TY - THES A1 - Al-Baidhani, Mohammed T1 - Spectroscopy as a tool to investigate the high energy optical properties of nanostructured magnetically doped topological insulator T1 - Spektroskopie als Methode zur Untersuchung der optischen Eigenschaften nanostrukturierter, magnetisch dotierter Topologischer Isolatoren bei hohen Energien N2 - In this dissertation the electronic and high-energy optical properties of thin nanoscale films of the magnetic topological insulator (MTI) (V,Cr)y(BixSb1-x)2-yTe3 are studied by means of X-ray photoelectron spectroscopy (XPS) and electron energy-loss spectroscopy (EELS). Magnetic topological insulators are presently of broad interest as the combination of ferromagnetism and spin-orbit coupling in these materials leads to a new topological phase, the quantum anomalous Hall state (QAHS), with dissipation less conduction channels. Determining and controlling the physical properties of these complex materials is therefore desirable for a fundamental understanding of the QAHS and for their possible application in spintronics. EELS can directly probe the electron energy-loss function of a material from which one can obtain the complex dynamic dielectric function by means of the Kramers-Kronig transformation and the Drude-Lindhard model of plasmon oscillations. The XPS core-level spectra in (V,Cr)y(BixSb1-x)2-yTe3 are analyzed in detail with regards to inelastic background contributions. It is shown that the spectra can be accurately described based on the electron energy-loss function obtained from an independent EELS measurement. This allows for a comprehensive and quantitative analysis of the XPS data, which will facilitate future core-level spectroscopy studies in this class of topological materials. From the EELS data, furthermore, the bulk and surface optical properties were estimated, and compared to ab initio calculations based on density functional theory (DFT) performed in the GW approximation for Sb2Te3. The experimental results show a good agreement with the calculated complex dielectric function and the calculated energy-loss function. The positions of the main plasmon modes reported here are expected to be generally similar in other materials in this class of nanoscale TI films. Hence, the present work introduces EELS as a powerful method to access the high-energy optical properties of TI thin films. Based on the presented results it will be interesting to explore more systematically the effects of stoichiometry, magnetic doping, film thickness and surface morphology on the electron-loss function, potentially leading to a better understanding of the complex interplay of structural, electronic, magnetic and optical properties in MTI nanostructures. N2 - Die vorliegende Dissertation beschäftigt sich mit den elektronischen und hochen- ergetischen optischen Eigenschaften von auf der Nanoskala dünnen Filmen des magnetischen topologischen Isolators (MTI) (V,Cr)y(BixSb1−x)2−yTe3 mithilfe von Röntgenphotoelektronenspektroskopie (engl.: X-ray photoelectron spectroscopy, XPS), sowie Elektronenenergieverlustspektroskopie (engl.: electron energy-loss spectroscopy, EELS). Magnetische topologische Isolatoren sind gegenwärtig von großem Interesse, da die Kombination von Ferromagnetismus und Spin-Bahn- Kopplung in diesen Materialien zu einer neuen topologischen Phase führt, der Quanten-Anomalen-Hall-Phase (engl.: quantum anomalous Hall state, QAHS), die sich durch verlustfreie Leitungskanäle auszeichnet. Bestimmung und Kontrolle der physikalischen Eigenschaften dieser komplexen Materialien ist somit erstrebenswert für ein fundamentales Verständnis des QAHS sowie für Anwendungen in der Spin- tronik. EELS erlaubt die direkte Untersuchung der Elektronenenergieverlustfunk- tion eines Materials, aus der man, mithilfe der Kramers-Kronig-Transformation und des Drude-Lindhard-Modells von Plasmonenoszillationen, die komplexe dynamis- che dielektrische Funktion des Materials erhält. In den XPS-Spektren der Rumpfniveaus in (V,Cr)y(BixSb1−x)2−yTe3 wird detail- liert insbesondere der Beitrag des inelastischen Untergrunds analysiert. Es kann gezeigt werden, dass, basierend auf der in einem unabhängigen EELS-Experiment gewonnenen Elektronenenergieverlustfunktion, die Rumpfniveauspektren präzise beschrieben werden können. Dies erlaubt eine umfangreiche und quantitative Anal- yse der Daten, was zukünftige Rumpfniveaustudien dieser Klasse topologischer Materialien erleichtern wird. Die mit EELS gewonnenen Daten ermöglichen weiter- hin eine Abschätzung der optischen Eigenschaften von Volumen und Oberfläche der Materialien, die in der vorliegenden Arbeit mit ab initio Berechnungen aus der Literatur für Sb2Te3 verglichen werden, welche auf Basis der Dichtefunktionaltheo- rie (DFT) in GW-näherung durchgeführt wurden. Die experimentellen Ergebnisse zeigen gute Übereinstimmungen mit der berechneten komplexen dielektrischen Funktion, sowie mit der Energieverlustfunktion. Es wird erwartet, dass die hier beschriebenen Positionen der Hauptplasmonenmoden im Allgemeinen ähnlich zu denen anderer Materialien dieser Klasse auf der Nanoskala dünner topologischer Isolatoren sind. Somit stellt die vorliegende Arbeit das EELS Experiment als eine mächtige Methode vor, die einen Zugang zu den hochenergetischen optischen Eigen- schaften dünner TIs schafft. Basierend auf den hier vorgestellten Ergebnissen bleibt es interessant sein die Auswirkungen von Stöchiometrie, magnetischer Dotierung, Filmdicke, sowie Oberflächenmorphologie auf die Energieverlustfunktion system- atischer zu untersuchen, um damit ein besseres Verständnis für das komplexe