TY - JOUR A1 - Krebs, Markus A1 - Solimando, Antonio Giovanni A1 - Kalogirou, Charis A1 - Marquardt, André A1 - Frank, Torsten A1 - Sokolakis, Ioannis A1 - Hatzichristodoulou, Georgios A1 - Kneitz, Susanne A1 - Bargou, Ralf A1 - Kübler, Hubert A1 - Schilling, Bastian A1 - Spahn, Martin A1 - Kneitz, Burkhard T1 - miR-221-3p Regulates VEGFR2 Expression in High-Risk Prostate Cancer and Represents an Escape Mechanism from Sunitinib In Vitro JF - Journal of Clinical Medicine N2 - Downregulation of miR-221-3p expression in prostate cancer (PCa) predicted overall and cancer-specific survival of high-risk PCa patients. Apart from PCa, miR-221-3p expression levels predicted a response to tyrosine kinase inhibitors (TKI) in clear cell renal cell carcinoma (ccRCC) patients. Since this role of miR-221-3p was explained with a specific targeting of VEGFR2, we examined whether miR-221-3p regulated VEGFR2 in PCa. First, we confirmed VEGFR2/KDR as a target gene of miR-221-3p in PCa cells by applying Luciferase reporter assays and Western blotting experiments. Although VEGFR2 was mainly downregulated in the PCa cohort of the TCGA (The Cancer Genome Atlas) database, VEGFR2 was upregulated in our high-risk PCa cohort (n = 142) and predicted clinical progression. In vitro miR-221-3p acted as an escape mechanism from TKI in PC3 cells, as displayed by proliferation and apoptosis assays. Moreover, we confirmed that Sunitinib induced an interferon-related gene signature in PC3 cells by analyzing external microarray data and by demonstrating a significant upregulation of miR-221-3p/miR-222-3p after Sunitinib exposure. Our findings bear a clinical perspective for high-risk PCa patients with low miR-221-3p levels since this could predict a favorable TKI response. Apart from this therapeutic niche, we identified a partially oncogenic function of miR-221-3p as an escape mechanism from VEGFR2 inhibition. KW - microRNA-221 KW - high-risk Prostate Cancer KW - angiogenesis KW - Sunitinib KW - Tyrosine kinase inhibition Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-203168 SN - 2077-0383 VL - 9 IS - 3 ER - TY - JOUR A1 - Hartrampf, Philipp E. A1 - Heinrich, Marieke A1 - Seitz, Anna Katharina A1 - Brumberg, Joachim A1 - Sokolakis, Ioannis A1 - Kalogirou, Charis A1 - Schirbel, Andreas A1 - Kübler, Hubert A1 - Buck, Andreas K. A1 - Lapa, Constantin A1 - Krebs, Markus T1 - Metabolic Tumour Volume from PSMA PET/CT Scans of Prostate Cancer Patients during Chemotherapy — Do Different Software Solutions Deliver Comparable Results? JF - Journal of Clinical Medicine N2 - (1) Background: Prostate-specific membrane antigen (PSMA)-derived tumour volume (PSMA-TV) and total lesion PSMA (TL-PSMA) from PSMA PET/CT scans are promising biomarkers for assessing treatment response in prostate cancer (PCa). Currently, it is unclear whether different software tools for assessing PSMA-TV and TL-PSMA produce comparable results. (2) Methods: \(^{68}\)Ga-PSMA PET/CT scans from n = 21 patients with castration-resistant PCa (CRPC) receiving chemotherapy were identified from our single-centre database. PSMA-TV and TL-PSMA were calculated with Syngo.via (Siemens) as well as the freely available Beth Israel plugin for FIJI (Fiji Is Just ImageJ) before and after chemotherapy. While statistical comparability was illustrated and quantified via Bland-Altman diagrams, the clinical agreement was estimated by matching PSMA-TV, TL-PSMA and relative changes of both variables during chemotherapy with changes in serum PSA (ΔPSA) and PERCIST (Positron Emission Response Criteria in Solid Tumors). (3) Results: Comparing absolute PSMA-TV and TL-PSMA as well as Bland–Altman plotting revealed a good statistical comparability of both software algorithms. For clinical agreement, classifying therapy response did not differ between PSMA-TV and TL-PSMA for both software solutions and showed highly positive correlations with BR. (4) Conclusions: due to the high levels of statistical and clinical agreement in our CRPC patient cohort undergoing taxane chemotherapy, comparing PSMA-TV and TL-PSMA determined by Syngo.via and FIJI appears feasible. KW - prostate-specific membrane antigen (PSMA) KW - metabolic tumour volume (MTV) KW - total lesion PSMA KW - biomarker KW - software KW - comparability KW - agreement Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-205893 SN - 2077-0383 VL - 9 IS - 5 ER - TY - JOUR A1 - Krebs, Markus A1 - Behrmann, Christoph A1 - Kalogirou, Charis A1 - Sokolakis, Ioannis A1 - Kneitz, Susanne A1 - Kruithof-de Julio, Marianna A1 - Zoni, Eugenio A1 - Rech, Anne A1 - Schilling, Bastian A1 - Kübler, Hubert A1 - Spahn, Martin A1 - Kneitz, Burkhard T1 - miR-221 Augments TRAIL-mediated apoptosis in prostate cancer cells by inducing endogenous TRAIL expression and targeting the functional repressors SOCS3 and PIK3R1 JF - BioMed Research International N2 - miR-221 is regarded as an oncogene in many malignancies, and miR-221-mediated resistance towards TRAIL was one of the first oncogenic roles shown for this small noncoding RNA. In contrast, miR-221 is downregulated in prostate cancer (PCa), thereby implying a tumour suppressive function. By using proliferation and apoptosis assays, we show a novel feature of miR-221 in PCa cells: instead of inducing TRAIL resistance, miR-221 sensitized cells towards TRAIL-induced proliferation inhibition and apoptosis induction. Partially responsible for this effect was the interferon-mediated gene signature, which among other things contained an endogenous overexpression of the TRAIL encoding gene TNFSF10. This TRAIL-friendly environment was provoked by downregulation of the established miR-221 target gene SOCS3. Moreover, we introduced PIK3R1 as a target gene of miR-221 in PCa cells. Proliferation assays showed that siRNA-mediated downregulation of SOCS3 and PIK3R1 mimicked the effect of miR-221 on TRAIL sensitivity. Finally, Western blotting experiments confirmed lower amounts of phospho-Akt after siRNA-mediated downregulation of PIK3R1 in PC3 cells. Our results further support the tumour suppressing role of miR-221 in PCa, since it sensitises PCa cells towards TRAIL by regulating the expression of the oncogenes SOCS3 and PIK3R1. Given the TRAIL-inhibiting effect of miR-221 in various cancer entities, our results suggest that the influence of miR-221 on TRAIL-mediated apoptosis is highly context- and entity-dependent. KW - Cancer Cell Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-202480 VL - 2019 ER -