TY - JOUR A1 - Kanmegne Tamga, Dan A1 - Latifi, Hooman A1 - Ullmann, Tobias A1 - Baumhauer, Roland A1 - Thiel, Michael A1 - Bayala, Jules T1 - Modelling the spatial distribution of the classification error of remote sensing data in cocoa agroforestry systems JF - Agroforestry Systems N2 - Cocoa growing is one of the main activities in humid West Africa, which is mainly grown in pure stands. It is the main driver of deforestation and encroachment in protected areas. Cocoa agroforestry systems which have been promoted to mitigate deforestation, needs to be accurately delineated to support a valid monitoring system. Therefore, the aim of this research is to model the spatial distribution of uncertainties in the classification cocoa agroforestry. The study was carried out in Côte d’Ivoire, close to the Taï National Park. The analysis followed three steps (i) image classification based on texture parameters and vegetation indices from Sentinel-1 and -2 data respectively, to train a random forest algorithm. A classified map with the associated probability maps was generated. (ii) Shannon entropy was calculated from the probability maps, to get the error maps at different thresholds (0.2, 0.3, 0.4 and 0.5). Then, (iii) the generated error maps were analysed using a Geographically Weighted Regression model to check for spatial autocorrelation. From the results, a producer accuracy (0.88) and a user’s accuracy (0.91) were obtained. A small threshold value overestimates the classification error, while a larger threshold will underestimate it. The optimal value was found to be between 0.3 and 0.4. There was no evidence of spatial autocorrelation except for a smaller threshold (0.2). The approach differentiated cocoa from other landcover and detected encroachment in forest. Even though some information was lost in the process, the method is effective for mapping cocoa plantations in Côte d’Ivoire. KW - cocoa mapping KW - geographically weighted regression KW - Sentinel-1 KW - Sentinel-2 KW - Shannon entropy KW - spatial error assessment Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-324139 SN - 0167-4366 VL - 97 IS - 1 ER - TY - JOUR A1 - Kacic, Patrick A1 - Thonfeld, Frank A1 - Gessner, Ursula A1 - Kuenzer, Claudia T1 - Forest structure characterization in Germany: novel products and analysis based on GEDI, Sentinel-1 and Sentinel-2 data JF - Remote Sensing N2 - Monitoring forest conditions is an essential task in the context of global climate change to preserve biodiversity, protect carbon sinks and foster future forest resilience. Severe impacts of heatwaves and droughts triggering cascading effects such as insect infestation are challenging the semi-natural forests in Germany. As a consequence of repeated drought years since 2018, large-scale canopy cover loss has occurred calling for an improved disturbance monitoring and assessment of forest structure conditions. The present study demonstrates the potential of complementary remote sensing sensors to generate wall-to-wall products of forest structure for Germany. The combination of high spatial and temporal resolution imagery from Sentinel-1 (Synthetic Aperture Radar, SAR) and Sentinel-2 (multispectral) with novel samples on forest structure from the Global Ecosystem Dynamics Investigation (GEDI, LiDAR, Light detection and ranging) enables the analysis of forest structure dynamics. Modeling the three-dimensional structure of forests from GEDI samples in machine learning models reveals the recent changes in German forests due to disturbances (e.g., canopy cover degradation, salvage logging). This first consistent data set on forest structure for Germany from 2017 to 2022 provides information of forest canopy height, forest canopy cover and forest biomass and allows estimating recent forest conditions at 10 m spatial resolution. The wall-to-wall maps of the forest structure support a better understanding of post-disturbance forest structure and forest resilience. KW - forest KW - forest structure Germany KW - canopy height KW - Global Ecosystem Dynamics Investigation KW - GEDI KW - Sentinel-1 KW - Sentinel-2 KW - random forest regression Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-313727 SN - 2072-4292 VL - 15 IS - 8 ER - TY - JOUR A1 - Buchelt, Sebastian A1 - Blöthe, Jan Henrik A1 - Kuenzer, Claudia A1 - Schmitt, Andreas A1 - Ullmann, Tobias A1 - Philipp, Marius A1 - Kneisel, Christof T1 - Deciphering small-scale seasonal surface dynamics of rock glaciers in the Central European Alps using DInSAR time series JF - Remote Sensing N2 - The Essential Climate Variable (ECV) Permafrost is currently undergoing strong changes due to rising ground and air temperatures. Surface movement, forming characteristic landforms such as rock glaciers, is one key indicator for mountain permafrost. Monitoring this movement can indicate ongoing changes in permafrost; therefore, rock glacier velocity (RGV) has recently been added as an ECV product. Despite the increased understanding of rock glacier dynamics in recent years, most observations are either limited in terms of the spatial coverage or temporal resolution. According to recent studies, Sentinel-1 (C-band) Differential SAR Interferometry (DInSAR) has potential for monitoring RGVs at high spatial and temporal resolutions. However, the