TY - THES A1 - Jansch, Charline T1 - Effects of SLC2A3 copy number variants on neurodevelopment and glucose metabolism in ADHD patient-specific neurons T1 - Effekte der SLC2A3 Kopienzahlvarianten auf Neuroentwicklung und Glukosemetabolismus in ADHS Patienten-spezifischen Neuronen N2 - Neuropsychiatric disorders, such as attention-deficit/hyperactivity disorder (ADHD), represent a burden which deeply impair the patient’s life. Neurobiological research has therefore increasingly focused on the examination of brain neurotransmitter systems, such as the serotonin (5-HT) system, since a dysfunction has been repeatedly implicated in the pathology of these diseases. However, investigation of functional human neurons in vitro has been restricted by technical limitations for a long time until the discovery of human induced pluripotent stem cells (iPSCs) revolutionized the field of experimental disease models. Since the pathogenesis of neuropsychiatric disorders involves a complex genetic component, genome-wide association studies (GWAS) revealed numerous risk genes that are associated with an increased risk for ADHD. For instance, the novel ADHD candidate gene SLC2A3 which encodes the glucose transporter-3 (GLUT3), facilitates the transport of glucose across plasma membranes and is essential for the high energy demand of several cell types, such as stem cells and neurons. Specifically, copy number variants (CNVs) of SLC2A3 might therefore impact cerebral glucose metabolism as well as the assembly of synaptic proteins in human neurons which might contribute to the pathogenesis of ADHD. We hypothesized that an altered SLC2A3 gene dosage in human neurons can exert diverse protective or detrimental effects on neurodevelopmental processes as well as the coping of glucometabolic stress events, such as hypo- and hyperglycaemic conditions. The generation of specific iPSC lines from ADHD patients and healthy probands served as basis to efficiently differentiate stem cells into 5-HT specific neurons. Using this neuronal culture, we were able to examine effects of SLC2A3 CNVs on the basal expression of SCL2A3 and GLUT3 in human neurons. Furthermore, the focus was on potentially altered coping of the cells with glucose deprivation and the treatment with specific high- and low glycaemic media. High-resolution fluorescence imaging in combination with electrophysiological and molecular biological techniques showed that: 1) The generated human iPSCs are fully reprogrammed human stem cells showing typical characteristics of embryonic stem cell-like morphology, growth behaviour, the ability to differentiate into different cell types of the human body and the expression of pluripotency-specific markers. 2) The neuronal subtype derived from our stem cells display typical characteristics of 5-HT specific median and dorsal neurons and forms synapses reflected by the expression of pre- and postsynaptic proteins. 3) Even if SLC2A3 CNVs influence SLC2A3 and GLUT3 basal expression, no significant alterations in gene and protein expression caused by hyper- and hypoglycaemic conditions, nor in the assembly of proteins associated with synapse formation could be observed in human iPSC-derived neurons. N2 - Neuropsychiatrische Erkrankungen, wie das Aufmerksamkeits-Defizit/Hyperaktivitäts-Syndrom (ADHS), stellen eine Belastung dar, die das Leben des Patienten schwerwiegend beeinträchtigen. Die neurobiologische Forschung hat sich deshalb zunehmend auf die Untersuchung der Neurotransmittersysteme des Gehirns, wie das serotonerge (5-HT) System fokussiert, da eine Dysfunktion wiederholt in Zusammenhang mit der Pathogenese solcher Erkrankungen gebracht wurde. Die in vitro-Untersuchung funktioneller humaner Neurone war jedoch lange Zeit durch technische Limitierungen eingeschränkt, bis die Entdeckung humaner induzierter pluripotenter Stammzellen (iPSCs) das Feld der experimentellen Krankheitsmodelle revolutionierte. Da die Pathogenese neuropsychiatrischer Erkrankungen eine komplexe genetische Komponente einschließt, haben genomweite Assoziationsstudien zahlreiche Risikogene aufgedeckt, die mit einem erhöhten Risiko für ADHS assoziiert werden. Das Kandidatengen SLC2A3, das den Glukosetransporter-3 (GLUT3) codiert, ermöglicht beispielsweise den Transport von Glukose über Plasmamembranen und ist somit essenziell für die hohe Energieanforderung verschiedenster Zelltypen, wie etwa Stammzellen und Neurone. Im Besonderen könnten die Kopienzahlvarianten (CNVs) des Gens SLC2A3 daher den cerebralen Glukosemetabolismus, sowie die Ansammlung synaptischer Proteine beeinflussen und so zur Pathogenese des ADHS beitragen. Wir nahmen an, dass eine veränderte SLC2A3-Gendosis in humanen Neuronen diverse protektive oder schädliche Effekte auf Neuroentwicklungsprozesse, sowie den Umgang mit glukometabolischen Stress-Ereignissen, wie etwa hypo- und hyperglykämische Bedingungen haben könnte. Die Generierung spezieller iPSC-Linien von ADHS-Patienten und gesunden Probanden diente als Basis, um Stammzellen effizient in 5-HT spezifische Neurone zu