlicher Form und Größe aufzeigten.\\ \\ Schließlich wird ein neuartiger Ansatz für dreidimensionale SMLM vorge-stellt, die auf der genauen Bestimmung von Einzel-Molekül Intensitäten basiert. Diese Methode, genannt TRABI, stützt sich auf die Prinzipien der Apertur Photometrie, welche für die SMLM angepasst und verbessert wurden.\\ Mit TRABI konnte gezeigt werden, dass weit verbreitete Lokalisations-Software, die auf $Gaussian-Fitting$ basiert, die Photonenzahl von Emittern oftmals stark unterschätzt. Diese Diskrepanz kann als $z$-abhängiger Parameter verwendet werden um z.B. einen 2D SMLM Datenatz in einen virtuellen 3D Raum zu überführen. Außerdem wird gezeigt, dass TRABI vorteilhaft mit einem multi-plane Detektionsschema kombiniert werden kann und dabei höhere axiale Lokalisationsgenauigkeiten und Auflösungen er-reicht.\\ Zudem wurde TRABI eingesetzt, um einen neuen Fluoreszenzfarbstoff für SMLM zu charakterisieren und dessen verbesserte photo-physikalische Eigenschaften auf Einzel-Molekül Basis zu demonstrieren.\\ Auch nach Abschluss dieser Arbeit ist die TRABI Methode und deren Anwendung weiterhin Gegenstand diverser Forschungen. KW - Einzelmolekülmikroskopie KW - Quantitative Mikroskopie KW - dSTORM Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-156355 ER - TY - THES A1 - Kurz, Andreas T1 - Correlative live and fixed cell superresolution microscopy T1 - Korrelative hochauflösende Mikroskopie an lebenden und fixierten Zellen N2 - Over the last decade life sciences have made an enormous leap forward. The development of complex analytical instruments, in particular in fluorescence microscopy, has played a decisive role in this. Scientist can now rely on a wide range of imaging techniques that offer different advantages in terms of optical resolution, recording speed or living cell compatibility. With the help of these modern microscopy techniques, multi-protein complexes can be resolved, membrane receptors can be counted, cellular pathways analysed or the internalisation of receptors can be tracked. However, there is currently no universal technique for comprehensive experiment execution that includes dynamic process capture and super resolution imaging on the same target object. In this work, I built a microscope that combines two complementary imaging techniques and enables correlative experiments in living and fixed cells. With an image scanning based laser spot confocal microscope, fast dynamics in several colors with low photodamage of the cells can be recorded. This novel system also has an improved resolution of 170 nm and was thoroughly characterized in this work. The complementary technique is based on single molecule localization microscopy, which can achieve a structural resolution down to 20-30 nm. Furthermore I implemented a microfluidic pump that allows direct interaction with the sample placed on the microscope. Numerous processes such as living cell staining, living cell fixation, immunostaining and buffer exchange can be observed and performed directly on the same cell. Thus, dynamic processes of a cell can be frozen and the structures of interest can be stained and analysed with high-resolution microscopy. Furthermore, I have equipped the detection path of the single molecule technique with an adaptive optical element. With the help of a deformable mirror, imaging functions can be shaped and information on the 3D position of the individual molecules can be extracted. N2 - Im letzten Jahrzehnt hat der Bereich der Lebenswissenschaften einen enormen Sprung nach vorne gemacht. Maßgeblich dafür waren die Entwicklung von komplexen Analysegeräten insbesondere in der Fluoreszenz Mikroskopie. Die Anwender können nun auf eine Vielzahl von Bildgebungstechniken zurückgreifen die unterschiedliche Vorzüge hinsichtlich optischer Auflösung, Aufnahmegeschwindigkeit oder Lebend Zell Kompatibilität bieten. Mithilfe dieser modernen Mikroskopietechniken lassen sich beispielsweise Multiproteinkomplexe auflösen, Membranrezeptoren zählen, zelluläre Signalwege analysieren oder die Internalisierung von Rezeptoren verfolgen. Für eine umfassende Experimentdurchführung, die Erfassung dynamischer Prozesse sowie superhochauflösende Bildgebung an ein und demselben Zielobjekt beinhalten, gibt es derzeit keine einheitliche Technik. In dieser Arbeit habe ich ein Mikroskop aufgebaut, das zwei komplementäre Bildgebungstechniken vereint und korrelative Experimente von lebend zu fixierten Zellen ermöglicht. Mit einem Image Scanning basierten Konfokal Mikroskop können schnelle Dynamiken in mehreren Farben mit geringer Photoschädigung der Zellen aufgenommen werden. Dieses neuartige System weist zudem eine Auflösungsverbesserung von 170 nm auf und wurde im Rahmen der Arbeit ausführlich charakterisiert. Die komplementäre Technik basiert auf der Einzel-Molekül Lokalisations Mikroskopie, mit der sich eine strukturelle Auflösung von bis zu 20 nm erreichen lässt. Desweiteren habe ich eine Mikrofluidpumpe implementiert, die eine direkte Interaktion mit der auf dem Mikroskop platzierten Probe erlaubt. Zahlreiche Prozesse wie Lebend-Zell Färbung, Lebend-Zell Fixierung, Immuno-Färbung und Puffertausch können damit direkt an der gleichen Zelle beobachtet und durchgeführt werden. So können dynamische Prozesse einer Zelle sozusagen eingefroren werden und die Strukturen von Interesse gefärbt und mit höchstauflösender Mikroskopie analysiert werden. Desweiteren habe ich den Detektionspfad der Einzel-Molekül Technik mit einem adaptiven optischen Element ausgestattet. Mithilfe eines deformierbaren Spiegels lässt sich so Abbildungsfunktion formen und Information zur 3D Position der einzelnen Moleküle gewinnen. KW - Einzelmolekülmikroskopie KW - Adaptive Optik KW - Image-Scanning Microscope KW - Correlative microscopy KW - Adaptive Optics Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-199455 ER - TY - THES A1 - Schulze, Andrea T1 - Investigating the mechanism of the Hsp90 molecular chaperone using photoinduced electron transfer fluorescence quenching T1 - Untersuchungen zum Mechanismus des molekularen Chaperons Hsp90 mittels photoinduzierter Elektronentransfer-Fluoreszenzlöschung N2 - The molecular chaperone Hsp90 facilitates the folding and activation of a wide array of structurally and functionally diverse client proteins. Hsp90 presents a central node of protein homeostasis and is frequently involved in the development of many human diseases. Although Hsp90 is a promising target for disease treatment, the mechanism by which Hsp90 facilitates client recognition and maturation is poorly understood. The shape of the homodimeric protein resembles a molecular clamp that opens and closes in response to binding and hydrolysis of ATP. Structural studies reveal a network of distinct local conformational rearrangements that coordinate the slow transition into the hydrolysis-active, closed state configuration (time order of minutes). However, the kinetics of local conformational changes remain elusive because spectroscopic tools that can detect them have been missing so far. Fluorescence quenching of extrinsic fluorophores by the natural amino acid Tryptophan is based on a photoinduced electron transfer (PET) reaction, which requires sub-nanometer contact between fluorophore and Tryptophan. This quenching mechanism has been developed into a 1-nm spectroscopic tool for the detection of rapid protein folding dynamics. Within the scope of this doctoral thesis, PET-reporter systems were designed to investigate the kinetics of local conformational motions that are part of the mechanistic core of the Hsp90 chaperone cycle. ATP-triggered kinetics of closure of the ATP-lid as well as swapping of the N-terminal ß-strand across subunits and association of the N-terminal and middle-domain were estimated in solution. Bulk experiments revealed that local motions occur on similar timescales and are in good agreement with the ATP-hydrolysis rate. Functional mutations demonstrated that local motions act cooperatively. Furthermore, the lid was shown to close via a two-step process consisting of a rapid lid-reconfiguration in direct response to ATP-binding, followed by slow closure of the lid. The co-chaperone Aha1 seems to act early in the chaperone cycle by remodelling of the lid and by stabilization of apo Hsp90 in a NM-domain pre-associated conformation. A two-colour single-molecule PET microscopy method was developed to observe local motions at remote positions simultaneously and in real-time. Thus, directionality within the network of local conformational changes could be revealed. In a first attempt, the feasibility of detecting PET-complexes on the single-molecule surface was tested on Hsp90 constructs that report on only one motion (one-colour single-molecule PET microscopy). PET-quenched complexes could be distinguished from photobleached fluorophores through oxidation by molecular oxygen, resulting in fluorescence recovery. In two-colour experiments, a dimmed state was identified for PET-quenched complexes, but not for all of the used PET-reporter systems. Results suggest that local motions occur simultaneously within the time-resolution of the experiment (0.3 sec). Furthermore, bi-exponential kinetics of transition into the closed clamp configuration indicate a more complex mechanism of clamp-closure than of clamp-opening, which could be well described by a mono-exponential function. N2 - Das molekulare Chaperon Hsp90 ermöglicht die korrekte Faltung und Aktivierung eines breiten Spektrums an strukturell und funktionell unterschiedlichen Klienten-Proteinen. Hsp90 bildet einen zentralen Knotenpunkt der Protein-Homöostase und ist an der Entstehung einer Vielzahl von humanen Erkrankungen beteiligt. Trotz des vielversprechenden Potentials, das Hsp90 als Zielprotein für die Behandlung von Erkrankungen besitzt, ist der Mechanismus, durch den Hsp90 seinen Klienten erkennt und dessen Reifung gewährt, noch unbekannt, Die Gestalt des homodimeren Proteins ähnelt einer molekularen Klammer, die sich durch Bindung und Hydrolyse von ATP öffnet und schließt. Strukturelle Studien zeigen ein Netzwerk an weit voneinander entfernt liegenden lokalen Konformationsänderungen, die den langsamen Übergang (im Bereich von Minuten) in die Hydrolyse-aktive, geschlossene Konfiguration koordinieren. Allerdings sind die Kinetiken der lokalen Konformationsänderungen unbekannt, da es bisher noch keine spektroskopische Methode gibt, die diese detektieren könnte. Die natürliche Aminosäure Tryptophan kann durch eine photoinduzierte-Elektronentransfer-(PET)-Reaktion die Fluoreszenz extrinsischer Fluorophore löschen. Fluorophor und Tryptophan müssen hierfür in einer Kontakt-Distanz im sub-nanometer Bereich stehen. Dieser Lösch-Mechanismus wurde zu einem 1-nm sensitiven, spektroskopischen Werkzeug entwickelt, das für die Detektion schneller Proteinfaltungsdynamiken angewendet werden kann. Im Rahmen der hier vorliegenden Dissertation wurden PET-Reporter-Systeme entworfen. Diese dienten der Untersuchung lokaler Konformationsänderungen, die Teil des mechanistischen Kerns des Hsp90-Chaperon-Zyklus sind. ATP-induzierte Kinetiken des ATP-Lid Schlusses sowie des Untereinheiten-Wechsels des N-terminalen ß-Faltblatts als auch der Assoziation der N-terminalen mit der mittleren Domäne wurden ermittelt. In Ensemble Experimenten konnte gezeigt werden, dass lokale Bewegungen auf ähnlichen Zeitskalen stattfinden und in guter Übereinstimmung mit der ATP-Hydrolyserate sind. Durch die Anwendung von Funktionsmutanten konnte demonstriert werden, dass die lokalen Bewegungen zusammenwirkend geschehen. Des Weiteren wurde gezeigt, dass der Lid anhand eines zweistufigen Prozesses schließt. Dieser besteht aus einer, durch die Bindung von ATP ausgelösten, raschen Lid-Rekonfiguration, gefolgt von der langsamen Schließung des Lids. Das Co-Chaperon Aha1 scheint den ATPase-Zyklus bereits in einem frühen Stadium, durch die Remodellierung der Lid-Konformation und die Stabilisierung des apo-Hsp90 in einer vor-assoziierten Konformation der NM-Domänen, zu beeinflussen Des Weiteren wurde eine Zwei-Farben-Einzelmolekül-PET-Mikroskopie-Methode entwickelt, die es ermöglicht lokale Bewegungen an entfernten Positionen simultan und in Echtzeit zu beobachten. Dadurch kann festgestellt werden, ob eine Richtungscharakteristik innerhalb des Netzwerks lokaler Konformationsänderungen besteht. Hierfür wurde zunächst anhand von einfach markierten Hsp90 Konstrukten, die nur eine Bewegung darstellen, getestet ob die Detektion von PET-Komplexen auf der Einzelmoleküloberfläche möglich ist (Ein-Farben-Einzelmolekül-PET-Mikroskopie). Die Fluoreszenz PET-gelöschter Komplexe konnte mittels Oxidation durch molekularen Sauerstoff wiederhergestellt werden, wodurch eine Unterscheidung zu photogebleichten Fluorophoren möglich war. In Zwei-Farben-Experimenten konnte zudem ein gedimmter Zustand der PET-gelöschten Fluorophore festgestellt werden, allerdings nicht für jedes der verwendeten PET-Reportersysteme. Die Ergebnisse deuten auf ein innerhalb der Zeitauflösung des Experiments (0.3 sec) gleichzeitiges Auftreten der lokalen Bewegungen hin. Des Weiteren scheint der Mechanismus des Klammerschlusses komplexer zu sein, als der Mechanismus der Klammeröffnung. Während die Kinetiken der Klammeröffnung durch eine mono-exponentielle Fit-funktion angepasst werden konnten, benötigte der Klammerschluss eine bi-exponentielle Anpassungsfunktion. KW - Hitzeschock-Proteine KW - Einzelmolekülmikroskopie KW - Fluoreszenzspektroskopie KW - Kinetik KW - Heat shock protein 90 KW - Hitzeschockprotein 90 KW - photoinduzierter Elektronentransfer KW - photoinduced electron transfer KW - single molecule microscopy Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-162155 ER - TY - THES A1 - Heil, Hannah Sophie