TY - JOUR A1 - Othman, Eman M. A1 - Bekhit, Amany A. A1 - Anany, Mohamed A. A1 - Dandekar, Thomas A1 - Ragab, Hanan M. A1 - Wahid, Ahmed T1 - Design, Synthesis, and Anticancer Screening for Repurposed Pyrazolo[3,4-d]pyrimidine Derivatives on Four Mammalian Cancer Cell Lines JF - Molecules N2 - The present study reports the synthesis of new purine bioisosteres comprising a pyrazolo[3,4-d]pyrimidine scaffold linked to mono-, di-, and trimethoxy benzylidene moieties through hydrazine linkages. First, in silico docking experiments of the synthesized compounds against Bax, Bcl-2, Caspase-3, Ki67, p21, and p53 were performed in a trial to rationalize the observed cytotoxic activity for the tested compounds. The anticancer activity of these compounds was evaluated in vitro against Caco-2, A549, HT1080, and Hela cell lines. Results revealed that two (5 and 7) of the three synthesized compounds (5, 6, and 7) showed high cytotoxic activity against all tested cell lines with IC50 values in the micro molar concentration. Our in vitro results show that there is no significant apoptotic effect for the treatment with the experimental compounds on the viability of cells against A549 cells. Ki67 expression was found to decrease significantly following the treatment of cells with the most promising candidate: drug 7. The overall results indicate that these pyrazolopyrimidine derivatives possess anticancer activity at varying doses. The suggested mechanism of action involves the inhibition of the proliferation of cancer cells. KW - pyrazolo[3,4-d]pyrimidine KW - anticancer activity KW - apoptosis KW - Ki67 Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-239734 SN - 1420-3049 VL - 26 IS - 10 ER - TY - JOUR A1 - El-Hawary, Seham S. A1 - Sayed, Ahmed M. A1 - Mohammed, Rabab A1 - Hassan, Hossam M. A1 - Rateb, Mostafa E. A1 - Amin, Elham A1 - Mohammed, Tarek A. A1 - El-Mesery, Mohamed A1 - Bin Muhsinah, Abdullatif A1 - Alsayari, Abdulrhman A1 - Wajant, Harald A1 - Anany, Mohamed A. A1 - Abdelmohsen, Usama Ramadan T1 - Bioactive brominated oxindole alkaloids from the Red Sea sponge Callyspongia siphonella JF - Marine Drugs N2 - In the present study, LC-HRESIMS-assisted dereplication along with bioactivity-guided isolation led to targeting two brominated oxindole alkaloids (compounds 1 and 2) which probably play a key role in the previously reported antibacterial, antibiofilm, and cytotoxicity of Callyspongia siphonella crude extracts. Both metabolites showed potent antibacterial activity against Gram-positive bacteria, Staphylococcus aureus (minimum inhibitory concentration (MIC) = 8 and 4 µg/mL) and Bacillus subtilis (MIC = 16 and 4 µg/mL), respectively. Furthermore, they displayed moderate biofilm inhibitory activity in Pseudomonas aeruginosa (49.32% and 41.76% inhibition, respectively), and moderate in vitro antitrypanosomal activity (13.47 and 10.27 µM, respectively). In addition, they revealed a strong cytotoxic effect toward different human cancer cell lines, supposedly through induction of necrosis. This study sheds light on the possible role of these metabolites (compounds 1 and 2) in keeping fouling organisms away from the sponge outer surface, and the possible applications of these defensive molecules in the development of new anti-infective agents. KW - Callyspongia siphonella KW - LC-HRESIMS KW - metabolomic profiling KW - oxindole alkaloids KW - tisindoline KW - antibacterial KW - antibiofilm KW - antitrypanosomal KW - anticancer Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-201485 VL - 17 IS - 8 ER -