differenzieren. Diese neuronale Kultur ermöglichte uns die Untersuchung der Effekte der SLC2A3 CNVs auf die Basalexpression von SLC2A3 und GLUT3 in humanen Neuronen. Des Weiteren war der Focus auf einen potenziell veränderten Umgang der Zellen mit Glukoseentzug und der Behandlung mit speziellen hoch- und niederglykämischen Medien. Hochauflösende Fluoreszenzaufnahmen in Kombination mit elektrophysiologischen und molekularbiologischen Techniken zeigten, dass: 1) Die generierten human iPSCs vollständig reprogrammierte humane Stammzellen sind, die die typischen Merkmale der embryonalen Stammzell-Morphologie, des Wachstumsverhaltes, der Fähigkeit in verschiedenste Zelltypen des menschlichen Körpers zu differenzieren und der Expression Pluripotenz-assoziierter Marker aufweisen. 2) Der neuronale Subtyp, der aus unseren Stammzellen generiert wurde, die typischen Charakteristiken medianer und dorsaler 5-HT Neurone aufweist und Synapsen formt, verdeutlicht durch die Expression prä- und postsynaptischer Proteine. 3) Selbst wenn die SLC2A3 CNVs einen Einfluss auf die basale Gen- und Proteinexpression haben, zeigte sich jedoch in humanen iPSC-erzeugten Neuronen keine signifikante Veränderung der Gen- und Proteinexpression aufgrund hyper- und hypoglykämischer Konditionen, noch der Ansammlung der Proteine, die mit der Formation der Synapsen assoziiert sind. KW - Stammzelle KW - Induzierte pluripotente Stammzelle KW - Aufmerksamkeitsdefizit-Syndrom KW - Kopienzahlvariation KW - Duplikation KW - SLC2A3 KW - Deletion Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-216201 ER - TY - JOUR A1 - Ziegler, Georg C. A1 - Almos, Peter A1 - McNeill, Rhiannon V. A1 - Jansch, Charline A1 - Lesch, Klaus‐Peter T1 - Cellular effects and clinical implications of SLC2A3 copy number variation JF - Journal of Cellular Physiology N2 - SLC2A3 encodes the predominantly neuronal glucose transporter 3 (GLUT3), which facilitates diffusion of glucose across plasma membranes. The human brain depends on a steady glucose supply for ATP generation, which consequently fuels critical biochemical processes, such as axonal transport and neurotransmitter release. Besides its role in the central nervous system, GLUT3 is also expressed in nonneural organs, such as the heart and white blood cells, where it is equally involved in energy metabolism. In cancer cells, GLUT3 overexpression contributes to the Warburg effect by answering the cell's increased glycolytic demands. The SLC2A3 gene locus at chromosome 12p13.31 is unstable and prone to non‐allelic homologous recombination events, generating multiple copy number variants (CNVs) of SLC2A3 which account for alterations in SLC2A3 expression. Recent associations of SLC2A3 CNVs with different clinical phenotypes warrant investigation of the potential influence of these structural variants on pathomechanisms of neuropsychiatric, cardiovascular, and immune diseases. In this review, we accumulate and discuss the evidence how SLC2A3 gene dosage may exert diverse protective or detrimental effects depending on the pathological condition. Cellular states which lead to increased energetic demand, such as organ development, proliferation, and cellular degeneration, appear particularly susceptible to alterations in SLC2A3 copy number. We conclude that better understanding of the impact of SLC2A3 variation on disease etiology may potentially provide novel therapeutic approaches specifically targeting this GLUT. KW - copy number variation KW - energy metabolism KW - glucose transporter KW - GLUT3 KW - neurodegeneration KW - neurodevelopment KW - SLC2A3 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-218009 VL - 235 IS - 12 SP - 9021 EP - 9036 ER - TY - JOUR A1 - Jansch, Charline A1 - Günther, Katharina A1 - Waider, Jonas A1 - Ziegler, Georg C. A1 - Forero, Andrea A1 - Kollert, Sina A1 - Svirin, Evgeniy A1 - Pühringer, Dirk A1 - Kwok, Chee Keong A1 - Ullmann, Reinhard A1 - Maierhofer, Anna A1 - Flunkert, Julia A1 - Haaf, Thomas A1 - Edenhofer, Frank A1 - Lesch, Klaus-Peter T1 - Generation of a human induced pluripotent stem cell (iPSC) line from a 51-year-old female with attention-deficit/hyperactivity disorder (ADHD) carrying a duplication of SLC2A3 JF - Stem Cell Research N2 - Fibroblasts were isolated from a skin biopsy of a clinically diagnosed 51-year-old female attention-deficit/hyperactivity disorder (ADHD) patient carrying a duplication of SLC2A3, a gene encoding neuronal glucose transporter-3 (GLUT3). Patient fibroblasts were infected with Sendai virus, a single-stranded RNA virus, to generate transgene-free human induced pluripotent stem cells (iPSCs). SLC2A3-D2-iPSCs showed expression of pluripotency-associated markers, were able to differentiate into cells of the three germ layers in vitro and had a normal female karyotype. This in vitro cellular model can be used to study the role of risk genes in the pathogenesis of ADHD, in a patient-specific manner. KW - ADHD KW - SLC2A3 KW - induced pluripotent stem cells Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-176654 VL - 28 ER -