suitability of DInSAR for the detection of heterogeneous small-scale spatial patterns of rock glacier velocities was never at the center of these studies. We address this shortcoming by generating and analyzing Sentinel-1 DInSAR time series over five years to detect small-scale displacement patterns of five high alpine permafrost environments located in the Central European Alps on a weekly basis at a range of a few millimeters. Our approach is based on a semi-automated procedure using open-source programs (SNAP, pyrate) and provides East-West displacement and elevation change with a ground sampling distance of 5 m. Comparison with annual movement derived from orthophotos and unpiloted aerial vehicle (UAV) data shows that DInSAR covers about one third of the total movement, which represents the proportion of the year suited for DInSAR, and shows good spatial agreement (Pearson R: 0.42–0.74, RMSE: 4.7–11.6 cm/a) except for areas with phase unwrapping errors. Moreover, the DInSAR time series unveils spatio-temporal variations and distinct seasonal movement dynamics related to different drivers and processes as well as internal structures. Combining our approach with in situ observations could help to achieve a more holistic understanding of rock glacier dynamics and to assess the future evolution of permafrost under changing climatic conditions. KW - Sentinel-1 KW - DInSAR KW - rock glaciers KW - seasonal dynamics KW - periglacial KW - feature tracking Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-362939 SN - 2072-4292 VL - 15 IS - 12 ER - TY - JOUR A1 - Bae, Soyeon A1 - Müller, Jörg A1 - Förster, Bernhard A1 - Hilmers, Torben A1 - Hochrein, Sophia A1 - Jacobs, Martin A1 - Leroy, Benjamin M. L. A1 - Pretzsch, Hans A1 - Weisser, Wolfgang W. A1 - Mitesser, Oliver T1 - Tracking the temporal dynamics of insect defoliation by high‐resolution radar satellite data JF - Methods in Ecology and Evolution N2 - Quantifying tree defoliation by insects over large areas is a major challenge in forest management, but it is essential in ecosystem assessments of disturbance and resistance against herbivory. However, the trajectory from leaf-flush to insect defoliation to refoliation in broadleaf trees is highly variable. Its tracking requires high temporal- and spatial-resolution data, particularly in fragmented forests. In a unique replicated field experiment manipulating gypsy moth Lymantria dispar densities in mixed-oak forests, we examined the utility of publicly accessible satellite-borne radar (Sentinel-1) to track the fine-scale temporal trajectory of defoliation. The ratio of backscatter intensity between two polarizations from radar data of the growing season constituted a canopy development index (CDI) and a normalized CDI (NCDI), which were validated by optical (Sentinel-2) and terrestrial laser scanning (TLS) data as well by intensive caterpillar sampling from canopy fogging. The CDI and NCDI strongly correlated with optical and TLS data (Spearman's ρ = 0.79 and 0.84, respectively). The ΔNCDII\(_{Defoliation(A−C)}\) significantly explained caterpillar abundance (R\(^{2}\) = 0.52). The NCDI at critical timesteps and ΔNCDI related to defoliation and refoliation well discriminated between heavily and lightly defoliated forests. We demonstrate that the high spatial and temporal resolution and the cloud independence of Sentinel-1 radar potentially enable spatially unrestricted measurements of the highly dynamic canopy herbivory. This can help monitor insect pests, improve the prediction of outbreaks and facilitate the monitoring of forest disturbance, one of the high priority Essential Biodiversity Variables, in the near future. KW - Sentinel-1 KW - canopy herbivory KW - defoliation severity KW - gypsy moth KW - insect disturbance KW - intra-annual time-series KW - Lymantria dispar KW - remote sensing Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-258222 VL - 13 IS - 1 ER - TY - JOUR A1 - Dirscherl, Mariel A1 - Dietz, Andreas J. A1 - Kneisel, Christof A1 - Kuenzer, Claudia T1 - A novel method for automated supraglacial lake mapping in Antarctica using Sentinel-1 SAR imagery and deep learning JF - Remote Sensing N2 - Supraglacial meltwater accumulation on ice sheets can be a main driver for accelerated ice discharge, mass loss, and global sea-level-rise. With further increasing surface air temperatures, meltwater-induced hydrofracturing, basal sliding, or surface thinning will cumulate and most likely trigger unprecedented ice mass loss on the Greenland and Antarctic ice sheets. While the Greenland surface hydrological network as well as its impacts on ice dynamics and mass balance has been studied in much detail, Antarctic supraglacial lakes remain understudied with a circum-Antarctic record of their spatio-temporal development entirely lacking. This study provides the first automated supraglacial lake extent mapping method using Sentinel-1 synthetic aperture radar (SAR) imagery over Antarctica and complements the developed optical Sentinel-2 supraglacial lake detection algorithm presented in our companion paper. In detail, we propose the use of a modified U-Net for semantic segmentation of supraglacial lakes in single-polarized Sentinel-1 imagery. The convolutional neural network (CNN) is implemented with residual