TY - THES A1 - Ünzelmann, Maximilian T1 - Interplay of Inversion Symmetry Breaking and Spin-Orbit Coupling – From the Rashba Effect to Weyl Semimetals T1 - Zusammenspiel aus Inversionssymmetriebruch und Spin-Bahn-Kopplung – Vom Rashba-Effekt zu Weyl-Halbmetallen N2 - Breaking inversion symmetry in crystalline solids enables the formation of spin-polarized electronic states by spin-orbit coupling without the need for magnetism. A variety of interesting physical phenomena related to this effect have been intensively investigated in recent years, including the Rashba effect, topological insulators and Weyl semimetals. In this work, the interplay of inversion symmetry breaking and spin-orbit coupling and, in particular their general influence on the character of electronic states, i.e., on the spin and orbital degrees of freedom, is investigated experimentally. Two different types of suitable model systems are studied: two-dimensional surface states for which the Rashba effect arises from the inherently broken inversion symmetry at the surface, and a Weyl semimetal, for which inversion symmetry is broken in the three-dimensional crystal structure. Angle-resolved photoelectron spectroscopy provides momentum-resolved access to the spin polarization and the orbital composition of electronic states by means of photoelectron spin detection and dichroism with polarized light. The experimental results shown in this work are also complemented and supported by ab-initio density functional theory calculations and simple model considerations. Altogether, it is shown that the breaking of inversion symmetry has a decisive influence on the Bloch wave function, namely, the formation of an orbital angular momentum. This mechanism is, in turn, of fundamental importance both for the physics of the surface Rashba effect and the topology of the Weyl semimetal TaAs. N2 - Wird die Inversionssymmetrie kristalliner Festkörper gebrochen, ermöglicht dies die Ausbildung von spinpolarisierten elektronischen Zuständen durch Spin-Bahn-Kopplung ohne die Notwendigkeit von Magnetismus. In den vergangenen Jahren wurde eine Vielzahl interessanter physikalischer Phänomene diskutiert, die mit diesem Effekt zusammenhängen, darunter der Rashba-Effekt, topologische Isolatoren sowie Weyl-Halbmetalle. In dieser Arbeit wird das Zusammenspiel von Inversionssymetriebruch und Spin-Bahn-Kopplung sowie insbesondere deren Einfluss auf die Eigenschaften der elektronischen Zustände, also auf die Spin- und Orbital-Freiheitsgrade, experimentell untersucht. Zwei verschiedene Arten geeigneter Modellsysteme werden dazu betrachtet: zweidimensionale Oberflächenzustände, in denen der Rashba-Effekt aufgrund der an der Oberfläche inhärent gebrochenen Inverisonssymetrie auftritt, und ein Weyl-Halbmetall, dessen dreidimensionale Kristallstruktur kein Inversionszentrum besitzt. Winkelaufgelöste Photoelektronenspektroskopie bietet einen impulsaufgelösten Zugang zur Spinpolarisation sowie zur orbitalen Zusammensetzung der elektronischen Zustände mittels Photoelektronenspindetektion und Dichroismus mit polarisiertem Licht. Die in dieser Arbeit gezeigten experimentellen Ergebnisse werden außerdem durch ab-initio Dichtefunktionaltheorierechnungen sowie einfachen Modellbetrachtungen ergänzt und untermauert. Insgesamt zeigt sich, dass das Brechen von Inversionssymmetrie einen entscheidenden Einfluss auf die Bloch-Wellenfunktion hat, nämlich die Ausbildung eines orbitalen Bahndrehimpulses. Dieser Mechanismus ist wiederum von grundlegender Bedeutung sowohl für die Physik des Oberflächen- Rashba-Effekts als auch für die Topologie desWeyl-Halbmetalls TaAs. KW - Rashba-Effekt KW - Inversion Symmetry Breaking KW - Topologie KW - ARPES KW - Spin-Orbit Coupling KW - Orbital Angular Momentum Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-283104 ER - TY - THES A1 - Goth, Florian T1 - Continuous time quantum Monte