TY - JOUR A1 - Ben-Kraiem, Adel A1 - Sauer, Reine-Solange A1 - Norwig, Carla A1 - Popp, Maria A1 - Bettenhausen, Anna-Lena A1 - Atalla, Mariam Sobhy A1 - Brack, Alexander A1 - Blum, Robert A1 - Doppler, Kathrin A1 - Rittner, Heike Lydia T1 - Selective blood-nerve barrier leakiness with claudin-1 and vessel-associated macrophage loss in diabetic polyneuropathy JF - Journal of Molecular Medicine N2 - Diabetic polyneuropathy (DPN) is the most common complication in diabetes and can be painful in up to 26% of all diabetic patients. Peripheral nerves are shielded by the blood-nerve barrier (BNB) consisting of the perineurium and endoneurial vessels. So far, there are conflicting results regarding the role and function of the BNB in the pathophysiology of DPN. In this study, we analyzed the spatiotemporal tight junction protein profile, barrier permeability, and vessel-associated macrophages in Wistar rats with streptozotocin-induced DPN. In these rats, mechanical hypersensitivity developed after 2 weeks and loss of motor function after 8 weeks, while the BNB and the blood-DRG barrier were leakier for small, but not for large molecules after 8 weeks only. The blood-spinal cord barrier remained sealed throughout the observation period. No gross changes in tight junction protein or cytokine expression were observed in all barriers to blood. However, expression of Cldn1 mRNA in perineurium was specifically downregulated in conjunction with weaker vessel-associated macrophage shielding of the BNB. Our results underline the role of specific tight junction proteins and BNB breakdown in DPN maintenance and differentiate DPN from traumatic nerve injury. Targeting claudins and sealing the BNB could stabilize pain and prevent further nerve damage. KW - macrophages KW - neuropathy KW - barrier KW - pain Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-265237 VL - 99 IS - 9 ER - TY - JOUR A1 - Doppler, Kathrin A1 - Appeltshauser, Luise A1 - Krämer, Heidrun H. A1 - King Man Ng, Judy A1 - Meinl, Edgar A1 - Villmann, Carmen A1 - Brophy, Peter A1 - Dib-Hajj, Sulayman D. A1 - Waxman, Stephen G. A1 - Weishaupt, Andreas A1 - Sommer, Claudia T1 - Contactin-1 and Neurofascin-155/-186 Are Not Targets of Auto-Antibodies in Multifocal Motor Neuropathy JF - PLoS One N2 - Multifocal motor neuropathy is an immune mediated disease presenting with multifocal muscle weakness and conduction block. IgM auto-antibodies against the ganglioside GM1 are detectable in about 50% of the patients. Auto-antibodies against the paranodal proteins contactin-1 and neurofascin-155 and the nodal protein neurofascin-186 have been detected in subgroups of patients with chronic inflammatory demyelinating polyneuropathy. Recently, auto-antibodies against neurofascin-186 and gliomedin were described in more than 60% of patients with multifocal motor neuropathy. In the current study, we aimed to validate this finding, using a combination of different assays for auto-antibody detection. In addition we intended to detect further auto-antibodies against paranodal proteins, specifically contactin-1 and neurofascin-155 in multifocal motor neuropathy patients’ sera. We analyzed sera of 33 patients with well-characterized multifocal motor neuropathy for IgM or IgG anti-contactin-1, anti-neurofascin-155 or -186 antibodies using enzyme-linked immunosorbent assay, binding assays with transfected human embryonic kidney 293 cells and murine teased fibers. We did not detect any IgM or IgG auto-antibodies against contactin-1, neurofascin-155 or -186 in any of our multifocal motor neuropathy patients. We conclude that auto-antibodies against contactin-1, neurofascin-155 and -186 do not play a relevant role in the pathogenesis in this cohort with multifocal motor neuropathy. KW - motor proteins KW - enzyme-linked immunoassays KW - binding analysis KW - neuropathy KW - nerve fibers KW - cell binding assay KW - antibodies KW - enzyme assays Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-126156 VL - 10 IS - 7 ER -