TY - JOUR A1 - Kleint, Nina I. A1 - Wittchen, Hans-Ulrich A1 - Lueken, Ulrike T1 - Probing the interoceptive network by listening to heartbeats: an fMRI study JF - PLoS ONE N2 - Exposure to cues of homeostatic relevance (i.e. heartbeats) is supposed to increase the allocation of attentional resources towards the cue, due to its importance for self-regulatory, interoceptive processes. This functional magnetic resonance imaging (fMRI) study aimed at determining whether listening to heartbeats is accompanied by activation in brain areas associated with interoception, particularly the insular cortex. Brain activity was measured with fMRI during cue-exposure in 36 subjects while listening to heartbeats vs. sinus tones. Autonomic markers (skin conductance) and subjective measures of state and trait anxiety were assessed. Stimulation with heartbeat sounds triggered activation in brain areas commonly associated with the processing of interoceptive information, including bilateral insular cortices, the inferior frontal operculum, and the middle frontal gyrus. A psychophysiological interaction analysis indicated a functional connectivity between the middle frontal gyrus (seed region) and bilateral insular cortices, the left amygdala and the supplementary motor area. The magnitude of neural activation in the right anterior insular cortex was positively associated with autonomic arousal. The present findings indicate that listening to heartbeats induced activity in areas of the interoception network as well as changes in psychophysiological arousal and subjective emotional experience. As this approach constitutes a promising method for studying interoception in the fMRI environment, a clinical application in anxiety prone populations should be addressed by future studies. KW - inferior parietal lobule KW - brain activation KW - cortex KW - awareness KW - perception KW - cardiovascular arousal KW - panic disorder KW - humans KW - anterior insula KW - emotional experience Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148330 VL - 10 IS - 7 ER - TY - JOUR A1 - Gruss, L. Forest A1 - Wieser, Matthias J. A1 - Schweinberger, Stefan R. A1 - Keil, Andreas T1 - Face-evoked steady-state visual potentials: effects of presentation rate and face inversion JF - Frontiers in Human Neuroscience N2 - Face processing can be explored using electrophysiological methods. Research with event-related potentials has demonstrated the so-called face inversion effect, in which the N170 component is enhanced in amplitude and latency to inverted, compared to upright, faces. The present study explored the extent to which repetitive lower-level visual cortical engagement, reflected in flicker steady-state visual evoked potentials (ssVEPs), shows similar amplitude enhancement to face inversion. We also asked if inversion-related ssVEP modulation would be dependent on the stimulation rate at which upright and inverted faces were flickered. To this end, multiple tagging frequencies were used (5, 10, 15, and 20 Hz) across two studies (n=21, n=18). Results showed that amplitude enhancement of the ssVEP for inverted faces was found solely at higher stimulation frequencies (15 and 20 Hz). By contrast, lower frequency ssVEPs did not show this inversion effect. These findings suggest that stimulation frequency affects the sensitivity of ssVEPs to face inversion. KW - N170 KW - upside-down faces KW - selective attention KW - spatial attention KW - cortex KW - perception KW - recognition KW - brain KW - FMRI KW - area Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-134399 VL - 6 IS - 316 ER -