TY - JOUR A1 - Zlamy, Manuela A1 - Almanzar, Giovanni A1 - Parson, Walther A1 - Schmidt, Christian A1 - Leierer, Johannes A1 - Weinberger, Birgit A1 - Jeller, Verena A1 - Unsinn, Karin A1 - Eyrich, Matthias A1 - Würzner, Reinhard A1 - Prelog, Martina T1 - Efforts of the human immune system to maintain the peripheral CD8+ T cell compartment after childhood thymectomy JF - Immunity & Ageing N2 - Background Homeostatic mechanisms to maintain the T cell compartment diversity indicate an ongoing process of thymic activity and peripheral T cell renewal during human life. These processes are expected to be accelerated after childhood thymectomy and by the influence of cytomegalovirus (CMV) inducing a prematurely aged immune system. The study aimed to investigate proportional changes and replicative history of CD8+ T cells, of recent thymic emigrants (RTEs) and CD103+ T cells (mostly gut-experienced) and the role of Interleukin-(IL)-7 and IL-7 receptor (CD127)-expressing T cells in thymectomized patients compared to young and old healthy controls. Results Decreased proportions of naive and CD31 + CD8+ T cells were demonstrated after thymectomy, with higher proliferative activity of CD127-expressing T cells and significantly shorter relative telomere lengths (RTLs) and lower T cell receptor excision circles (TRECs). Increased circulating CD103+ T cells and a skewed T cell receptor (TCR) repertoire were found after thymectomy similar to elderly persons. Naive T cells were influenced by age at thymectomy and further decreased by CMV. Conclusions After childhood thymectomy, the immune system demonstrated constant efforts of the peripheral CD8+ T cell compartment to maintain homeostasis. Supposedly it tries to fill the void of RTEs by peripheral T cell proliferation, by at least partly IL-7-mediated mechanisms and by proportional increase of circulating CD103+ T cells, reminiscent of immune aging in elderly. Although other findings were less significant compared to healthy elderly, early thymectomy demonstrated immunological alterations of CD8+ T cells which mimic features of premature immunosenescence in humans. KW - thymectomy KW - naive T cells KW - TRECs KW - TCR diversity KW - CMV KW - CD8 KW - telomeres Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-146497 VL - 13 IS - 3 ER - TY - JOUR A1 - Prelog, Martina A1 - Hilligardt, Deborah A1 - Schmidt, Christian A. A1 - Przybylski, Grzegorz K. A1 - Leierer, Johannes A1 - Almanzar, Giovanni A1 - El Hajj, Nady A1 - Lesch, Klaus-Peter A1 - Arolt, Volker A1 - Zwanzger, Peter A1 - Haaf, Thomas A1 - Domschke, Katharina T1 - Hypermethylation of FOXP3 Promoter and Premature Aging of the Immune System in Female Patients with Panic Disorder? JF - PLoS ONE N2 - Immunological abnormalities associated with pathological conditions, such as higher infection rates, inflammatory diseases, cancer or cardiovascular events are common in patients with panic disorder. In the present study, T cell receptor excision circles (TRECs), Forkhead-Box-Protein P3 gene (FOXP3) methylation of regulatory T cells (Tregs) and relative telomere lengths (RTLs) were investigated in a total and subsamples of 131 patients with panic disorder as compared to 131 age- and sex-matched healthy controls in order to test for a potential dysfunction and premature aging of the immune system in anxiety disorders. Significantly lower TRECs (p = 0.004) as well as significant hypermethylation of the FOXP3 promoter region (p = 0.005) were observed in female (but not in male) patients with panic disorder as compared to healthy controls. No difference in relative telomere length was discerned between patients and controls, but significantly shorter telomeres in females, smokers and older persons within the patient group. The presently observed reduced TRECs in panic disorder patients and FOXP3 hypermethylation in female patients with panic disorder potentially reflect impaired thymus and immunosuppressive Treg function, which might partly account for the known increased morbidity and mortality of anxiety disorders conferred by e.g. cancer and cardiovascular disorders. KW - DNA methylation KW - antidepressants KW - regulatory T cells KW - panic disorder KW - treatment guidelines KW - telomere length KW - inflammatory diseases KW - anxiety disorders Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-179684 VL - 11 IS - 6 ER -