Carlo Studies of Quenches and Correlated Systems with Broken Inversion Symmetry T1 - Quanten Monte Carlo Simulationen in kontinuierlicher Zeit von Quenchen und korrelierten Systemen mit gebrochener Inversionssymmetrie N2 - This thesis deals with quantum Monte Carlo simulations of correlated low dimensional electron systems. The correlation that we have in mind is always given by the Hubbard type electron electron interaction in various settings. To facilitate this task, we develop the necessary methods in the first part. We develop the continuous time interaction expansion quantum algorithm in a manner suitable for the treatment of effective and non-equilibrium problems. In the second part of this thesis we consider various applications of the algorithms. First we examine a correlated one-dimensional chain of electrons that is subject to some form of quench dynamics where we suddenly switch off the Hubbard interaction. We find the light-cone-like Lieb-Robinson bounds and forms of restricted equilibration subject to the conserved quantities. Then we consider a Hubbard chain subject to Rashba spin-orbit coupling in thermal equilibrium. This system could very well be realized on a surface with the help of metallic adatoms. We find that we can analytically connect the given model to a model without spin-orbit coupling. This link enabled us to interpret various results for the standard Hubbard model, such as the single-particle spectra, now in the context of the Hubbard model with Rashba spin-orbit interaction. And finally we have considered a magnetic impurity in a host consisting of a topological insulator. We find that the impurity still exhibits the same features as known from the single impurity Anderson model. Additionally we study the effects of the impurity in the bath and we find that in the parameter regime where the Kondo singlet is formed the edge state of the topological insulator is rerouted around the impurity. N2 - In der vorliegenden Arbeit beschäftigen wir uns mit Quanten Monte Carlo Simulationen von niedrig dimensionalen korrelierten elektronischen Systemen. Die Korrelation der Elektronen wird hierbei durch die Hubbard Elektron-Elektron Wechselwirkung ins Spiel gebracht. Um dieses Problem anzugehen, werden wir im ersten Kapitel die notwendigen Methoden, ein Quanten Monte Carlo Verfahren mit kontinuierlicher Zeitdiskretisierung, das in der Hubbard Wechselwirkung entwickelt, in einer Art und Weise darlegen, die es uns ermöglicht, effektive Probleme sowie Probleme, die durch eine Realzeitentwicklung charakterisiert sind, zu lösen. Im zweiten Teil der Arbeit werden wir konkrete Anwendungen des Algorithmus diskutieren. Zuerst untersuchen wir eine ein-dimensionale Kette von Elektronen, die wir einer plötzlichen Änderung ihrer Parameter aussetzen, indem wir die Hubbard Wechselwirkung ausschalten. Wir finden in dieser Situation die lichtkegelartigen Lieb-Robinson Schranken wieder und beobachten, dass die Äquilibrierung des Systems durch die Erhaltungsgrößen eingeschränkt ist. Danach betrachten wir wieder eine ein-dimensionale Kette mit Hubbard Wechselwirkung, aber diesmal zusätzlich mit einer Spin-Bahn-Kopplung vom Rashba Typ, im thermischen Gleichgewicht. Dieses System ist durchaus mithilfe metallischer Adatome auf Oberflächen realisierbar. Wir zeigen, wie wir dieses Modell analytisch mit dem gleichen Modell ohne Spin-Bahn-Kopplung beschreiben können. Dieser Zusammenhang ermöglicht es uns, verschiedene bekannte Resultate des Hubbard Modells, wie die Einteilchen Spektralfunctionen, im Kontext des Hubbard Modells mit Spin-Bahn-Kopplung zu interpretieren. Und schlußendlich betrachten wir eine magnetische Störstelle in einem Trägermaterial, das durch einen topologischen Isolator gegeben ist. Wir beobachten, dass sich die Störstelle weiterhin so wie vom single impurity Anderson Modell erwartet verhält. Zusätzlich betrachten wir