T1 - Sharpening super-resolution by single molecule localization microscopy in front of a tuned mirror T1 - Einzelmolekül-Lokalisationsmikroskopie vor einem abgestimmten Spiegel zur Auflösungsverbesserung N2 - The „Resolution Revolution" in fluorescence microscopy over the last decade has given rise to a variety of techniques that allow imaging beyond the diffraction limit with a resolution power down into the nanometer range. With this, the field of so-called super-resolution microscopy was born. It allows to visualize cellular architecture at a molecular level and thereby achieve a resolution level that had been previously only accessible by electron microscopy approaches. One of these promising techniques is single molecule localization microscopy (SMLM) in its most varied forms such as direct stochastic optical reconstruction microscopy (dSTORM) which are based on the temporal separation of the emission of individual fluorophores. Localization analysis of the subsequently taken images of single emitters eventually allows to reconstruct an image containing super-resolution information down to typically 20 nm in a cellular setting. The key point here is the localization precision, which mainly depends on the image contrast generated the by the individual fluorophore’s emission. Thus, measures to enhance the signal intensity or reduce the signal background allow to increase the image resolution achieved by dSTORM. In my thesis, this is achieved by simply adding a reflective metal-dielectric nano-coating to the microscopy coverslip that serves as a tunable nano-mirror. I have demonstrated that such metal-dielectric coatings provide higher photon yield at lower background and thus substantially improve SMLM performance by a significantly increased localization precision, and thus ultimately higher image resolution. The strength of this approach is that ─ except for the coated cover glass ─ no specialized setup is required. The biocompatible metal-dielectric nano-coatings are fabricated directly on microscopy coverslips and have a simple three-ply design permitting straightforward implementation into a conventional fluorescence microscope. The introduced improved lateral resolution with such mirror-enhanced STORM (meSTORM) not only allows to exceed Widefield and Total Internal Reflection Fluorescence (TIRF) dSTORM performance, but also offers the possibility to measure in a simplified setup as it does not require a special TIRF objective lens. The resolution improvement achieved with meSTORM is both spectrally and spatially tunable and thus allows for dual-color approaches on the one hand, and selectively highlighting region above the cover glass on the other hand, as demonstrated here. Beyond lateral resolution enhancement, the clear-cut profile of the highlighted region provides additional access to the axial dimension. As shown in my thesis, this allows for example to assess the three-dimensional architecture of the intracellular microtubule network by translating the local localization uncertainty to a relative axial position. Even beyond meSTORM, a wide range of membrane or surface imaging applications may benefit from the selective highlighting and fluorescence enhancing provided by the metal-dielectric nano-coatings. This includes for example, among others, live-cell Fluorescence Correlation Spectroscopy and Fluorescence Resonance Energy Transfer studies as recently demonstrated. N2 - Die „Auflösungsrevolution" in der Fluoreszenzmikroskopie hat während des letzten Jahrzehnts eine Vielzahl von Techniken hervorgebracht, die es ermöglichen, das Beugungslimit zu überschreiten und eine Bildauflösung bis in den Nanometerbereich zu erreichen. Die Entwicklung der sogenannten superhochauflösenden Fluoreszenzmikroskopie ermöglicht es die zelluläre Architektur auf molekularer Ebene zu visualisieren und erreicht damit ein Auflösungsvermögen, wie es bisher nur mit elektronenmikroskopischen Ansätzen möglich war. Der Begriff Einzelmolekül-Lokalisationsmikroskopie fasst zum Beispiel eine Vielzahl der unterschiedlichsten Ansätze zusammen. Wie zum Beispiel auch die direkte stochastische optische Rekonstruktionsmikroskopie (dSTORM) basieren diese auf der zeitlichen Trennung der Emission einzelner Fluorophore. Die Lokalisierungsanalyse der so aufgenommenen Bilder von einzelnen Emittern ermöglicht schließlich die Rekonstruktion eines superhochaufgelösten Bildes, das eine Auflösung von typischerweise 20 nm in einer zellularen Umgebung erreicht. Der entscheidende Punkt ist hierbei die Lokalisierungsgenauigkeit, die hauptsächlich vom Bildkontrast abhängt. Eine Erhöhung der Signalintensität oder Reduzierung des Signalhintergrunds ermöglichen es daher, die mit dSTORM erzielte Bildauflösung zu erhöhen. In meiner Dissertation wird dies durch eine einfache reflektierende metalldielektrische Nanobeschichtung auf dem Mikroskop-Deckglas erreicht, das so als abstimmbarer Nanospiegel dient. Ich zeige in dieser Arbeit, dass solche metalldielektrischen Beschichtungen eine höhere Photonenausbeute bei niedrigerem Hintergrund liefern und somit die SMLM-Leistung durch eine signifikant erhöhte Lokalisierungsgenauigkeit und damit letztendlich einer höheren Bildauflösung wesentlich verbessern. Die Stärke dieses Ansatzes besteht darin, dass mit Ausnahme des beschichteten Deckglases keine spezielle Anpassung des experimentellen Aufbaus erforderlich ist. Die biokompatiblen metallisch-dielektrischen Nanobeschichtungen mit einem einfachen dreischichtigen Design werden direkt auf Mikroskop-Deckgläsern hergestellt, was eine direkte Implementierung in ein herkömmliches Fluoreszenzmikroskop ermöglicht. Die mit diesem spiegelverstärkten STORM (meSTORM) eingeführte verbesserte laterale Auflösung ermöglicht es nicht nur, die Bildauflösung von Weitfeld und Total Internal Reflection Fluorescence (TIRF) dSTORM zu übertreffen, sondern bietet auch die Möglichkeit, in einem vereinfachten Aufbau zu messen, da kein spezielles TIRF-Objektiv erforderlich ist. Die mit meSTORM erzielte Auflösungsverbesserung ist sowohl spektral als auch räumlich abstimmbar und ermöglicht so einerseits zweifarbige Bildgebung und andererseits eine gezielte Hervorhebung eines bestimmten Bereichs über dem Deckglas. Über die Verbesserung der lateralen Auflösung hinaus bietet das klare Profil des Verstärkungseffekts zusätzliche Information über die axiale Position. Wie in meiner Dissertation gezeigt, kann damit beispielsweise die dreidimensionale Architektur des intrazellulären Mikrotubuli-Netzwerks aufgelöst werden, indem die lokale Lokalisierungsunsicherheit in eine relative axiale Position übersetzt wird. Über meSTORM hinaus kann die selektive Hervorhebung und Fluoreszenzverstärkung durch die metalldielektrischen Nanobeschichtungen für eine Vielzahl von Membran- oder Oberflächenabbildungsanwendungen von Vorteil sein. Dies umfasst unter anderem Anwendungen