TY - JOUR A1 - Löhr, Mario A1 - Härtig, Wolfgang A1 - Schulze, Almut A1 - Kroiß, Matthias A1 - Sbiera, Silviu A1 - Lapa, Constantin A1 - Mages, Bianca A1 - Strobel, Sabrina A1 - Hundt, Jennifer Elisabeth A1 - Bohnert, Simone A1 - Kircher, Stefan A1 - Janaki-Raman, Sudha A1 - Monoranu, Camelia-Maria T1 - SOAT1: A suitable target for therapy in high-grade astrocytic glioma? JF - International Journal of Molecular Sciences N2 - Targeting molecular alterations as an effective treatment for isocitrate dehydrogenase-wildtype glioblastoma (GBM) patients has not yet been established. Sterol-O-Acyl Transferase 1 (SOAT1), a key enzyme in the conversion of endoplasmic reticulum cholesterol to esters for storage in lipid droplets (LD), serves as a target for the orphan drug mitotane to treat adrenocortical carcinoma. Inhibition of SOAT1 also suppresses GBM growth. Here, we refined SOAT1-expression in GBM and IDH-mutant astrocytoma, CNS WHO grade 4 (HGA), and assessed the distribution of LD in these tumors. Twenty-seven GBM and three HGA specimens were evaluated by multiple GFAP, Iba1, IDH1 R132H, and SOAT1 immunofluorescence labeling as well as Oil Red O staining. To a small extent SOAT1 was expressed by tumor cells in both tumor entities. In contrast, strong expression was observed in glioma-associated macrophages. Triple immunofluorescence labeling revealed, for the first time, evidence for SOAT1 colocalization with Iba1 and IDH1 R132H, respectively. Furthermore, a notable difference in the amount of LD between GBM and HGA was observed. Therefore, SOAT1 suppression might be a therapeutic option to target GBM and HGA growth and invasiveness. In addition, the high expression in cells related to neuroinflammation could be beneficial for a concomitant suppression of protumoral microglia/macrophages. KW - SOAT1 KW - glioblastoma KW - astrocytoma KW - IDH1/2 KW - lipid droplets KW - mitotane KW - targeted therapy Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-284178 SN - 1422-0067 VL - 23 IS - 7 ER - TY - JOUR A1 - Vollmuth, Nadine A1 - Schlicker, Lisa A1 - Guo, Yongxia A1 - Hovhannisyan, Pargev A1 - Janaki-Raman, Sudha A1 - Kurmasheva, Naziia A1 - Schmitz, Werner A1 - Schulze, Almut A1 - Stelzner, Kathrin A1 - Rajeeve, Karthika A1 - Rudel, Thomas T1 - c-Myc plays a key role in IFN-γ-induced persistence of Chlamydia trachomatis JF - eLife N2 - Chlamydia trachomatis (Ctr) can persist over extended times within their host cell and thereby establish chronic infections. One of the major inducers of chlamydial persistence is interferon-gamma (IFN-γ) released by immune cells as a mechanism of immune defence. IFN-γ activates the catabolic depletion of L-tryptophan (Trp) via indoleamine-2,3-dioxygenase (IDO), resulting in persistent Ctr. Here, we show that IFN-γ induces the downregulation of c-Myc, the key regulator of host cell metabolism, in a STAT1-dependent manner. Expression of c-Myc rescued Ctr from IFN-γ-induced persistence in cell lines and human fallopian tube organoids. Trp concentrations control c-Myc levels most likely via the PI3K-GSK3β axis. Unbiased metabolic analysis revealed that Ctr infection reprograms the host cell tricarboxylic acid (TCA) cycle to support pyrimidine biosynthesis. Addition of TCA cycle intermediates or pyrimidine/purine nucleosides to infected cells rescued Ctr from IFN-γ-induced persistence. Thus, our results challenge the longstanding hypothesis of Trp depletion through IDO as the major mechanism of IFN-γ-induced metabolic immune defence and significantly extends the understanding of the role of IFN-γ as a broad modulator of host cell metabolism. KW - Chlamydia trachomatis Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-301385 VL - 11 ER - TY - JOUR A1 - Peixoto, Joana A1 - Janaki-Raman, Sudha A1 - Schlicker, Lisa A1 - Schmitz, Werner A1 - Walz, Susanne A1 - Winkelkotte, Alina M. A1 - Herold-Mende, Christel A1 - Soares, Paula A1 - Schulze, Almut A1 - Lima, Jorge T1 - Integrated metabolomics and transcriptomics analysis of monolayer and neurospheres from established glioblastoma cell lines JF - Cancers N2 - Altered metabolic processes contribute to carcinogenesis by modulating proliferation, survival and differentiation. Tumours are composed of different cell populations, with cancer stem-like cells being one of the most prominent examples. This specific pool of cells is thought to be responsible for cancer growth and recurrence and plays a particularly relevant role in glioblastoma (GBM), the most lethal form of primary brain tumours. Here, we have analysed the transcriptome and metabolome of an established GBM cell line (U87) and a patient-derived GBM stem-like cell line (NCH644) exposed to neurosphere or monolayer culture conditions. By integrating transcriptome and metabolome data, we identified key metabolic pathways and gene signatures that are associated with stem-like and differentiated states in GBM cells, and demonstrated that neurospheres and monolayer cells differ substantially in their metabolism and gene regulation. Furthermore, arginine biosynthesis was identified as the most significantly regulated pathway in neurospheres, although individual nodes of this pathway were distinctly regulated in the two cellular