den Einfluß der Störstelle auf das Trägermaterial und stellen fest, dass in dem Parameterbereich, in dem das Kondo-Singlett ausgebildet ist, der Randzustand des topologischen Isolators die Störstelle umfließt. KW - Elektronenkorrelation KW - Niederdimensionales System KW - Monte-Carlo-Simulation KW - Monte-Carlo Methods KW - Rashba Spin-Orbit Coupling KW - Topological Insulator KW - Nonequilibrium KW - Hubbard-Modell KW - Festkörperphysik KW - Topologischer Isolator KW - Rashba-Effekt KW - Markov-Ketten-Monte-Carlo-Verfahren Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-118836 ER - TY - THES A1 - El-Kareh, Lydia T1 - Rashba-type spin-split surface states: Heavy post transition metals on Ag(111) T1 - Rashba aufgespaltene Oberflächenzustände schwerer Hauptgruppenmetalle auf Ag(111) N2 - In the framework of this thesis, the structural and electronic properties of bismuth and lead deposited on Ag(111) have been investigated by means of low-temperature scanning tunneling microscopy (LT-STM) and spectroscopy (STS). Prior to spectroscopic investigations the growth characteristics have been investigated by means of STM and low energy electron diffraction (LEED) measurements. Submonolayer coverages as well as thick films have been investigated for both systems. Subsequently the quantum well characteristics of thick Pb films on Ag(111) have been analyzed and the quantum well character could be proved up to layer thicknesses of N ≈ 100 ML. The observed characteristics in STS spectra were explained by a simple cosine Taylor expansion and an in-plane energy dispersion could be detected by means of quasi-particle interferences. The main part of this work investigates the giant Rashba-type spin-split surface alloys of (√3 × √3)Pb/Ag(111)R30◦ and (√3 × √3)Bi/Ag(111)R30◦. With STS experiments the band positions and splitting strengths of the unoccupied (√3 × √3)Pb/Ag(111)R30◦ band dispersions could be resolved, which were unclear so far. The investigation by means of quasi-particle interferences resulted in the observation of several scattering events, which could be assigned as intra- and inter-band transitions. The analysis of scattering channels within a simple spin-conservation–approach turned out to be incomplete and led to contradictions between experiment and theory. In this framework more sophisticated DFT calculations could resolve the apparent deviations by a complete treatment of scattering in spin-orbit–coupled materials, which allows for constructive interferences in spin-flip scattering processes as long as the total momentum J_ is conserved. In a similar way the band dispersion of (√3 × √3)Bi/Ag(111)R30◦ was investigated. The STS spectra confirmed a hybridization gap opening between both Rashba-split bands and several intra- and inter-band scattering events could be observed in the complete energy range. The analysis within a spin-conservation–approach again turned out to be insufficient for explaining the observed scattering events in spin-orbit–coupled materials, which was confi by DFT calculations. Within these calculations an inter-band scattering event that has been identified as spin-conserving in the simple model could be assigned as a spin-flip scattering channel. This illustrates evidently how an incomplete description can lead to completely different indications. The present work shows that different spectroscopic STM modes are able to shed light on Rashba-split surface states. Whereas STS allowed to determine band onsets and splitting strengths, quasi-particle interferences could shed light on the band dispersions. A very important finding of this work is that spin-flip scattering events may result in constructive interferences, an eff which has so far been overlooked in related publications. Additionally it has been found that STM measurements can not distinguish between spin-conserving scattering events or spin-flip