TY - THES A1 - Grüner, Julia T1 - Pathogenesis of anti-paranodal autoantibodies in peripheral neuropathies T1 - Pathogenese anti-paranodaler Autoantikörper bei peripheren Neuropathien N2 - Autoantibodies against proteins of the node of Ranvier have been identified in a subset of patients with chronic inflammatory demyelinating polyradiculoneuropathy (CIDP). Main antigens targeted by autoantibodies are the paranodal proteins contactin 1 (CNTN1), neurofascin (NF) 155 or contactin associated protein (Caspr) as well as the nodal NF186. Several studies investigated the role of anti-paranodal autoantibodies in the pathophysiology of CIDP leading to the current knowledge that immunoglobulin G (IgG)4 deposition leads to detachment of myelin from the axon at the paranodes. However, many questions remain unsolved. Thus, autoantibodies against NF155 have been well studied and their pathogenicity has been proven in an animal model in vivo. However, in some patients, autoantibodies against all isoforms of NF are detectable. These anti-pan-NF autoantibodies occur more rarely and lead to a very severe clinical phenotype. As the pathogenesis of patient-derived autoantibodies against pan-NF has never been investigated in vivo before, we used an animal model to study the effect of acute exposure to anti-pan-NF IgG3 by intraneural injections to the rat sciatic nerve. In addition, we used anti-NF155 IgG4 from a seropositive patient. Behavioral testings as well as nerve conduction studies did not re- veal any deficits after injected neither for anti-NF155 nor for anti-pan-NF autoantibodies. This leads to the suspicion that the disease is more likely induced by a chronic process. A common symptom in patients with anti-CNTN1 associated neuropathy is sensory ataxia and therefore, an involvement of dorsal root ganglia (DRGs) is hypothesized. We show that sera from anti-CNTN1 positive patients specifically bind to DRG neurons in vitro and reduce surface expression of CNTN1. This is most probably due to internalization mediated by coexisting IgG3 although IgG4 is the predominant subclass of autoantibodies. As it is known that CNTN1 interacts with the β1 subunit of specific sodium channels we analyzed channel expression and sodium currents of DRG neurons after incubation with anti-CNTN1 positive patients’ sera. We identified reduced sodium currents after long-term treatment with patients’ material although surface channel expression remained stable. We therefore concluded that CNTN1 might influence channel properties indirectly through auxiliary β1 subunits. Moreover, we suggest an involvement of DRG neurons in the pathogenesis of anti-CNTN1 associated CIDP as medium-large size neurons are more affected than small neurons. However, the exact mechanism of how anti-CNTN1 autoantibodies influence sodium channels should be subject of further studies. Furthermore, preliminary results indicate that the epitope for anti-CNTN1 autoantibodies from seropositive patients might be associated with distinct clinical features. We could show that autoantibodies might be either directed against a conformational epitope as binding is prevented after deletion of the first immunoglobulin (Ig) domain of CNTN1 or against the fibronectin type III (FnIII) domains. Strikingly, both patients with FnIII do- main specificity had very high titers of anti-CNTN1 autoantibodies and a chronic disease progression, whereas patients binding to a conformational epitope or to the Ig domains are related to a relapsing-remitting or even monophasic disease course. However, these results need to be further confirmed before a clear statement can be made. In conclusion, the present study contributes to elucidate the pathogenesis of peripheral neuropathies associated with anti-paranodal autoantibodies. However, further studies are required including a higher number of patients as well as considering effects on structures like DRGs besides the node of Ranvier to fully