connections for optimized performance as well as an Atrous Spatial Pyramid Pooling (ASPP) module for multiscale feature extraction. The algorithm is trained on 21,200 Sentinel-1 image patches and evaluated in ten spatially or temporally independent test acquisitions. In addition, George VI Ice Shelf is analyzed for intra-annual lake dynamics throughout austral summer 2019/2020 and a decision-level fused Sentinel-1 and Sentinel-2 maximum lake extent mapping product is presented for January 2020 revealing a more complete supraglacial lake coverage (~770 km\(^2\)) than the individual single-sensor products. Classification results confirm the reliability of the proposed workflow with an average Kappa coefficient of 0.925 and a F\(_1\)-score of 93.0% for the supraglacial water class across all test regions. Furthermore, the algorithm is applied in an additional test region covering supraglacial lakes on the Greenland ice sheet which further highlights the potential for spatio-temporal transferability. Future work involves the integration of more training data as well as intra-annual analyses of supraglacial lake occurrence across the whole continent and with focus on supraglacial lake development throughout a summer melt season and into Antarctic winter. KW - Antarctica KW - Antarctic ice sheet KW - supraglacial lakes KW - ice sheet hydrology KW - Sentinel-1 KW - remote sensing KW - machine learning KW - deep learning KW - semantic segmentation KW - convolutional neural network Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-222998 SN - 2072-4292 VL - 13 IS - 2 ER - TY - JOUR A1 - Ottinger, Marco A1 - Bachofer, Felix A1 - Huth, Juliane A1 - Kuenzer, Claudia T1 - Mapping aquaculture ponds for the coastal zone of Asia with Sentinel-1 and Sentinel-2 time series JF - Remote Sensing N2 - Asia dominates the world's aquaculture sector, generating almost 90 percent of its total annual global production. Fish, shrimp, and mollusks are mainly farmed in land-based pond aquaculture systems and serve as a primary protein source for millions of people. The total production and area occupied for pond aquaculture has expanded rapidly in coastal regions in Asia since the early 1990s. The growth of aquaculture was mainly boosted by an increasing demand for fish and seafood from a growing world population. The aquaculture sector generates income and employment, contributes to food security, and has become a billion-dollar industry with high socio-economic value, but has also led to severe environmental degradation. In this regard, geospatial information on aquaculture can support the management of this growing food sector for the sustainable development of coastal ecosystems, resources, and human health. With free and open access to the rapidly growing volume of data from the Copernicus Sentinel missions as well as machine learning algorithms and cloud computing services, we extracted coastal aquaculture at a continental scale. We present a multi-sensor approach that utilizes Earth observation time series data for the mapping of pond aquaculture within the entire Asian coastal zone, defined as the onshore area up to 200 km from the coastline. In this research, we developed an object-based framework to detect and extract aquaculture at a single-pond level based on temporal features derived from high-spatial-resolution SAR and optical satellite data acquired from the Sentinel-1 and Sentinel-2 satellites. In a second step, we performed spatial and statistical data analyses of the Earth-observation-derived aquaculture dataset to investigate spatial distribution and identify production hotspots at various administrative units at regional, national, and sub-national scale. KW - aquaculture KW - Asia KW - Earth observation KW - ponds KW - coastal zone KW - Sentinel-1 KW - SAR KW - time series Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-252207 SN - 2072-4292 VL - 14 IS - 1 ER - TY - JOUR A1 - Ullmann, Tobias A1 - Sauerbrey, Julia A1 - Hoffmeister, Dirk A1 - May, Simon Matthias A1 - Baumhauer, Roland A1 - Bubenzer, Olaf T1 - Assessing Spatiotemporal Variations of Sentinel-1 InSAR Coherence at Different Time Scales over the Atacama Desert (Chile) between 2015 and 2018 JF - Remote Sensing N2 - This study investigates synthetic aperture radar (SAR) time series of the Sentinel-1 mission acquired over the Atacama Desert, Chile, between March 2015 and December 2018. The contribution analyzes temporal and spatial variations of Sentinel-1 interferometric SAR (InSAR) coherence and exemplarily illustrates factors that are responsible for observed signal differences. The analyses are based on long temporal baselines (365–1090 days) and temporally dense time series constructed with short temporal baselines (12–24 days). Results are compared to multispectral data of Sentinel-2, morphometric features of the digital elevation model (DEM) TanDEM-X WorldDEM™, and to a detailed governmental geographic information system (GIS) dataset of the local hydrography. Sentinel-1 datasets are suited for generating extensive, nearly seamless InSAR coherence mosaics covering the entire Atacama Desert (>450 × 1100 km) at a spatial resolution of 20 × 20 meter per pixel. Temporal baselines over several years lead only to very minor decorrelation, indicating a very high signal