scattering events, which prevents to give a definite conclusion on the spin polarization for systems with mixed orbital symmetries just from the observed scattering events. N2 - Im Rahmen dieser Arbeit wurden die strukturellen und elektronischen Eigenschaften von Bismut und Blei bedampften Ag(111) Oberflächen mittels Tieftemperatur-Rastertunnelmi- kroskopie und -spektroskopie untersucht. Im Vorfeld zur Untersuchung der elektronischen Struktur wurde das Wachstumsverhalten sowohl von Bismut als auch Blei auf Ag(111) für Submonolagen und dicke Filme untersucht. Als komplementäre Messmethode wurden hierbei auch LEED Messungen herangezogen. Im Anschluss an die strukturellen Untersuchungen wurden die elektronischen Eigenschaften von dicken Bleifilmen auf Ag(111) untersucht. Der Quantentrogcharakter konnte hier- bei deutlich für sehr dicke Filme von bis zu 100 Monolagen nachgewiesen werden. Die beobachteten STS Spektren wurden im Rahmen einer Cosinus-Taylorentwicklung erläutert und erklärt. Eine Dispersion parallel zur Oberfläche konnte mittels Quasiteilcheninterferenz nachgewiesen werden. Der Hauptteil dieser Arbeit beschäftigte sich mit den Legierungsoberflächen der (√3 × √3)Pb/Ag(111)R30◦ und (√3 × √3)Bi/Ag(111)R30◦ Strukturen, welche über eine außer- gewöhnlich starke Rashba Aufspaltung verfügen. Zunächst wurde die Bandstruktur der (√3 × √3)Pb/Ag(111)R30◦ Oberfläche aufgeklärt, welche aufgrund ihrer energetischen Lage weit oberhalb des Ferminiveaus für ARPES Messungen nicht zugänglich ist und darum bisher ungeklärt blieb. Zur Untersuchung der Banddispersionen wurden Quasiteilcheninterferenzexperimente durchgeführt, durch die mehrere Intra- und Interbandstreuprozesse identifiziert werden konnten. Die Analyse der Streuprozesse hinsichtlich der Spinpolarisationen der beteiligten Bänder in einem einfachen spinerhaltenden Ansatz führte zu einem Widerspruch zwischen experimentell beobachteten Streuprozessen und theoretisch vorhergesagten Spinpolarisationen. In diesem Zusam- menhang konnten neue DFT Rechnungen, die einen vollständigeren Ansatz verfolgten, zeigen, dass dieser Widerspruch gelöst werden konnte, indem anstelle eines spinerhaltenden Ansatzes die Erhaltung des Gesamtdrehimpulses J_ gefordert wurde. Anschließend wurde die Banddispersion der isostrukturellen (√3 × √3)Bi/Ag(111)R30◦- Oberfläche in ähnlicher Weise untersucht. Die STS-Daten bestätigten die Existenz einer Hybridisierungslücke zwischen den beiden Rashba-aufgespaltenen spz und px, py Bändern. Die im gesamten Energiebereich der Bänder beobachteten Intra- und Interbandübergänge konnten ähnlich zur Untersuchung auf der (√3 × √3)Pb/Ag(111)R30◦ nicht im Rahmen eines spinerhaltenden Ansatz zufriedenstellend erklärt werden, sondern nur unter Erhaltung des Gesamdtrehimpulses J_. Es konnte sogar gezeigt werden, dass ein Interbandübergang, der im vereinfachten Modell als spinerhaltend identifziert wurde, in der vollständigeren Betrachtung einem Spinflipstreuereignis zugeordnet werden konnte. Dies zeigt deutlich, dass eine unvollständige Betrachtung mitunter zu völlig verschiedenen Interpretationen führen kann. Die vorliegende Arbeit konnte zeigen, dass es möglich ist Rashba-aufgespaltene Oberflächen mittels verschiedener spektroskopischer STM Messmodi zu untersuchen. Punktspektren erlauben aufgrund des charakteristischen Signals eines Rashba-aufgespaltenen Zustandes Aussagen über Bandmaxima und Aufspaltungen zu ermitteln. In günstigen Fällen ist es mittels Quasiteilcheninterferenz möglich die unverschobenen Banddispersionen abzubilden. Die Interpretation von Quasiteilcheninterferenzen wurde bisher stets im einfachen spiner- haltenden Bild durchgeführt und in diesem Zusammenhang ist ein sehr wichtiger Aspekt dieser Arbeit die Erkenntnis, dass auch Spinflip-Streuungen zu konstruktiven Interferenzen führen können. Zusätzlich wurde herausgefunden, dass es mittels Quasiteilcheninterferenz