TY - JOUR A1 - Pelosi, Andrea A1 - Fiore, Piera Filomena A1 - Di Matteo, Sabina A1 - Veneziani, Irene A1 - Caruana, Ignazio A1 - Ebert, Stefan A1 - Munari, Enrico A1 - Moretta, Lorenzo A1 - Maggi, Enrico A1 - Azzarone, Bruno T1 - Pediatric tumors-mediated inhibitory effect on NK cells: the case of neuroblastoma and Wilms' tumors JF - Cancers N2 - Natural killer (NK) cells play a key role in the control of cancer development, progression and metastatic dissemination. However, tumor cells develop an array of strategies capable of impairing the activation and function of the immune system, including NK cells. In this context, a major event is represented by the establishment of an immunosuppressive tumor microenvironment (TME) composed of stromal cells, myeloid-derived suppressor cells, tumor-associated macrophages, regulatory T cells and cancer cells themselves. The different immunoregulatory cells infiltrating the TME, through the release of several immunosuppressive molecules or by cell-to-cell interactions, cause an impairment of the recruitment of NK cells and other lymphocytes with effector functions. The different mechanisms by which stromal and tumor cells impair NK cell function have been particularly explored in adult solid tumors and, in less depth, investigated and discussed in a pediatric setting. In this review, we will compare pediatric and adult solid malignancies concerning the respective mechanisms of NK cell inhibition, highlighting novel key data in neuroblastoma and Wilms’ tumor, two of the most frequent pediatric extracranial solid tumors. Indeed, both tumors are characterized by the presence of stromal cells acting through the release of immunosuppressive molecules. In addition, specific tumor cell subsets inhibit NK cell cytotoxic function by cell-to-cell contact mechanisms likely controlled by the transcriptional coactivator TAZ. These findings could lead to a more performant diagnostic approach and to the development of novel immunotherapeutic strategies targeting the identified cellular and molecular targets. KW - neuroblastoma KW - Wilms' tumor KW - NK cells KW - macrophages KW - tumor microenvironment Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-239615 SN - 2072-6694 VL - 13 IS - 10 ER - TY - JOUR A1 - Fiore, Piera Filomena A1 - Vacca, Paola A1 - Tumino, Nicola A1 - Besi, Francesca A1 - Pelosi, Andrea A1 - Munari, Enrico A1 - Marconi, Marcella A1 - Caruana, Ignazio A1 - Pistoia, Vito A1 - Moretta, Lorenzo A1 - Azzarone, Bruno T1 - Wilms' tumor primary cells display potent immunoregulatory properties on NK cells and macrophages JF - Cancers N2 - The immune response plays a crucial defensive role in cancer growth and metastasis and is a promising target in different tumors. The role of the immune system in Wilm’s Tumor (WT), a common pediatric renal malignancy, is still to be explored. The characterization of the immune environment in WT could allow the identification of new therapeutic strategies for targeting possible inhibitory mechanisms and/or lowering toxicity of the current treatments. In this study, we stabilized four WT primary cultures expressing either a blastematous (CD56\(^+\)/CD133\(^−\)) or an epithelial (CD56\(^−\)/CD133\(^+\)) phenotype and investigated their interactions with innate immune cells, namely NK cells and monocytes. We show that cytokine-activated NK cells efficiently kill WT cells. However, after co-culture with WT primary cells, NK cells displayed an impaired cytotoxic activity, decreased production of IFNγ and expression of CD107a, DNAM-1 and NKp30. Analysis of the effects of the interaction between WT cells and monocytes revealed their polarization towards alternatively activated macrophages (M2) that, in turn, further impaired NK cell functions. In conclusion, we show that both WT blastematous and epithelial components may contribute directly and indirectly to a tumor immunosuppressive microenvironment that is likely to play a role in tumor progression. KW - Wilm's tumor KW - NK cells KW - macrophages KW - tumor microenvironment KW - Wilms' tumor Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-222981 SN - 2072-6694 VL - 13 IS - 2 ER - TY - JOUR A1 - Ziegler, Sabrina A1 - Weiss, Esther A1 - Schmitt, Anna-Lena A1 - Schlegel, Jan A1 - Burgert, Anne A1 - Terpitz, Ulrich A1 - Sauer, Markus A1 - Moretta, Lorenzo A1 - Sivori, Simona A1 - Leonhardt, Ines A1 - Kurzai, Oliver A1 - Einsele, Hermann A1 - Loeffler, Juergen T1 - CD56 Is a Pathogen Recognition Receptor on Human Natural Killer Cells JF - Scientific Reports N2 - Aspergillus (A.) fumigatus is an opportunistic fungal mold inducing invasive aspergillosis (IA) in immunocompromised patients. Although antifungal activity of human natural killer (NK) cells was shown in previous studies, the underlying cellular mechanisms and pathogen recognition receptors (PRRs) are still unknown. Using flow cytometry we were able to show that the fluorescence positivity of the surface receptor CD56 significantly decreased upon fungal contact. To visualize the interaction site of NK cells and A. fumigatus we used SEM, CLSM and dSTORM techniques, which clearly demonstrated that NK cells directly interact with A. fumigatus via CD56 and that CD56 is re-organized and accumulated at this interaction site time-dependently. The inhibition of the cytoskeleton showed that the receptor re-organization was an active process dependent on actin re-arrangements. Furthermore, we could show that CD56 plays a role in the fungus mediated NK cell activation, since blocking of CD56 surface receptor reduced fungal mediated NK cell activation and reduced cytokine secretion. These results confirmed the direct interaction of NK cells and A. fumigatus, leading to the conclusion that CD56 is a pathogen recognition receptor. These findings give new insights into the functional role of CD56 in the pathogen recognition during the innate immune response. KW - pattern recognition receptors KW - fungal infection KW - Aspergillus fumigatus KW - natural killer cells Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170637 VL - 7 IS - 6138 ER -