wie die Fluoreszenzkorrelationsspektroskopie in lebenden Zellen und Fluoreszenzresonanz-energietransfer, wie bereits kürzlich gezeigt wurde. KW - Fluoreszenz KW - Einzelmolekülmikroskopie KW - Fluoreszenzmikroskopie KW - Nanofabrikation KW - Nanofabrication KW - Super-resolution microsopy KW - Superhochauflösende Mikroskopie Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-204329 ER - TY - THES A1 - Wäldchen, Felix T1 - 3D Single Molecule Imaging In Whole Cells Enabled By Lattice Light-Sheet Illumination T1 - 3D Einzelmolekülbildgebung in ganzen Zellen ermöglicht durch Gitterlichtblattbeleuchtung N2 - Single molecule localization microscopy has seen a remarkable growth since its first experimental implementations about a decade ago. Despite its technical challenges, it is already widely used in medicine and biology and is valued as a unique tool to gain molecular information with high specificity. However, common illumination techniques do not allow the use of single molecule sensitive super-resolution microscopy techniques such as direct stochastic optical reconstruction microscopy (dSTORM) for whole cell imaging. In addition, they can potentially alter the quantitative information. In this thesis, I combine dSTORM imaging in three dimensions with lattice lightsheet illumination to gain quantitative molecular information from cells unperturbed by the illumination and cover slip effects. Lattice light-sheet illumination uses optical lattices for beam shaping to restrict the illumination to the detectable volume. I describe the theoretical background needed for both techniques and detail the experimental realization of the system as well as the software that I developed to efficiently evaluate the data. Eventually, I will present key datasets that demonstrate the capabilities of the developed microscope system with and without dSTORM. My main goal here was to use these techniques for imaging the neural cell adhesion molecule (NCAM, also known as CD56) in whole cells. NCAM is a plasma membrane receptor known to play a key role in biological processes such as memory and learning. Combining dSTORM and lattice light-sheet illumination enables the collection of quantitative data of the distribution of molecules across the whole plasma membrane, and shows an accumulation of NCAM at cell-cell interfaces. The low phototoxicity of lattice light-sheet illumination further allows for tracking individual NCAM dimers in living cells, showing a significant dependence of its mobility on the actin skeleton of the cell. N2 - Die Einzelmoleküllokalisationsmikroskopie hat seit der ersten experimentellen Umsetzung vor etwa 10 Jahren einen bemerkenswerten Aufschwung erfahren. Trotz des hohen technischen Anspruchs findet sie bereits weite Verbreitung in der Biologie und Medizin und wird als einzigartiges Werkzeug geschätzt, um molekulare Information mit hoher Spezifität zu erlangen. Dennoch erschweren die gebräuchlichen Beleuchtungsmethoden die Anwendung von Methoden der Einzelmoleküllokalisationsmikroskopie wie dSTORM (engl. direct stochastic optical reconstruction microscopy) auf das Volumen ganzer Zellen, denn hier kann die Beleuchtung selbst die quantitativen Daten beeinflussen. In dieser Arbeit kombiniere ich dreidimensionale dSTORM-Bildgebung mit Gitterlichtblattbeleuchtung (engl. lattice light-sheet illumination) um quantitative, molekulare Information ohne durch die Beleuchtung verursachte Störungen zu gewinnen. Die Gitterlichtblattbeleuchtung nutzt optische Gitter zur Strahlformung, um das beleuchtete Volumen auf das detektierbare Volumen zu beschränken. Ich stelle den nötigen, theoretischen Hintergrund für beide Methoden dar und beschreibe die experimentelle Umsetzung sowie die von mir zur effizienten Datenauswertung entwickelte Software. Schließlich präsentiere ich verschiedene Datensätze, die die Fähigkeiten des Systems mit und ohne dSTORM demonstrieren. Mein Hauptziel war hierbei, beide Methoden zu nutzen, um das neuronale Zelladhäsionsmolekül (NCAM, engl. neural cell adhesion molecule) in ganzen Zellen abzubilden. NCAM (auch bekannt als CD56) ist ein Rezeptor auf der Plasmembran, der für seine Schlüsselrolle im Zusammenhang mit biologischen Prozessen wie Lernen und Gedächtnis bekannt ist. Die Kombination von dSTORM und Gitterlichtblattbeleuchtung ermöglicht das sammeln quantitativer Daten der Verteilung über die komplette Plasmamembran, wobei sich eine Akkumulation an Zell-Zell Kontaktflächen zeigt. Die niedrige Photoschädigung der Gitterlichtblattbeleuchtung ermöglicht weiterhin das Verfolgen von einzelnen NCAM-Dimeren in lebenden Zellen. Dort zeigt sich eine signifikante Abhängigkeit ihrer Mobilität vom Aktinskelett der Zelle. KW - Einzelmolekülmikroskopie KW - Optik KW - Light-Sheet KW - Lattice Light-Sheet KW - dSTORM KW - Single Molecule Imaging KW - Localization Microscopy Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-207111 ER - TY - THES A1 - Schlegel, Jan T1 - Super-Resolution Microscopy of Sphingolipids and Protein Nanodomains T1 - Hochaufgelöste Mikroskopie von Sphingolipiden und Protein Nanodomänen N2 - The development of cellular life on earth is coupled to the formation of lipid-based biological membranes. Although many tools to analyze their biophysical properties already exist, their variety and number is still relatively small compared to the field of protein studies. One reason for this, is their small size and complex assembly into an asymmetric tightly packed lipid bilayer showing characteristics of a two-dimensional heterogenous fluid. Since membranes are capable to form dynamic, nanoscopic domains, enriched in sphingolipids and cholesterol, their detailed investigation is limited to techniques which access information below the diffraction limit of light. In this work, I aimed to extend, optimize and compare three different labeling approaches for sphingolipids and their subsequent analysis by the single-molecule localization microscopy (SMLM) technique direct stochastic optical reconstruction microscopy (dSTORM). First, I applied classical immunofluorescence by immunoglobulin G (IgG) antibody labeling to detect and quantify sphingolipid nanodomains in the plasma membrane of eukaryotic cells. I was able to identify and characterize ceramide-rich platforms (CRPs) with a size of ~ 75nm on the basal and apical membrane of different cell lines. Next, I used click-chemistry to characterize sphingolipid analogs in living and fixed cells. By using a combination of fluorescence microscopy and anisotropy experiments, I analyzed their accessibility and configuration in the plasma membrane, respectively. Azide-modified, short fatty acid side chains, were accessible to membrane impermeable dyes and localized outside the hydrophobic membrane core. In contrast, azide moieties at the end of longer fatty acid side chains were less accessible and conjugated dyes