nicht möglich ist zu unterscheiden, ob der zugrunde liegende Streuvorgang einem spin- erhaltenden oder Spinflip-Übergang zuzuordnen ist. Diese Tatsache verhindert, dass in Systemen mit gemischter orbitaler Symmetrie sichere Aussagen über Spinpolarisationen anhand der experimentell beobachteten Streuereignisse getroffen werden können. KW - Silber KW - Kristallfläche KW - Bismut KW - Blei KW - scanning tunneling microscopy KW - electronic structure KW - spin-orbit coupling KW - Rashba effect KW - Dünne Schicht KW - Elektronische Eigenschaft KW - Rastertunnelmikroskop KW - Elektronenstruktur KW - Spin-Bahn-Wechselwirkung KW - Rashba-Effekt Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-112722 ER - TY - THES A1 - Höpfner, Philipp Alexander T1 - Two-Dimensional Electron Systems at Surfaces — Spin-Orbit Interaction and Electronic Correlations T1 - Zweidimensionale Elektronensysteme auf Oberflächen — Spin-Bahn Wechselwirkung und elektronische Korrelationen N2 - This thesis addresses three different realizations of a truly two-dimensional electron system (2DES), established at the surface of elemental semiconductors, i.e., Pt/Si(111), Au/Ge(111), and Sn/Si(111). Characteristic features of atomic structures at surfaces have been studied using scanning tunneling microscopy and low energy electron diffraction with special emphasis on Pt deposition onto Si(111). Topographic inspection reveals that Pt atoms agglomerate as trimers, which represent the structural building block of phase-slip domains. Surprisingly, each trimer is rotated by 30° with respect to the substrate, which results in an unexpected symmetry breaking. In turn, this represents a unique example of a chiral structure at a semiconductor surface, and marks Pt/Si(111) as a promising candidate for catalytic processes at the atomic scale. Spin-orbit interactions (SOIs) play a significant role at surfaces involving heavy adatoms. As a result, a lift of the spin degeneracy in the electronic states, termed as Rashba effect, may be observed. A candidate system to exhibit such physics is Au/Ge(111). Its large hexagonal Fermi sheet is suggested to be spin-split by calculations within the density functional theory. Experimental clarification is obtained by exploiting the unique capabilities of three-dimensional spin detection in spin- and angle-resolved photoelectron spectroscopy. Besides verification of the spin splitting, the in-plane components of the spin are shown to possess helical character, while also a prominent rotation out of this plane is observed along straight sections of the Fermi surface. Surprisingly and for the first time in a 2DES, additional in-plane rotations of the spin are revealed close to high symmetry directions. This complex spin pattern must originate from crystalline anisotropies, and it is best described by augmenting the original Rashba model with higher order Dresselhaus-like SOI terms. The alternative use of group-IV adatoms at a significantly reduced coverage drastically changes the basic properties of a 2DES. Electron localization is strongly enhanced, and the ground state characteristics will be dominated by correlation effects then. Sn/Si(111) is scrutinized with this regard. It serves as an ideal realization of a triangular lattice, that inherently suffers from spin frustration. Consequently, long-range magnetic order is prohibited, and the ground state is assumed to be either a spiral antiferromagnetic (AFM) insulator or a spin liquid. Here, the single-particle spectral function is utilized as a fundamental quantity to address the complex interplay of geometric frustration and electronic correlations. In particular, this is achieved by combining the complementary strengths of ab initio local density approximation (LDA) calculations, state-of-the-art angle-resolved photoelectron spectroscopy, and the sophisticated many-body LDA+DCA. In this way, the