understand the disease mechanisms. N2 - Autoantikörper gegen Proteine des Ranvierschen Schnürrings wurden bei einer Untergruppe von Patienten mit chronisch inflammatorischer demyelinisierender Polyradikuloneuropathie (CIDP) identifiziert. Antigene, gegen die sich die Autoantikörper hauptsächlich richten, sind die paranodalen Proteine Contactin 1 (CNTN1), Neurofascin (NF) 155 oder das Contactin-assoziierte Protein (Caspr) sowie das nodal exprimierte NF186. Mehrere Studien untersuchten die Rolle von anti-paranodalen Autoantikörpern in der Pathophysiologie der CIDP, was zu der aktuellen Erkenntnis führte, dass Immunglobulin G (IgG) 4-Ablagerungen die Ablösung des Myelins vom Axon an den Paranodien zur Folge haben. Viele Fragen bleiben jedoch ungelöst. So sind Autoantikörper gegen NF155 gut untersucht worden und ihre Pathogenität wurde in einem Tiermodell in vivo nachgewiesen. Bei einigen Patienten sind jedoch Autoantikörper gegen alle Isoformen von NF nachweisbar. Diese anti-pan-NF-Autoantikörper treten seltener auf und führen zu einem sehr schweren klinischen Phänotyp. Da die Pathogenese von Autoantikörpern gegen pan-NF bisher nicht in vivo untersucht wurde, haben wir in einem Tiermodell die Wirkung der akuten Exposition von anti-pan-NF IgG3 durch intraneurale Injektionen in den Ischiasnerv der Ratte untersucht. Zusätzlich verwendeten wir anti-NF155 IgG4 von einem seropositiven Patienten. Verhaltenstests sowie Nervenleitfähigkeitsuntersuchungen zeigten weder nach Injektion von anti-NF155 noch von anti-pan-NF-Autoantikörpern Defizite. Dies lässt den Verdacht aufkommen, dass die Erkrankung eher durch einen chronischen Prozess ausgelöst wird. Ein häufiges Symptom bei Patienten mit anti-CNTN1-assoziierter Neuropathie ist die sensorische Ataxie, weshalb eine Beteiligung der Spinalganglien vermutet wird. Wir zeigen, dass Seren von anti-CNTN1-positiven Patienten in vitro spezifisch an Spinalganglion- Neurone binden und die Oberflächenexpression von CNTN1 reduzieren. Dies ist höchstwahrscheinlich auf eine Internalisierung zurückzuführen, die durch koexistierendes IgG3 vermittelt wird, obwohl IgG4 die vorherrschende Subklasse der Autoantikörper ist. Da bekannt ist, dass CNTN1 mit der β1-Untereinheit von spezifischen Natriumkanälen interagiert, haben wir die Kanalexpression und die Natriumströme von Spinalganglion-Neuronen nach Inkubation mit anti-CNTN1-positiven Patientenseren analysiert. Wir stellten reduzierte Natriumströme nach Langzeitbehandlung mit Patientenmaterial fest, obwohl die Oberflächenkanalexpression stabil blieb. Daraus schlossen wir, dass CNTN1 die Kanaleigenschaften möglicherweise indirekt über die β1-Untereinheiten beeinflusst. Darüber hinaus legen wir eine Beteiligung von Spinalganglion-Neuronen an der Pathogenese der anti-CNTN1-assoziierten CIDP nahe, da mittelgroße bis große Neurone stärker betroffen sind als kleine Neurone. Der genaue Mechanismus, wie anti-CNTN1-Autoantikörper Natriumkanäle beeinflussen, sollte jedoch Gegenstand weiterer Studien sein. Darüber hinaus deuten vorläufige Ergebnisse darauf hin, dass das Epitop für anti-CNTN1- Autoantikörper von seropositiven Patienten mit unterschiedlichen klinischen Merkmalen assoziiert sein könnte. Wir konnten zeigen, dass die Autoantikörper entweder gegen ein konformationelles Epitop gerichtet sein könnten, da die Bindung nach Deletion der ersten Immunglobulin (Ig)-Domäne von CNTN1 verhindert wird, oder gegen die Fibronektin Typ III (FnIII)-Domänen. Auffallend ist, dass beide Patienten mit FnIII-Domänen-Spezifität sehr hohe anti-CNTN1-Autoantikörper Titer und einen chronischen Krankheitsverlauf aufwiesen, während Patienten, die an ein konformationelles Epitop beziehungsweise die Ig- Domänen binden, mit einem schubförmigen oder sogar monophasischen Krankheitsverlauf assoziiert sind. Diese Ergebnisse müssen jedoch noch weiter bestätigt werden, bevor eine klare Aussage getroffen werden kann. Zusammenfassend trägt die vorliegende Studie dazu