stability of C-Band in this region, especially in the hyperarid uplands between the Coastal Cordillera and the Central Depression. Signal decorrelation was associated with certain types of surface cover (e.g., water or aeolian deposits) or with actual surface dynamics (e.g., anthropogenic disturbance (mining) or fluvial activity and overland flow). Strong rainfall events and fluvial activity in the periods 2015 to 2016 and 2017 to 2018 caused spatial patterns with significant signal decorrelation; observed linear coherence anomalies matched the reference channel network and indicated actual episodic and sporadic discharge events. In the period 2015–2016, area-wide loss of coherence appeared as strip-like patterns of more than 80 km length that matched the prevailing wind direction. These anomalies, and others observed in that period and in the period 2017–2018, were interpreted to be caused by overland flow of high magnitude, as their spatial location matched well with documented heavy rainfall events that showed cumulative precipitation amounts of more than 20 mm. KW - Chile KW - Atacama KW - Sentinel-1 KW - InSAR KW - coherence KW - geomorphology Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-193836 SN - 2072-4292 VL - 11 IS - 24 ER - TY - JOUR A1 - Philipp, Marius B. A1 - Levick, Shaun R. T1 - Exploring the potential of C-Band SAR in contributing to burn severity mapping in tropical savanna JF - Remote Sensing N2 - The ability to map burn severity and to understand how it varies as a function of time of year and return frequency is an important tool for landscape management and carbon accounting in tropical savannas. Different indices based on optical satellite imagery are typically used for mapping fire scars and for estimating burn severity. However, cloud cover is a major limitation for analyses using optical data over tropical landscapes. To address this pitfall, we explored the suitability of C-band Synthetic Aperture Radar (SAR) data for detecting vegetation response to fire, using experimental fires in northern Australia. Pre- and post-fire results from Sentinel-1 C-band backscatter intensity data were compared to those of optical satellite imagery and were corroborated against structural changes on the ground that we documented through terrestrial laser scanning (TLS). Sentinel-1 C-band backscatter (VH) proved sensitive to the structural changes imparted by fire and was correlated with the Normalised Burn Ratio (NBR) derived from Sentinel-2 optical data. Our results suggest that C-band SAR holds potential to inform the mapping of burn severity in savannas, but further research is required over larger spatial scales and across a broader spectrum of fire regime conditions before automated products can be developed. Combining both Sentinel-1 SAR and Sentinel-2 multi-spectral data will likely yield the best results for mapping burn severity under a range of weather conditions. KW - burn severity KW - Sentinel-1 KW - Sentinel-2 KW - terrestrial LiDAR Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-193789 SN - 2072-4292 VL - 12 IS - 1 ER - TY - JOUR A1 - Ullmann, Tobias A1 - Büdel, Christian A1 - Baumhauer, Roland A1 - Padashi, Majid T1 - Sentinel-1 SAR Data Revealing Fluvial Morphodynamics in Damghan (Iran): Amplitude and Coherence Change Detection JF - International Journal of Earth Science and Geophysics N2 - The Sentinel-1 Satellite (S-1) of ESA's Copernicus Mission delivers freely available C-Band Synthetic Aperture Radar (SAR) data that are suited for interferometric applications (InSAR). The high geometric resolution of less than fifteen meter and the large coverage offered by the Interferometric Wide Swath mode (IW) point to new perspectives on the comprehension and understanding of surface changes, the quantification and monitoring of dynamic processes, especially in arid regions. The contribution shows the application of S-1 intensities and InSAR coherences in time series analysis for the delineation of changes related to fluvial morphodynamics in Damghan, Iran. The investigations were carried out for the period from April to October 2015 and exhibit the potential of the S-1 data for the identification of surface disturbances, mass movements and fluvial channel activity in the surroundings of the Damghan Playa. The Amplitude Change Detection highlighted extensive material movement and accumulation - up to sizes of more than 4,000 m in width - in the east of the Playa via changes in intensity. Further, the Coherence Change Detection technique was capable to indicate small-scale channel activity of the drainage system that was neither recognizable in the S-1 intensity nor the multispectral Landsat-8 data. The run off caused a decorrelation of the SAR signals and a drop in coherence. Seen from a morphodynamic point of view, the results indicated a highly dynamic system and complex tempo-spatial patterns were observed that will be subject of future analysis. Additionally, the study revealed the necessity to collect independent reference data on fluvial activity in order to train and adjust the change detector. KW - SAR KW - InSAR KW - coherence KW - Iran KW - Sentinel-1 KW - radar KW - geomorphology KW - change detection Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-147863 VL - 2 IS - 1 ER -