localized deeper within the plasma membrane. By introducing photo-crosslinkable diazirine groups or chemically addressable amine groups, I developed methods to improve their immobilization required for dSTORM. Finally, I harnessed the specific binding characteristics of non-toxic shiga toxin B subunits (STxBs) and cholera toxin B subunits (CTxBs) to label and quantify glycosphingolipid nanodomains in the context of Neisseria meningitidis infection. Under pyhsiological conditions, these glycosphingolipids were distributed homogenously in the plasma membrane but upon bacterial infection CTxB detectable gangliosides accumulated around invasive Neisseria meningitidis. I was able to highlight the importance of cell cycle dependent glycosphingolipid expression for the invasion process. Blocking membrane accessible sugar headgroups by pretreatment with CTxB significantly reduced the number of invasive bacteria which confirmed the importance of gangliosides for bacterial uptake into cells. Based on my results, it can be concluded that labeling of sphingolipids should be carefully optimized depending on the research question and applied microscopy technique. In particular, I was able to develop new tools and protocols which enable the characterization of sphingolipid nanodomains by dSTORM for all three labeling approaches. N2 - Die Entwicklung von zellulären Lebensformen auf der Erde basiert auf der Entstehung biologischer Lipid-Membranen. Obwohl viele Techniken zur Verfügung stehen, welche es erlauben deren biophysikalische Eigenschaften zu untersuchen, sind die Möglichkeiten, verglichen mit der Analyse von Proteinen, eher eingeschränkt. Ein Grund hierfür, ist die geringe Größe von Lipiden und deren komplexe Zusammenlagerung in eine asymmetrische dicht gepackte Lipiddoppelschicht, welche sich wie eine heterogene zweidimensionale Flüssigkeit verhält. Durch die lokale Anreicherung von Sphingolipiden und Cholesterol sind Membranen in der Lage dynamische, nanoskopische Domänen auszubilden, welche lediglich mit Techniken, welche die optische Auflösungsgrenze umgehen, detailliert untersucht werden können. Ein wesentliches Ziel meiner Arbeit war es, drei Färbeverfahren für Sphingolipide zu vergleichen, erweitern und optimieren, um eine anschliessende Untersuchung mit Hilfe der einzelmolekülsensitiven Technik dSTORM (direct stochastic optical reconstruction microscopy) zu ermöglichen. Zunächst verwendete ich das klassische Färbeverfahren der Immunfluoreszenz, um Sphingolipid-Nanodomänen auf eukaryotischen Zellen mit Hilfe von Farbstoff-gekoppelten Antikörpern zu detektieren und quantifizieren. Dieses Vorgehen ermöglichte es mir, Ceramid-angereicherte Plattformen mit einer Größe von ~ 75nm auf der basalen und apikalen Membran verschiedener Zell-Linien zu identifizieren und charakterisieren. Als nächstes Verfahren verwendete ich die Klick-Chemie, um Sphingolipid-Analoge in lebenden und fixierten Zellen zu untersuchen. Eine Kombination aus Fluoreszenz-Mikroskopie und Anisotropie-Messungen erlaubte es mir Rückschlüsse über deren Zugänglichkeit und Konfiguration innerhalb der Plasmamembran zu ziehen. Hierbei lokalisierten Azid-Gruppen am Ende kurzkettiger Fettsäurereste außerhalb des hydrophoben Membrankerns, wodurch sie mittels membran-undurchlässige Farbstoffe angeklickt werden konnten. Im Gegensatz dazu, waren Azide an längeren Fettsäureresten weniger zugänglich und konjugierte Farbstoffe tauchten tiefer in die Plasmamembran ein. Durch die Einführung photoreaktiver Diazirin-Gruppen oder chemisch modifzierbarer Amin-Gruppen wurden Wege geschaffen, welche eine Immobilisierung und anschließende Analyse mit Hilfe von dSTORM ermöglichen. Schließlich nutzte ich das spezifische Bindeverhalten der nicht toxischen B Untereinheiten von Shiga- (STxB) und Cholera-Toxin (CTxB) aus, um Glycosphingolipid Nanodomänen im Kontext einer Neisseria meningitidis Infektion zu untersuchen. Unter physiologischen Bedingungen waren diese homogen in der Plasmamembran verteilt, jedoch reicherten sich CTxB-detektierbare Ganglioside um eindringende Bakterien an. Darüber hinaus konnte ich einen Zusammenhang zwischen der zellzyklusabhängigen Expression von Glycosphingolipiden und dem Eindringen der Bakterien herstellen. Eine Absättigung der Zucker an der äußeren Membran durch CTxB-Vorbehandlung reduzierte die Anzahl von invasiven Bakterien signifikant und bestätigte die Schlüsselrolle von Gangliosiden bei der Aufnahme von Bakterien. Meine Ergebnisse legen Nahe, dass das Färbeverfahren für Sphingolipide an die jeweilige Fragestellung und Mikroskopietechnik angepasst werden sollte. Im Rahmen dieser Arbeit konnten neue Werkzeuge und Protokolle geschaffen werden, die die Charakterisierung von Sphingolipid-Nanodomänen mittels dSTORM für alle drei Färbeverfahren ermöglichen. KW - Sphingolipide KW - Lipide KW - Einzelmolekülmikroskopie KW - Click-Chemie KW - Lipid Raft KW - super-resolution microscopy KW - sphingolipids KW - labeling techniques KW - dSTORM KW - lipid rafts Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-229596 ER - TY - RPRT A1 - Groß, Lennart T1 - Advices derived from troubleshooting a sensor-based adaptive optics direct stochastic optical reconstruction microscope T1 - Hinweise aus der Fehleranalyse eines Mikroskops mit direkter stochastischer optischer Rekonstruktion und sensorgestützter adaptiver Optik N2 - One rarely finds practical guidelines for the implementation of complex optical setups. Here, we aim to provide technical details on the decision making of building and revising a custom sensor-based adaptive optics (AO) direct stochastic optical reconstruction microscope (dSTORM) to provide practical assistance in setting up or troubleshooting similar devices. The foundation of this report is an instrument constructed as part of a master's thesis in 2021, which was built for deep tissue imaging. The setup is presented in the following way: (1) An optical and mechanical overview of the system at the beginning of this internship is given. (2) The optical components are described in detail in the order at which the light passes through, highlighting their working principle and implementation in the system. The optical component include (2A) a focus on even sample illumination, (2B) restoring telecentricity when working with commercial microscope bodies, (2C) the AO elements, namely the deformable mirror (DM) and the wavefront sensor, and their integration, and (2D) the separation of wavefront and image capture using fluorescent beads and a dichroic mirror. After addressing the limitations of the existing setup, modification options are derived. The modifications include the implementation of adjustment only light paths to improve system stability and revise the degrees of freedom of the components and changes in lens choices to meet the specifications of the AO components. Last, the capabilities of