TY - JOUR A1 - März, Juliane A1 - Kurlbaum, Max A1 - Roche-Lancaster, Oisin A1 - Deutschbein, Timo A1 - Peitzsch, Mirko A1 - Prehn, Cornelia A1 - Weismann, Dirk A1 - Robledo, Mercedes A1 - Adamski, Jerzy A1 - Fassnacht, Martin A1 - Kunz, Meik A1 - Kroiss, Matthias T1 - Plasma Metabolome Profiling for the Diagnosis of Catecholamine Producing Tumors JF - Frontiers in Endocrinology N2 - Context Pheochromocytomas and paragangliomas (PPGL) cause catecholamine excess leading to a characteristic clinical phenotype. Intra-individual changes at metabolome level have been described after surgical PPGL removal. The value of metabolomics for the diagnosis of PPGL has not been studied yet. Objective Evaluation of quantitative metabolomics as a diagnostic tool for PPGL. Design Targeted metabolomics by liquid chromatography-tandem mass spectrometry of plasma specimens and statistical modeling using ML-based feature selection approaches in a clinically well characterized cohort study. Patients Prospectively enrolled patients (n=36, 17 female) from the Prospective Monoamine-producing Tumor Study (PMT) with hormonally active PPGL and 36 matched controls in whom PPGL was rigorously excluded. Results Among 188 measured metabolites, only without considering false discovery rate, 4 exhibited statistically significant differences between patients with PPGL and controls (histidine p=0.004, threonine p=0.008, lyso PC a C28:0 p=0.044, sum of hexoses p=0.018). Weak, but significant correlations for histidine, threonine and lyso PC a C28:0 with total urine catecholamine levels were identified. Only the sum of hexoses (reflecting glucose) showed significant correlations with plasma metanephrines. By using ML-based feature selection approaches, we identified diagnostic signatures which all exhibited low accuracy and sensitivity. The best predictive value (sensitivity 87.5%, accuracy 67.3%) was obtained by using Gradient Boosting Machine Modelling. Conclusions The diabetogenic effect of catecholamine excess dominates the plasma metabolome in PPGL patients. While curative surgery for PPGL led to normalization of catecholamine-induced alterations of metabolomics in individual patients, plasma metabolomics are not useful for diagnostic purposes, most likely due to inter-individual variability. KW - adrenal KW - pheochromocytoma KW - paraganglioma KW - targeted metabolomics KW - mass spectronomy KW - catecholamines KW - machine learning KW - feature selection Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-245710 SN - 1664-2392 VL - 12 ER - TY - JOUR A1 - Beyhoff, Niklas A1 - Lohr, David A1 - Thiele, Arne A1 - Foryst-Ludwig, Anna A1 - Klopfleisch, Robert A1 - Schreiber, Laura M. A1 - Kintscher, Ulrich T1 - Myocardial Infarction After High-Dose Catecholamine Application—A Case Report From an Experimental Imaging Study JF - Frontiers in Cardiovascular Medicine N2 - Although heart failure following myocardial infarction (MI) represents a major health burden, underlying microstructural and functional changes remain incompletely understood. Here, we report on a case of unexpected MI after treatment with the catecholamine isoproterenol in an experimental imaging study in mice using different state-of-the-art imaging modalities. The decline in cardiac function was documented by ultrahigh-frequency echocardiography and speckle-tracking analyses. Myocardial microstructure was studied ex vivo at a spatial resolution of 100 × 100 × 100 μm\(^{3}\) using diffusion tensor magnetic resonance imaging (DT-MRI) and histopathologic analyses. Two weeks after ISO treatment, the animal showed an apical aneurysm accompanied by reduced radial strain in corresponding segments and impaired global systolic function. DT-MRI revealed a loss of contractile fiber tracts together with a disarray of remaining fibers as corresponding microstructural correlates. This preclinical case report provides valuable insights into pathophysiology and morphologic–functional relations of heart failure following MI using emerging imaging