bei, die Pathogenese von peripheren Neuropathien, die mit anti-paranodalen Autoantikörpern assoziiert sind, aufzuklären. Es sind jedoch weitere Studien erforderlich, die eine größere Anzahl von Patienten einschließen und auch Auswirkungen auf Strukturen wie beispielsweise Spinalganglien neben dem Ranvierschen Schnürring berücksichtigen, um die Krankheitsmechanismen vollständig zu verstehen. KW - Autoantikörper KW - Polyneuropathie KW - Ranvier-Schnürring KW - Pathophysiologie KW - Contactin-1 KW - Neurofascin KW - CIDP KW - Pathogenesis Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-248655 ER - TY - THES A1 - Rauschenberger, Vera T1 - Stiff-person syndrome - Pathophysiological mechanisms of glycine receptor autoantibodies T1 - Stiff-Person Syndrom - Pathophysiologische Mechanismen von Glyzinrezeptor Autoantikörpern N2 - The Stiff-person syndrome (SPS) is a rare autoimmune disease that is characterized by symptoms including stiffness in axial and limb muscles as well as painful spasms. Different variants of SPS are known ranging from moderate forms like the stiff-limb syndrome to the most severe form progressive encephalomyelitis with rigidity and myoclonus (PERM). SPS is elicited by autoantibodies that target different pre- or postsynaptic proteins. The focus of the present work is on autoantibodies against the glycine receptor (GlyR). At start of the present thesis, as main characteristic of the GlyR autoantibody pathology, receptor cross-linking followed by enhanced receptor internalization and degradation via the lysosomal pathway was described. If binding of autoantibodies modulates GlyR function and therefore contributes to the GlyR autoantibody pathology has not yet been investigated. Moreover, not all patients respond well to plasmapheresis or other treatments used in the clinic. Relapses with even higher autoantibody titers regularly occur. In the present work, further insights into the disease pathology of GlyRα autoantibodies were achieved. We identified a common GlyRα1 autoantibody epitope located in the far N-terminus including amino acids A1-G34 which at least represent a part of the autoantibody epitope. This part of the receptor is easily accessible for autoantibodies due to its location at the outermost surface of the GlyRα1 extracellular domain. It was further investigated if the glycosylation status of the GlyR interferes with autoantibody binding. Using a GlyRα1 de-glycosylation mutant exhibited that patient autoantibodies are able to detect the de-glycosylated GlyRα1 variant as well. The direct modulation of the GlyR analyzed by electrophysiological recordings demonstrated functional alterations of the GlyR upon autoantibody binding. Whole cell patch clamp recordings revealed that autoantibodies decreased the glycine potency, shown by increased EC50 values. Furthermore, an influence on the desensitization behavior of the receptor was shown. The GlyR autoantibodies, however, had no impact on the binding affinity of glycine. These issues can be explained by the localization of the GlyR autoantibody epitope. The determined epitope has been exhibited to influence GlyR desensitization upon binding of allosteric modulators and differs from the orthosteric binding site for glycine, which is localized much deeper in the structure at the interface between two adjacent subunits. To neutralize GlyR autoantibodies, two different methods have been carried out. Transfected HEK293 cells expressing GlyRα1 and ELISA plates coated with the GlyRα1 extracellular domain were used to efficiently neutralize the autoantibodies. Finally, the successful passive transfer of GlyRα1 autoantibodies into zebrafish larvae and mice was shown. The autoantibodies detected their target in spinal cord and brain regions rich in GlyRs of zebrafish and mice. A passive transfer of human GlyRα autoantibodies to zebrafish larvae generated an impaired escape behavior in the animals compatible with the abnormal startle