TY - JOUR A1 - Youssif, Khayrya A. A1 - Haggag, Eman G. A1 - Elshamy, Ali M. A1 - Rabeh, Mohamed A. A1 - Gabr, Nagwan M. A1 - Seleem, Amany A1 - Salem, M. Alaraby A1 - Hussein, Ahmed S. A1 - Krischke, Markus A1 - Mueller, Martin J. A1 - Ramadan Abdelmohsen, Usama T1 - Anti-Alzheimer potential, metabolomic profiling and molecular docking of green synthesized silver nanoparticles of Lampranthus coccineus and Malephora lutea aqueous extracts JF - PLoS ONE N2 - The green synthesis of silver nanoparticles (SNPs) using plant extracts is an eco-friendly method. It is a single step and offers several advantages such as time reducing, cost-effective and environmental non-toxic. Silver nanoparticles are a type of Noble metal nanoparticles and it has tremendous applications in the field of diagnostics, therapeutics, antimicrobial activity, anticancer and neurodegenerative diseases. In the present work, the aqueous extracts of aerial parts of Lampranthus coccineus and Malephora lutea F. Aizoaceae were successfully used for the synthesis of silver nanoparticles. The formation of silver nanoparticles was early detected by a color change from pale yellow to reddish-brown color and was further confirmed by transmission electron microscope (TEM), UV–visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS), X-ray diffraction (XRD), and energy-dispersive X-ray diffraction (EDX). The TEM analysis of showed spherical nanoparticles with a mean size between 12.86 nm and 28.19 nm and the UV- visible spectroscopy showed λ\(_{max}\) of 417 nm, which confirms the presence of nanoparticles. The neuroprotective potential of SNPs was evaluated by assessing the antioxidant and cholinesterase inhibitory activity. Metabolomic profiling was performed on methanolic extracts of L. coccineus and M. lutea and resulted in the identification of 12 compounds, then docking was performed to investigate the possible interaction between the identified compounds and human acetylcholinesterase, butyrylcholinesterase, and glutathione transferase receptor, which are associated with the progress of Alzheimer’s disease. Overall our SNPs highlighted its promising potential in terms of anticholinesterase and antioxidant activity as plant-based anti-Alzheimer drug and against oxidative stress. KW - Nanoparticles KW - Silver KW - Alzheimer's disease KW - Glutathione KW - Antioxidants KW - Serine proteases KW - Brain diseases KW - Metabolomics Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-202696 VL - 14 IS - 11 ER - TY - JOUR A1 - Cheng, Cheng A1 - MacIntyre, Lynsey A1 - Ramadan Abdelmohsen, Usama A1 - Horn, Hannes A1 - Polymenakou, Paraskevi N. A1 - Edrada-Ebel, RuAngelie A1 - Hentschel, Ute T1 - Biodiversity, Anti-Trypanosomal Activity Screening, and Metabolomic Profiling of Actinomycetes Isolated from Mediterranean Sponges JF - PLoS One N2 - Marine sponge–associated actinomycetes are considered as promising sources for the discovery of novel biologically active compounds. In the present study, a total of 64 actinomycetes were isolated from 12 different marine sponge species that had been collected offshore the islands of Milos and Crete, Greece, eastern Mediterranean. The isolates were affiliated to 23 genera representing 8 different suborders based on nearly full length 16S rRNA gene sequencing. Four putatively novel species belonging to genera Geodermatophilus, Microlunatus, Rhodococcus and Actinomycetospora were identified based on a 16S rRNA gene sequence similarity of < 98.5% to currently described strains. Eight actinomycete isolates showed bioactivities against Trypanosma brucei brucei TC221 with half maximal inhibitory concentration (IC50) values <20 μg/mL. Thirty four isolates from the Milos collection and 12 isolates from the Crete collection were subjected to metabolomic analysis using high resolution LC-MS and NMR for dereplication purposes. Two isolates belonging to the genera Streptomyces (SBT348) and Micromonospora (SBT687) were prioritized based on their distinct chemistry profiles as well as their anti-trypanosomal activities. These findings demonstrated the feasibility and efficacy of utilizing metabolomics tools to prioritize chemically unique strains from microorganism collections and further highlight sponges as rich source for novel and bioactive actinomycetes. KW - streptomyces KW - drug metabolism KW - metabolites KW - ribosomal RNA KW - metabolomics KW - actinobacteria KW - sponges KW - secondary metabolites Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-125138 VL - 10 IS - 9 ER - TY - JOUR A1 - Horn, Hannes A1 - Hentschel, Ute A1 - Ramadan Abdelmohsen, Usama T1 - Mining Genomes of Three Marine Sponge-Associated Actinobacterial Isolates for Secondary Metabolism JF - Genome Announcements N2 - Here, we report the draft genome sequences of three actinobacterial isolates, Micromonospora sp. RV43, Rubrobacter sp. RV113, and Nocardiopsis sp. RV163 that had previously been isolated from Mediterranean sponges. The draft genomes were analyzed for the presence of gene clusters indicative of secondary metabolism using antiSMASH 3.0 and NapDos pipelines. Our findings demonstrated the chemical richness of sponge-associated actinomycetes and the efficacy of genome mining in exploring the genomic potential of sponge-derived actinomycetes. Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-124887 VL - 3 IS - 5 ER -