systems. Neurosphere conditions, as opposed to monolayer conditions, cause a transcriptomic and metabolic rewiring that may be crucial for the regulation of stem-like features, where arginine biosynthesis may be a key metabolic pathway. Additionally, TCGA data from GBM patients showed significant regulation of specific components of the arginine biosynthesis pathway, providing further evidence for the importance of this metabolic pathway in GBM. KW - glioblastoma KW - neurospheres KW - monolayer KW - metabolome KW - transcriptome KW - arginine metabolism Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-234110 SN - 2072-6694 VL - 13 IS - 6 ER - TY - JOUR A1 - Bartel, Karin A1 - Pein, Helmut A1 - Popper, Bastian A1 - Schmitt, Sabine A1 - Janaki-Raman, Sudha A1 - Schulze, Almut A1 - Lengauer, Florian A1 - Koeberle, Andreas A1 - Werz, Oliver A1 - Zischka, Hans A1 - Müller, Rolf A1 - Vollmar, Angelika M. A1 - Schwarzenberg, Karin von T1 - Connecting lysosomes and mitochondria – a novel role for lipid metabolism in cancer cell death JF - Cell Communication and Signaling N2 - Background The understanding of lysosomes has been expanded in recent research way beyond their view as cellular trash can. Lysosomes are pivotal in regulating metabolism, endocytosis and autophagy and are implicated in cancer. Recently it was discovered that the lysosomal V-ATPase, which is known to induce apoptosis, interferes with lipid metabolism in cancer, yet the interplay between these organelles is poorly understood. Methods LC-MS/MS analysis was performed to investigate lipid distribution in cells. Cell survival and signaling pathways were analyzed by means of cell biological methods (qPCR, Western Blot, flow cytometry, CellTiter-Blue). Mitochondrial structure was analyzed by confocal imaging and electron microscopy, their function was determined by flow cytometry and seahorse measurements. Results Our data reveal that interfering with lysosomal function changes composition and subcellular localization of triacylglycerids accompanied by an upregulation of PGC1α and PPARα expression, master regulators of energy and lipid metabolism. Furthermore, cardiolipin content is reduced driving mitochondria into fission, accompanied by a loss of membrane potential and reduction in oxidative capacity, which leads to a deregulation in cellular ROS and induction of mitochondria-driven apoptosis. Additionally, cells undergo a metabolic shift to glutamine dependency, correlated with the fission phenotype and sensitivity to lysosomal inhibition, most prominent in Ras mutated cells. Conclusion This study sheds mechanistic light on a largely uninvestigated triangle between lysosomes, lipid metabolism and mitochondrial function. Insight into this organelle crosstalk increases our understanding of mitochondria-driven cell death. Our findings furthermore provide a first hint on a connection of Ras pathway mutations and sensitivity towards lysosomal inhibitors. KW - lysosome KW - V-ATPase KW - mitochondria KW - fission KW - apoptosis KW - lipid metabolism KW - cardiolipin Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-221524 VL - 17 ER - TY - INPR A1 - Löffler, Mona C. A1 - Mayer, Alexander E. A1 - Trujillo Viera, Jonathan A1 - Loza Valdes, Angel A1 - El-Merahib, Rabih A1 - Ade, Carsten P. A1 - Karwen, Till A1 - Schmitz, Werner A1 - Slotta, Anja A1 - Erk, Manuela A1 - Janaki-Raman, Sudha A1 - Matesanz, Nuria A1 - Torres, Jorge L. A1 - Marcos, Miguel A1 - Sabio, Guadalupe A1 - Eilers, Martin A1 - Schulze, Almut A1 - Sumara, Grzegorz T1 - Protein kinase D1 deletion in adipocytes enhances energy dissipation and protects against adiposity T2 - The EMBO Journal N2 - Nutrient overload in combination with decreased energy dissipation promotes obesity and diabetes. Obesity results in a hormonal imbalance, which among others, activates G-protein coupled receptors utilizing diacylglycerol (DAG) as secondary messenger. Protein kinase D1 (PKD1) is a DAG effector which integrates multiple nutritional and hormonal inputs, but its physiological role in adipocytes is unknown. Here, we show that PKD1 promotes lipogenesis and suppresses mitochondrial fragmentation, biogenesis, respiration, and energy dissipation in an AMP-activated protein kinase (AMPK)-dependent manner. Moreover, mice lacking PKD1 in adipocytes are resistant to diet-induced obesity due to elevated energy expenditure. Beiging of adipocytes promotes energy expenditure and counteracts obesity. Consistently, deletion of PKD1 promotes expression of the β3-adrenergic receptor (ADRB3) in a CCAAT/enhancerbinding protein (C/EBP)-α and δ-dependent manner, which leads to the elevated expression of beige markers in adipocytes and subcutaneous adipose tissue. Finally, deletion of PKD1 in adipocytes improves insulin sensitivity and ameliorates liver steatosis. Thus, loss of PKD1 in adipocytes increases energy dissipation by several complementary mechanisms and might represent an attractive strategy to treat obesity and its related complications. KW - AMP-activated protein kinase (AMPK) KW - Beige adipocytes KW - β3 adrenergic receptor (ADRB3) KW - C/EBP KW - Protein kinase D1 (PKD1) Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-176093 ER -