technologies. KW - myocardial infarction KW - catecholamines KW - speckle tracking KW - diffusion tensor imaging KW - magnetic resonance imaging KW - case report KW - heart failure KW - echocardiography Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-217959 VL - 7 ER - TY - JOUR A1 - Fauser, Mareike A1 - Weselek, Grit A1 - Hauptmann, Christine A1 - Markert, Franz A1 - Gerlach, Manfred A1 - Hermann, Andreas A1 - Storch, Alexander T1 - Catecholaminergic Innervation of Periventricular Neurogenic Regions of the Developing Mouse Brain JF - Frontiers in Neuroanatomy N2 - The major catecholamines—dopamine (DA) and norepinephrine (NE)—are not only involved in synaptic communication but also act as important trophic factors and might ultimately be involved in mammalian brain development. The catecholaminergic innervation of neurogenic regions of the developing brain and its putative relationship to neurogenesis is thus of pivotal interest. We here determined DA and NE innervation around the ventricular/subventricular zone (VZ/SVZ) bordering the whole ventricular system of the developing mouse brain from embryonic day 14.5 (E14.5), E16.5, and E19.5 until postnatal day zero (P0) by histological evaluation and HPLC with electrochemical detection. We correlated these data with the proliferation capacity of the respective regions by quantification of MCM\(^{2+}\) cells. During development, VZ/SVZ catecholamine levels dramatically increased between E16.5 and P0 with DA levels increasing in forebrain VZ/SVZ bordering the lateral ventricles and NE levels raising in midbrain/hindbrain VZ/SVZ bordering the third ventricle, the aqueduct, and the fourth ventricle. Conversely, proliferating MCM\(^{2+}\) cell counts dropped between E16.5 and E19.5 with a special focus on all VZ/SVZs outside the lateral ventricles. We detected an inverse strong negative correlation of the proliferation capacity in the periventricular neurogenic regions (log-transformed MCM\(^{2+}\) cell counts) with their NE levels (r = −0.932; p < 0.001), but not their DA levels (r = 0.440; p = 0.051) suggesting putative inhibitory effects of NE on cell proliferation within the periventricular regions during mouse brain development. Our data provide the first framework for further demandable studies on the functional importance of catecholamines, particularly NE, in regulating neural stem/progenitor cell proliferation and differentiation during mammalian brain development. KW - brain development KW - ventricular zone KW - catecholamines KW - norepinephrine KW - dopamine KW - neurogenesis Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-212485 VL - 14 ER - TY - THES A1 - Schwärzel, Martin T1 - Localizing engrams of olfactory memories in Drosophila T1 - Lokalisation von Duftgedächtnissen in Drosophila N2 - Zars and co-workers were able to localize an engram of aversive olfactory memory to the mushroom bodies of Drosophila (Zars et al., 2000). In this thesis, I followed up on this finding in two ways. Inspired by Zars et al. (2000), I first focused on the whether it would also be possible to localize memory extinction.While memory extinction is well established behaviorally, little is known about the underlying circuitry and molecular mechanisms. In extension to the findings by Zars et al (2000), I show that aversive olfactory memories remain localized to a subset of mushroom body Kenyon cells for up to 3 hours. Extinction localizes to the same set of Kenyon cells. This common localization suggests a model in which unreinforced presentations of a previously learned odorant intracellularly antagonizes the signaling cascades underlying memory formation. The second part also targets memory localization, but addresses appetitive memory. I show that memories for the same olfactory cue can be established through either sugar or electric shock reinforcement. Importantly, these memories localize to the same set of neurons within the mushroom body. Thus, the question becomes apparent how the same signal can be associated with different