the modified setup are presented and discussed: (1) First, we enable epifluorescence imaging of bead samples through 180 µm unstained murine hippocampal tissue with wavefront error correction of ~ 90 %. Point spread function, wavefront shape and Zernike decomposition of bead samples are presented. (2) Second, we move from epifluorescent to dSTORM imaging of tubulin stained primary mouse hippocampal cells, which are imaged through up to 180 µm of unstained murine hippocampal tissue. We show that full width at half maximum (FWHM) of prominent features can be reduced in size by nearly a magnitude from uncorrected epiflourescence images to dSTORM images corrected by the adaptive optics. We present dSTORM localization count and FWHM of prominent features as as a function of imaging depth. N2 - Praktische Leitlinien für die Implementierung komplexer optischer Systeme sind selten zu finden. Hier wollen wir technische Details zur Entscheidungsfindung beim Bau und der Überarbeitung eines maßgefertigten Mikroskops mit sensorgestützter adaptiver Optik (AO) und direkter stochastischer optischer Rekonstruktion (dSTORM) bereitstellen, um praktische Hilfestellung bei der Einrichtung oder Fehlerbehebung ähnlicher Geräte zu geben. Grundlage dieses Berichts ist ein Instrument, das im Rahmen einer Masterarbeit im Jahr 2021 für die Abbildung von tiefem Gewebe gebaut wurde. Der Aufbau wird wie folgt dargestellt: (1) Es wird ein optischer und mechanischer Überblick über das System zu Beginn dieses Praktikums gegeben. (2) Die optischen Komponenten werden in der Reihenfolge, in der das Licht sie durchläuft, detailliert beschrieben und ihre Funktionsweise und Umsetzung im System hervorgehoben. Zu den optischen Komponenten gehören (2A) ein Fokus auf gleichmäßige Probenausleuchtung, (2B) die Wiederherstellung der Telezentrizität bei der Arbeit mit handelsüblichen Mikroskopkörpern, (2C) die AO-Elemente, nämlich der deformierbare Spiegel (DM) und der Wellenfrontsensor, und deren Integration, sowie (2D) die Trennung von Wellenfront- und Bilderfassung mittels fluoreszierender Beads und einem dichroitischen Spiegel. Nachdem die Einschränkungen des bestehenden Aufbaus angesprochen wurden, werden Modifikationsmöglichkeiten abgeleitet. Die Modifikationen umfassen die Implementierung von Justage-Lichtpfaden, um die Systemstabilität zu verbessern und die Freiheitsgrade der Komponenten zu überarbeiten, sowie Änderungen bei der Auswahl der Linsen, um die Spezifikationen der AO-Komponenten zu erfüllen. Abschließend werden die Ergebnisse des modifizierten Aufbaus vorgestellt und diskutiert: (1) Zunächst ermöglichen wir die Epifluoreszenz-Abbildung von Bead-Proben durch 180 µm ungefärbtes Hippocampus-Gewebe der Maus mit einer Wellenfront-Fehlerkorrektur von ~ 90 %. Es werden Punktspreizungsfunktion, Wellenfrontform und Zernike-Zerlegung von Bead-Proben vorgestellt. (2) Zweitens gehen wir von der Epifluoreszenz zur dSTORM-Bildgebung von Tubulin-gefärbten primären Hippocampuszellen der Maus über, die durch bis zu 180 µm ungefärbtes Hippocampusgewebe der Maus abgebildet werden. Wir zeigen, dass die Halbwertsbreite (Full Width at Half Maximum, FWHM) auffälliger Merkmale von unkorrigierten Epifloureszenz-Bildern zu dSTORM-Bildern, die durch die adaptive Optik korrigiert wurden, um fast eine Größenordnung reduziert werden kann. Wir präsentieren die Anzahl der dSTORM-Lokalisierungen und die FWHM auffälliger Merkmale als Funktion der Abbildungstiefe. KW - Einzelmolekülmikroskopie KW - Adaptive Optik KW - Adaptive Optics KW - Single Molecule Localization Microscopy KW - dSTORM Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-289951 ER - TY - THES A1 - Groß, Lennart T1 - Point-spread function engineering for single-molecule localization microscopy in brain slices T1 - Modulation der Punktspreizfunktion für Einzelmolekül-Lokalisationsmikroskopie in Hirnschnitten N2 - Single-molecule localization microscopy (SMLM) is the method of choice to study biological specimens on a nanoscale level. Advantages of SMLM imply its superior specificity due to targeted molecular fluorescence labeling and its enhanced tissue preservation compared to electron microscopy, while reaching similar resolution. To reveal the molecular organization of protein structures in brain tissue, SMLM moves to the forefront: Instead of investigating brain slices with a thickness of a few µm, measurements of intact neuronal assemblies (up to 100 µm in each dimension) are required. As proteins are distributed in the whole brain volume and can move along synapses in all directions, this method is promising in revealing arrangements of neuronal protein markers. However, diffraction-limited imaging still required for the localization of the fluorophores is prevented by sample-induced distortion of emission pattern due to optical aberrations in tissue slices from non-superficial planes. In particular, the sample causes wavefront dephasing, which can be described as a summation of Zernike polynomials. To recover an optimal point spread function (PSF), active shaping can be performed by the use of adaptive optics. The aim of this thesis is to establish a setup using a deformable mirror and a wavefront sensor to actively shape the PSF to correct the wavefront phases in a super-resolution microscope setup. Therefore, fluorescence-labeled proteins expressed in different anatomical regions in brain tissue will be used as experiment specimen. Resolution independent imaging depth in slices reaching tens of micrometers is aimed. N2 - Einzelmolekül-Lokalisationsmikroskopie ist die Methode der Wahl zur Untersuchung biologische Proben im Bereich von Nanometern. Vorteile von Einzelmolekül-Lokalisationsmikroskopie sind vor allem ihre hohe Spezifität von molekularen Farbstoffbindungen sowie die erreichte hohe Auflösung, die vergleichbar ist mit der elektronenmikroskopischen Auflösung, wobei in der Einzelmolekül-Lokalisationsmikroskopie keine Konservierung der Probe vorgenommen werden muss. Vor allem in der Untersuchung der molekularen Organisation von Proteinstrukturen konnte sich die Einzelmolekül-Lokalisationsmikroskopie bewähren. Die Verteilung von Proteinen im gesamten Gehirn, sowie ihre Eigenschaft, sich entlang neuronaler Strukturen zu bewegen, kann mithilfe der Einzelmolekül-Lokalisationsmikroskopie untersucht werden und zu einem besseren Verständnis neuronaler Prozesse beitragen. Proben induzieren optische Aberrationen: Diese Dephasierungen der Wellenfront, welche als Summe von Zernike-Polynomen beschrieben werden kann, verhindert das Erreichen der Auflösungsgrenze. Zur Wiederherstellung einer optimalen Punktspreizfunktion kann die Wellenfront mittels adaptiver Optik aktiv geformt werden. Ziel dieser Arbeit ist der Aufbau eines Einzelmolekül-Lokalisationsmikroskopes mit integrierter adaptiver Optik, bestehend aus einem deformierbaren Spiegel und einem Wellenfrontsensor, um