response in SPS or PERM patients. N2 - Das Stiff-person Syndrom (SPS) ist eine seltene Autoimmunerkrankung, die sich durch Symptome wie Steifheit in Muskeln des Rumpfes und der Gliedmaßen sowie schmerzhafte Spasmen auszeichnet. Vom SPS sind verschiedene Varianten bekannt, die von mäßigen Formen, wie dem Stiff-limb Syndrom (limb von engl. Extremitäten), bis zur schwersten Variante, der progressiven Enzephalomyelitis mit Steifheit und Myoklonus (PERM, vom engl. progressive encephalomyelitis with rigidity and myoclonus), reichen. Ausgelöst wird das SPS durch Autoantikörper, die an verschiedene prä- und postsynaptische Proteine binden. Der Fokus in dieser Arbeit liegt dabei auf Autoantikörpern, die gegen den Glyzinrezeptor (GlyR) gerichtet sind. Zu Beginn dieser Thesis galten als Hauptcharakteristika der Pathologie von Autoantikörpern die Quervernetzung von Rezeptoren gefolgt von einer verstärkten Rezeptor Internalisierung und dem Abbau über das Lysosom. Allerdings wurde bisher noch nicht untersucht, ob die GlyR Funktion durch eine Autoantikörperbindung verändert wird. Darüber hinaus sprechen nicht alle Patienten gut auf Plasmapheresen oder andere Therapien an. Rückfälle mit noch viel höheren Autoantikörpertitern treten regelmäßig auf. Die vorliegende Arbeit erweitert die Kenntnisse der pathophysiologischen Mechanismen, die durch GlyRα Autoantikörper ausgelöst werden. Wir konnten ein Epitop der GlyRα1 Autoantikörper im N-terminalen Bereich ausfindig machen, wobei die Aminosäuren A1-G34 zumindest einen Teil des Epitops bilden. Dieser GlyR Bereich kann durch die Autoantikörper sehr leicht erreicht werden, weil er sich an der Oberfläche der extrazellulären Domäne des GlyRs befindet. Weiterhin wurde untersucht, ob die Glykosylierung des GlyRs die Autoantikörperbindung beeinflusst. Mit Hilfe von Mutanten, bei denen die Glykosylierungsstelle entfernt wurde, konnte gezeigt werden, dass Patientenautoantikörper die nicht-glykosylierte Variante des GlyRα1 ebenfalls detektieren können. Elektrophysiologische Messungen ergaben, dass die Funktionalität des GlyRs durch die Bindung von Autoantikörpern beeinträchtigt wird. Erhöhte EC50 Werte zeigen, dass Autoantikörper die Wirksamkeit von Glyzin in niedrigeren Konzentrationen auf den Rezeptor verringern. Außerdem beeinflussen die Autoantikörper die Desensitisierung des Rezeptors. Allerdings waren die Glyzin-Wirksamkeit in sättigenden Konzentrationen und die Affinität von Glyzin zum Rezeptor unverändert. Diese Ergebnisse können durch die Lokalisierung des GlyR Autoantikörper-Epitops erklärt werden. Das ermittelte Epitop ist bekannt dafür, dass dort allosterische Modulatoren binden können und dadurch die Desensitisierung beeinflusst wird. Außerdem unterscheidet sich das Epitop von der orthosterischen Bindestelle von Glyzin, welche viel tiefer in der Struktur an der Grenze zweier benachbarter Untereinheiten liegt. Um die GlyR Autoantikörper zu neutralisieren, wurden zwei verschiedene Methoden entwickelt. Transfizierte HEK293 Zellen, die den GlyRα1 exprimieren, und ELISA Platten, die mit der extrazellulären Domäne des GlyRα1 beschichtet waren, wurden zur effizienten Neutralisation der Autoantikörper verwendet. Abschließend konnte in der vorliegenden Arbeit die erfolgreiche passive Übertragung von GlyRα1 Autoantikörpern in Zebrafischlarven und Mäusen gezeigt werden. In Zebrafischen und Mäusen detektierten die Autoantikörper ihr Antigen im Rückenmark und in Gehirnregionen, in denen der GlyR zahlreich exprimiert ist. Ein passiver Transfer von menschlichen GlyRα Autoantikörpern in Zebrafischlarven beeinträchtigte das Fluchtverhalten der Tiere, welches kompatibel mit dem krankhaften Startle Reflex in SPS- oder PERM-Patienten ist. KW - Glycinrezeptor KW - Autoantikörper KW - Pathophysiologie KW - Stiff-person syndrome KW - Stiff-Person Syndrom KW - Pathophysiologische Mechanismen KW - pathophysiological mechanisms Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-209588 ER -