TY - JOUR A1 - Suchomel, H. A1 - Brodbeck, S. A1 - Liew, T. C. H. A1 - Amthor, M. A1 - Klaas, M. A1 - Klembt, S. A1 - Kamp, M. A1 - Höfling, S. A1 - Schneider, C. T1 - Prototype of a bistable polariton field-effect transistor switch JF - Scientific Reports N2 - Microcavity exciton polaritons are promising candidates to build a new generation of highly nonlinear and integrated optoelectronic devices. Such devices range from novel coherent light emitters to reconfigurable potential landscapes for electro-optical polariton-lattice based quantum simulators as well as building blocks of optical logic architectures. Especially for the latter, the strongly interacting nature of the light-matter hybrid particles has been used to facilitate fast and efficient switching of light by light, something which is very hard to achieve with weakly interacting photons. We demonstrate here that polariton transistor switches can be fully integrated in electro-optical schemes by implementing a one-dimensional polariton channel which is operated by an electrical gate rather than by a control laser beam. The operation of the device, which is the polariton equivalent to a field-effect transistor, relies on combining electro-optical potential landscape engineering with local exciton ionization to control the scattering dynamics underneath the gate. We furthermore demonstrate that our device has a region of negative differential resistance and features a completely new way to create bistable behavior. KW - materials for optics KW - nanoscience and technology KW - optics and photonics KW - semiconductors Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-158323 VL - 7 IS - 5114 ER - TY - JOUR A1 - Lundt, Nils A1 - Klembt, Sebastian A1 - Cherotchenko, Evgeniia A1 - Betzold, Simon A1 - Iff, Oliver A1 - Nalitov, Anton V. A1 - Klaas, Martin A1 - Dietrich, Christof P. A1 - Kavokin, Alexey V. A1 - Höfling, Sven A1 - Schneider, Christian T1 - Room-temperature Tamm-plasmon exciton-polaritons with a WSe\(_{2}\) monolayer JF - Nature Communications N2 - Solid-state cavity quantum electrodynamics is a rapidly advancing field, which explores the frontiers of light–matter coupling. Metal-based approaches are of particular interest in this field, as they carry the potential to squeeze optical modes to spaces significantly below the diffraction limit. Transition metal dichalcogenides are ideally suited as the active material in cavity quantum electrodynamics, as they interact strongly with light at the ultimate monolayer limit. Here, we implement a Tamm-plasmon-polariton structure and study the coupling to a monolayer of WSe\(_{2}\), hosting highly stable excitons. Exciton-polariton formation at room temperature is manifested in the characteristic energy–momentum dispersion relation studied in photoluminescence, featuring an anti-crossing between the exciton and photon modes with a Rabi-splitting of 23.5 meV. Creating polaritonic quasiparticles in monolithic, compact architectures with atomic monolayers under ambient conditions is a crucial step towards the exploration of nonlinearities, macroscopic coherence and advanced spinor physics with novel, low-mass bosons. KW - optics and photonics KW - two-dimensional materials KW - electronic properties and materials Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-169470 VL - 7 ER -