aktiv die Wellenfront zu formen und die Dephasierung zu korrigieren. Zu diesem Zweck werden fluoreszenzmarkierte Proteine, welche in verschiedenen Hirnregionen exprimiert werden, als Proben herangezogen. Optimalerweise könnte so in verschiedenen Tiefen eine ähnliche Auflösung wie bei einer oberflächlichen Messung erreicht werden. Um die Möglichkeiten des Setups zu evaluieren, welches im Verlauf dieser Arbeit aufgebaut wurde, wurden artifizielle Proben erstellt, indem eine Einzelzellschicht hippocampaler Neuronen der Maus, in welchen α-tubulin mit Alexa Fluor 647 angefärbt ist, auf einem 100 µm Maushirnschnitt plaziert wurden. Da letzterer ein hochgradig diffuses Medium zwischen dem Objektiv und den Fluorophoren darstellt, induziert es verschiedene optische Aberrationen, vor allem Sphärische Aberration und Astigmatismus. Indem die Wellenfront und die Punktspreizfunktion von 4 µm Fluosphere Beads, welche eine maximale Emission bei 505 nm haben, und 0.1 µm Tetraspeck Beads, welche eine maximale Emission bei 505 nm zeigen, aufgenommen wurde, konnten die Aberrationen von 521 nm zu 116 nm Quadratmittel des Wellenfrontfehlers reduziert werden. Weiterhin konnten mithilfe der adaptiven Optik Bruchpilot-Anhäufungen in einem Hirnschnitt der Honigbiene in den Calyx der Pilzkörper in einer Messtiefe von 80 µm sichtbar gemacht werden, welche im unkorrigierten Bild nicht sichtbar waren, indem das Quadratmittel des Wellenfrontfehlers von 587 nm auf 196 nm reduziert wird. Insgesamt zeigt die Reduktion des Quadratmittels des Wellenfrontfehlers eine erfolgreiche Korrektur an, aber ist weit entfernt von einer Mikroskopiertechnik, die eine gewinnbringende Forschung in lebenswissenschaftlichen Bereichen garantiert. KW - Einzelmolekülmikroskopie KW - Adaptive Optik KW - dSTORM KW - Adaptive Optics KW - Single Molecule Localization Microscopy Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-282596 ER - TY - THES A1 - Schwebs, Marie T1 - Structure and dynamics of the plasma membrane: a single-molecule study in \(Trypanosoma\) \(brucei\) T1 - Die Struktur und Dynamik der Plasmamembran: eine Einzelmolekülstudie in \(Trypanosoma\) \(brucei\) N2 - The unicellular, flagellated parasite Trypanosoma brucei is the causative agent of human African sleeping sickness and nagana in livestock. In the last decades, it has become an established eukaryotic model organism in the field of biology, as well as in the interdisciplinary field of biophysics. For instance, the dense variant surface glycoprotein (VSG) coat offers the possibility to study the dynamics of GPI-anchored proteins in the plasma membrane of living cells. The fluidity of the VSG coat is not only an interesting object of study for its own sake, but is critically important for the survival of the parasite in the mammalian host. In order to maintain the integrity of the coat, the entire VSG coat is recycled within a few minutes. This is surprisingly fast for a purely diffusive process with the flagellar pocket (FP) as the sole site for endo- and exocytosis. Previous studies characterising VSG dynamics using FRAP reported diffusion coefficients that were not sufficient to to enable fast turnover based on passive VSG randomisation on the trypanosome surface. In this thesis, live-cell single-molecule fluorescence microscopy (SMFM) was employed to elucidate whether VSG diffusion coefficients were priorly underestimated or whether directed forces could be involved to bias VSGs towards the entrance of the FP. Embedding the highly motile trypanosomes in thermo-stable hydrogels facilitated the investigation of VSG dynamics on living trypanosomes at the mammalian host's temperature of 37°C. To allow for a spatial correlation of the VSG dynamics to the FP entrance, a cell line was employed harbouring a fluorescently labelled structure as a reference. Sequential two-colour SMFM was then established to allow for recording and registration of the dynamic and static single-molecule information. In order to characterise VSG dynamics, an algorithm to obtain reliable information from short trajectories was adapted (shortTrAn). It allowed for the quantification of the local dynamics in two distinct scenarios: diffusion and directed motion. The adaptation of the algorithm to the VSG data sets required the introduction of an additional projection filter. The algorithm was further extended to take into account the localisation errors inherent to single-particle tracking. The results of the quantification of diffusion and directed motion were presented in maps of the trypanosome surface, including an outline generated from a super-resolved static structure as a reference. Information on diffusion was displayed in one map, an ellipse plot. The colour code represented the local diffusion coefficient, while the shape of the ellipses provided an indication of the diffusion behaviour (aniso- or isotropic diffusion). The eccentricity of the ellipses was used to quantify deviations from isotropic diffusion. Information on directed motion was shown in three maps: A velocity map, representing the amplitude of the local velocities in a colour code. A quiver plot, illustrating the orientation of directed motion, and a third map which indicated the relative standard error of the local velocities colour-coded. Finally, a guideline based on random walk simulations was used to identify which of the two motion scenarios dominated locally. Application of the guideline to the VSG dynamics analysed by shortTrAn yielded supermaps that showed the locally dominant motion mode colour-coded. I found that VSG dynamics are dominated by diffusion, but several times faster than previously determined. The diffusion behaviour was additionally characterised by spatial heterogeneity. Moreover, isolated regions exhibiting the characteristics of round and elongated traps were observed on the cell surface. Additionally, VSG dynamics were studied with respect to the entrance of the FP. VSG dynamics in this region displayed similar characteristics compared to the remainder of the cell surface and forces biasing VSGs into the FP were not found. Furthermore, I investigated a potential interference of the attachment of the cytoskeleton to the plasma membrane with the dynamics of VSGs which are anchored to the outer leaflet of the membrane. Preliminary experiments were conducted on osmotically swollen trypanosomes and trypanosomes depleted for a microtubule-associated protein anchoring the subpellicular microtubule cytoskeleton to the plasma membrane. The measurements revealed a trend that detachment of the cytoskeleton could be associated with a reduction in the VSG diffusion coefficient and a loss of elongated traps. The latter could be an indication that these isolated regions were caused by underlying structures associated with the cytoskeleton. The measurements on cells with an intact cytoskeleton