evolution of a shadow band and a band backfolding incompatible with a spiral AFM order are unveiled. Moreover, beyond nearest-neighbor hopping processes are crucial here, and the spectral features must be attributed to a collinear AFM ground state, contrary to common expectation for a frustrated spin lattice. N2 - In der vorliegenden Arbeit werden drei unterschiedliche Beispiele für ein zweidimensionales Elektronensystem (2DES) auf der Oberfläche von Elementhalbleitern behandelt: Pt/Si(111), Au/Ge(111) und Sn/Si(111). Atomare Strukturen und deren spezielle Merkmale wurden mit Rastertunnelmikroskopie (STM) und Elektronenbeugung (LEED) untersucht, wobei ein Schwerpunkt die Abscheidung von Pt auf Si(111) war. Hervorzuheben ist hier die Anordnung von Pt Atomen als Trimere, die das Grundgerüst phasenverschobener Domänen bilden. Interessanterweise sind die Trimere um 30° gegenüber dem Substrat verdreht, was einen unerwarteten Symmetriebruch bedeutet. Daher stellt Pt/Si(111) ein einzigartiges Beispiel einer chiralen Struktur auf Halbleitern dar und könnte außerdem für katalytische Prozesse im atomaren Bereich interessant sein. Die Spin-Bahn Wechselwirkung ist auf Oberflächen, die schwere Elemente enthalten, von großer Bedeutung. Hier kann die Spin-Entartung in den elektronischen Zuständen aufgehoben sein, was als Rashba-Effekt bekannt ist. Rechnungen mittels Dichtefunktionaltheorie (DFT) zeigen, dass eine solche Aufspaltung in der hexagonalen Fermi-Fläche von Au/Ge(111) existiert. Experimentell wurde dies mit dreidimensionaler spin- und winkelaufgelöster Photoelektronenspektroskopie bestätigt. Dabei folgt die planare Spin-Komponente einem kreisförmigen Umlaufsinn, während zudem eine starke Aufrichtung des Spins aus der Ebene hinaus entlang gerader Abschnitte der Fermi-Fläche auftritt. Hierbei wurden zum ersten Mal in einem 2DES zusätzliche Rotationen des planaren Spinanteils in der Oberflächenebene nahe von Hochsymmetrierichtungen nachgewiesen. Dieses komplexe Spin-Muster resultiert aus den kristallinen Anisotropien und kann exzellent modelliert werden, indem das Rashba-Modell um Dresselhaus-artige Spin-Bahn Terme höherer Ordnung erweitert wird. Die alternative Verwendung von Gruppe-IV Adatomen bei einer geringeren Bedeckung ändert die Eigenschaften eines 2DES deutlich. Kennzeichnend sind eine verstärkte Ladungsträger-Lokalisierung und ein von Korrelationen bestimmter Grundzustand. Dabei stellt Sn/Si(111) ein Modell-System dar, das zudem ein spin-frustriertes Dreiecksgitter bildet. In einem solchen fehlt üblicherweise die langreichweitige magnetische Ordnung und der Grundzustand ist entweder ein isolierender spiralförmiger Antiferromagnet (AF) oder eine Spin-Flüssigkeit. Zur Analyse des Wechselspiels von geometrischer Frustration und elektronischen Korrelationen dient die Ein-Teilchen Spektralfunktion als Basisgröße. Dazu wurden die sich ergänzenden Stärken von Bandstruktur-Rechnungen in der lokalen Dichtenäherung (LDA), winkelaufgelöster Photoelektronenspektroskopie und Viel-Teilchen Modellen (hier LDA+DCA) kombiniert. Dabei wurde die Existenz eines Schattenbandes und einer Bandrückfaltung nachgewiesen, wobei letztere einen spiralförmigen AF als Grundzustand ausschließt. Vielmehr sind Hüpfprozesse über den nächsten Nachbarn im Gitter hinaus relevant und die spektralen Merkmale sind, trotz der Spin-Frustration, durch einen langreichweitigen kollinearen AF als Grundzustand erklärbar. KW - Halbleiteroberfläche KW - Elektronengas KW - Dimension 2 KW - scanning tunneling microscopy KW - photoelectron spectroscopy KW - triangular lattice KW - Rashba effect KW - spin-orbit coupling KW - metal-to-insulator transition KW - Rastertunnelmikroskop KW - Photoelektronenspektroskopie KW - Dreiecksgitter KW - Rashba-Effekt KW - Spin-Bahn-Wechselwirkung KW - Metall-Isolator-Phasenumwandlung Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-78876 ER -