events. It is shown that two different monoamines are specificaly necessary for formation of either of these memories, dopamine in case of electric shock and octopamine in case of sugar memory, respectively. Taking the representation of the olfactory cue within the mushroom bodies into account, the data suggest that the two memory traces are located in the same Kenyon cells, but in separate subcellular domains, one modulated by dopamine, the other by octopamine. Taken together, this study takes two further steps in the search for the engram. (1) The result that in Drosophila olfactory learning several memories are organized within the same set of Kenyon cells is in contrast to the pessimism expressed by Lashley that is might not be possible to localize an engram. (2) Beyond localization, a possibible mechanism how several engrams about the same stimulus can be localized within the same neurons might be suggested by the models of subcellular organisation, as postulated in case of appetitive and aversive memory on the one hand and acquisition and extinction of aversive memory on the other hand. N2 - Troy Zars und seine Mitarbeiter konnten für das olfaktorische Elektoschockgedächtnis von Drosophila zum ersten mal die Spur eines Duftgedächtnisses in den Pilzkörpern (PK) lokalisieren. Darauf aufbauend stelle ich nun in dieser Arbeit zwei Fragen: 1. Wäre es möglich auch den Prozess der Auslöschung dieses Gedächtnissen zu lokalisieren? Obwohl die Verhaltensphysiologie der Gedächtnisauslöschung sehr gut charakterisiert sind weiss man sehr wenig über die daran beteiligten molekularen Signalmechanismen und Strukturen. In Anlehnung an die Arbeit von Zars et al. (2000) kann ich zeigen, dass sowohl die Speicherung wie auch die Auslöschung dieses Gedächt-nisses in den gleichen Kenyonzellen der PK geschieht. Diese gemeinsame zelluläre Lokalisierung legt ein Model nahe, in dem die wiederholte Präsentation des mit Elektro-schock assoziierten Duftes während der Auslöschung, intrazellulär auf die gleichen Signalwege wirkt die auch für die Bildung des Duftgedächtnisses notwendig sind. 2. Wäre es möglich auch die Spur eines attraktive Duftgedächtnisses zu lokalisieren? Ich kann zeigen, dass Gedächtnisse über den gleichen Duft sowohl attraktiv als auch repulsiv sein können, je nachdem ob Zucker oder Elektroshock während der pavlovschen Konditionierung benutzt wird. Beide Gedächtnisse sind im gleichen Satz von Kenyonzellen lokalisiert. Dies wirft die Frage auf, wie das gleiche Duftsignal mit zwei verschiedenen Ereignissen (Zucker und Elektroschock) assoziiert werden kann. Es zeigt sich, dass zwei unterschiedliche Monoamine jeweils spezifisch für das Anlegen eines der beiden Gedächtnisse verantwortlich sind; Dopamin für das Electroschockgedächtnis und Octopamin für das Zuckergedächtnis. Berücksichtigt man wie Duftreize in den PK kodiert sind, ergibt sich ein Model bei dem zwar beide Spuren in einer Zelle lokalisiert sind, diese jedoch durch die Nutzung unterschiedlicher subzellulärer Bereiche voneinander getrennt werden. Jeweils einer dieser Bereiche wäre durch Dopamin moduliert, der andere durch Octopamin. Das Fazit dieser Studie ist, dass zwei wichtige Punkte bei der Lokalisierung von Gedächtnis-spuren aufgezeigt wurden. (1) Die Tatsache, dass beim Duftlernen von Drosophila mehrere Spuren verschiedener Duftgedächtnisse lokalisiert worden sind widerlegt die von Lashley aufgestellte Behauptung, dass Gedächtnisse nicht lokalisierbar sind. (2) Verschiedene Spuren können für den gleichen Duft in den gleichen Zellen angelegt werden, sofern man eine subzelluläre Organisation annimmt, wie sie sowohl für Zucker- und Elektroschockgedächtnis, als auch Gedächtnisbildung und Auslöschen vorgeschlagen werden KW - Taufliege KW - Gedächtnis KW - Lernen KW - Signaltransduktion KW - Gedächtnis KW - Verhalten KW - Catecholamine KW - Signaltransduktion KW - Lernen KW - Memory KW - Behaviour KW - catecholamines KW - signaltransduction KW - learning Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-5065 ER -