were complemented by random walk simulations of VSG dynamics with the newly determined diffusion coefficient on long time scales not accessible in experiments. Simulations showed that passive VSG randomisation is fast enough to allow for a turnover of the full VSG coat within a few minutes. According to an estimate based on the known rate of endocytosis and the newly determined VSG diffusion coefficient, the majority of exocytosed VSGs could escape from the FP to the cell surface without being immediately re-endocytosed. N2 - Der einzellige, begeißelte Parasit Trypanosoma brucei ist der Erreger der humanen Afrikanischen Schlafkrankheit und Nagana bei Nutztieren. In den vergangenen Jahrzehnten hat er sich sowohl in der Biologie als auch im interdisziplinären Bereich der Biophysik als eukaryotischer Modellorganismus etabliert. So bietet der dichte variant surface glycoprotein (VSG) Mantel beispielsweise die Möglichkeit, die Dynamik von GPI-verankerten Proteinen in der Plasmamembran von lebenden Zellen zu untersuchen. Die Fluidität des VSG-Mantels ist nicht nur um ihrer selbst Willen ein interessantes Studienobjekt, sondern auch von entscheidender Bedeutung für das Überleben des Parasiten im Säugetierwirt. Damit die Integrität des Mantels erhalten bleibt, wird der gesamte VSG Mantel kontinuierlich innerhalb weniger Minuten ausgetauscht. Dies ist erstaunlich schnell für einen rein diffusiven Prozess, bei welchem die Geißeltasche (GT) der einzige Ort für Endo- und Exozytose ist. Bisherige Studien zur Charakterisierung der VSG Dynamik mit FRAP ermittelten Diffusionskoeffizienten, welche nicht ausreichten, um einen schnellen Austausch durch eine passive Randomisierung der VSG auf der Trypanosomenoberfläche zu ermöglichen. In dieser Arbeit wurde die Einzelmolekül-Fluoreszenzmikroskopie (EMFM) an lebenden Zellen eingesetzt, um herauszufinden, ob die VSG Diffusionskoeffizienten zuvor unterschätzt wurden oder ob gerichtete Kräfte beteiligt sein könnten, um VSGs zum Eingang der GT zu leiten. Die Einbettung der hochmotilen Trypanosomen in thermostabilen Hydrogelen erlaubte die Analyse der VSG Dynamik auf lebenden Trypanosomen bei einer Temperatur des Säugetierwirts von 37°C. Um eine räumliche Korrelation der VSG Dynamik mit dem Eingang zur GT zu ermöglichen, wurde eine Zelllinie verwendet, die eine fluoreszenzmarkierte Struktur als Referenz besaß. Anschließend wurde die sequenzielle EMFM in zwei Farben etabliert, um sowohl die Aufzeichnung als auch die Registrierung der dynamischen und statischen Einzelmolekülinformationen zu gewährleisten. Um die VSG Dynamik zu charakterisieren, wurde ein Algorithmus zur Gewinnung von zuverlässigen Informationen aus kurzen Trajektorien adaptiert (shortTrAn). Dieser ließ die Quantifizierung der lokalen Dynamik anhand zweier unterschiedlicher Szenarien zu: Diffusion und gerichtete Bewegung. Die Anpassung des Algorithmus an die VSG Datensätze erforderte die Einführung eines zusätzlichen Projektionsfilters. Darüber hinaus wurde der Algorithmus erweitert, um die Lokalisierungsfehler zu berücksichtigen, die bei der Verfolgung von Einzelpartikeln unvermeidbar auftreten. Anschließend wurden die Ergebnisse der Quantifizierung von Diffusion und gerichteter Bewegung in Karten präsentiert, die die Trypanosomenoberfläche abbildeten, einschließlich eines Umrisses, der als Referenz aus einer hochaufgelösten statischen Struktur generiert wurde. Die Informationen zur Diffusion wurden in einer Karte, einem Ellipsenplot, dargestellt. Dabei repräsentierte eine Farbkodierung die lokalen Diffusionskoeffizienten, während die Form der Ellipsen einen Hinweis auf das Diffusionsverhalten (aniso- oder isotrope Diffusion) gab. Die Exzentrizität der Ellipsen wurde hierbei genutzt, um die Abweichung von isotroper Diffusion zu quantifizieren. Die Informationen zur gerichteten Bewegung wurden in drei Karten wiedergegeben: Eine Karte für die Geschwindigkeit zeigte die Amplitude der lokalen Geschwindigkeiten farbkodiert. Ein Köcherplot veranschaulichte die Richtung der Geschwindigkeit und eine dritte Karte zeigte den relativen Standardfehler der lokalen Geschwindigkeiten farblich kodiert an. Abschließend wurde ein auf Random-Walk-Simulationen basierender Leitfaden herangezogen, um zu entscheiden, welches der beiden Szenarien lokal dominierte. Die Anwendung des Leitfadens auf die mit shortTrAn analysierte VSG Dynamik ergab Übersichtskarten, in denen der lokal dominierende Bewegungsmodus farblich kodiert war. Ich konnte zeigen, dass die VSG Dynamik von der Diffusion dominiert wird. Jedoch war diese um ein Vielfaches schneller als bisher angenommen. Das Diffusionsverhalten war zudem durch eine räumliche Heterogenität charakterisiert. Des Weiteren wurden auf der Zelloberfläche isolierte Regionen beobachtet, die die Eigenschaften von runden und länglichen Fallen aufwiesen. Zusätzlich wurde die VSG Dynamik in Bezug auf den Eingang der GT untersucht. Die VSG Dynamik in dieser Region wies ähnliche Kennwerte auf wie die restliche Zelloberfläche, und es konnten keine Kräfte festgestellt werden, welche die VSGs in die GT dirigieren. Des Weiteren habe ich den potenziellen Einfluss der Verankerung des Zytoskeletts an der Plasmamembran auf die Dynamik der VSGs untersucht, die in der äußeren Membranschicht verankert sind. Hierzu wurden vorläufige Experimente auf osmotisch geschwollenen Trypanosomen und Trypanosomen durchgeführt, denen ein Mikrotubuli assoziiertes Protein fehlte, welches das subpellikuläre Mikrotubuli-Zytoskelett an der Plasmamembran verankert. Bei den Messungen wurde ein Trend festgestellt, wonach die Ablösung des Zytoskeletts mit einer Verringerung des VSG Diffusionskoeffizienten und dem Verlust der länglichen Fallen korrelieren könnte. Letzteres könnte ein Hinweis darauf sein, dass diese isolierten Regionen durch darunter liegende, mit dem Zytoskelett verbundene Strukturen verursacht wurden. Die Messungen auf Zellen mit intaktem Zytoskelett wurden durch Random-Walk-Simulationen von VSG Trajektorien mit dem neu ermittelten Diffusionskoeffizienten auf langen, experimentell nicht zugänglichen Zeitskalen ergänzt. Die Simulationen zeigten, dass die passive Randomisierung der VSGs schnell genug ist, um einen Austausch des gesamten VSG Mantels innerhalb weniger Minuten zu ermöglichen. Einer Schätzung zufolge, die auf der bekannten Endozytoserate und dem neu ermittelten VSG Diffusionskoeffizienten basierte, könnte der Großteil der exozytierten VSGs aus der GT zur Zelloberfläche gelangen, ohne unmittelbar wieder endozytiert zu werden. KW - Trypanosoma brucei KW - Einzelmolekülmikroskopie KW - Membranproteine KW - Diffusionskoeffizient KW - Single-molecule fluorescence microscopy KW - Single-molecule tracking KW - Variant surface glycoprotein KW - GPI-anchored protein KW - Diffusion coefficient KW - Zellskelett KW - Zytoskelett Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-275699 ER -