Zusammenspiel aus strukturellen, elektronischen und optischen Eigenschaften in MTI-Nanostrukturen zu erlangen. KW - spectroscopy KW - XPS KW - REELS KW - topological insulator KW - QAHE KW - Topologischer Isolator KW - Optische Eigenschaft KW - Elektronenspektroskopie Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-157221 ER - TY - JOUR A1 - Dauth, M. A1 - Wiessner, M. A1 - Feyer, V. A1 - Schöll, A. A1 - Puschnig, P. A1 - Reinert, F. A1 - Kuemmel, S. T1 - Angle resolved photoemission from organic semiconductors: orbital imaging beyond the molecular orbital interpretation JF - New Journal of Physics N2 - Fascinating pictures that can be interpreted as showing molecular orbitals have been obtained with various imaging techniques. Among these, angle resolved photoemission spectroscopy (ARPES) has emerged as a particularly powerful method. Orbital images have been used to underline the physical credibility of the molecular orbital concept. However, from the theory of the photoemission process it is evident that imaging experiments do not show molecular orbitals, but Dyson orbitals. The latter are not eigenstates of a single-particle Hamiltonian and thus do not fit into the usual simple interpretation of electronic structure in terms of molecular orbitals. In a combined theoretical and experimental study we thus check whether a Dyson-orbital and a molecular-orbital based interpretation of ARPES lead to differences that are relevant on the experimentally observable scale. We discuss a scheme that allows for approximately calculating Dyson orbitals with moderate computational effort. Electronic relaxation is taken into account explicitly. The comparison reveals that while molecular orbitals are frequently good approximations to Dyson orbitals, a detailed understanding of photoemission intensities may require one to go beyond the molecular orbital picture. In particular we clearly observe signatures of the Dyson-orbital character for an adsorbed semiconductor molecule in ARPES spectra when these are recorded over a larger momentum range than in earlier experiments. KW - Dyson orbitals KW - electronic structure KW - PTCDA KW - AG(110) KW - density-functional theory KW - approximation KW - energies KW - monolayers KW - spectroscopy KW - NTCDA KW - ARPES KW - orbital imaging KW - photoemission spectroscopy Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-115180 SN - 1367-2630 VL - 16 ER - TY - JOUR A1 - Kasprzak, J. A1 - Sivalertporn, K. A1 - Albert, F. A1 - Schneider, C. A1 - Höfling, S. A1 - Kamp, M. A1 - Forchel, A. A1 - Muljarov, E. A. A1 - Langbein, W. T1 - Coherence dynamics and quantum-to-classical crossover in an exciton-cavity system in the quantum strong coupling regime JF - New Journal of Physics N2 - Interaction between light and matter generates optical nonlinearities, which are particularly pronounced in the quantum strong coupling regime. When a single bosonic mode couples to a single fermionic mode, a Jaynes-Cummings (JC) ladder is formed, which we realize here using cavity photons and quantum dot excitons. We measure and model the coherent anharmonic response of this strongly coupled exciton-cavity system at resonance. Injecting two photons into the cavity, we demonstrate a \(\sqrt 2\) larger polariton splitting with respect to the vacuum Rabi splitting. This is achieved using coherent nonlinear spectroscopy, specifically four-wave mixing, where the coherence between the ground state and the first (second) rung of the JC ladder can be interrogated for positive (negative) delays. With increasing excitation intensity and thus rising average number of injected photons, we observe spectral signatures of the quantum-to-classical crossover of the strong coupling regime. KW - Jaynes-Cummings ladder KW - spectral interferometry KW - photon KW - dot KW - spectroscopy KW - oscillations KW - microcavity KW - resonance KW - light Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-123005 SN - 1367-2630 VL - 15 IS - 045013 ER - TY - THES A1 - Schöll, Achim T1 - High-resolution investigation of the electronic structure of organic thin films T1 - Hoch-aufgelöste Untersuchung der elektronischen Struktur organischer Dünnschichten N2 - Die vorliegende Arbeit befasst sich mit der elektronischen Struktur organischer Dünnfilme. Eine zentrale Frage dabei ist der Einfluss der Wechselwirkung zwischen den Molekülen in der kondensierten Phase und der Wechselwirkung an metall-organischen Grenzflächen auf die elektronischen Eigenschaften. Dazu wurden die experimentellen Methoden Photoelektronenspektroskopie (PES) und Röntgenabsorptionsspektroskopie (NEXAFS) mit höchster Energieauflösung angewandt. Zusätzlich wurden ab initio Rechnungen zur theoretischen Simulation von NEXAFS Spektren durchgeführt. Hauptsächlich wurden dünne, vakuumsublimierte Filme aromatischer Modellmoleküle mit sauerstoffhaltigen funktionellen Gruppen (NTCDA, PTCDA, NDCA, BPDCA und ANQ) auf Ag(111) Oberflächen untersucht. Die ausgewählten Moleküle besitzen wegen ihrer großen delokalisierten p-Elektronensysteme sehr interessante Eigenschaften für die Anwendung in elektronischen Bauelementen. Dank der hohen Energieauflösung von Synchrotronstrahlungsquellen der dritten Generation war es erstmals möglich, die Schwingungsfeinstruktur in den NEXAFS Spektren dieser kondensierten großen Moleküle sichtbar zu machen. Der Vergleich der Daten verschiedener Moleküle liefert dabei interessante Einblicke in den Kopplungmechanismus zwischen dem elektronischen Übergang und der Schwingungsanregung. Obwohl die Moleküle eine Vielzahl verschiedener Schwingungsmoden besitzen, kann man in deren NEXAFS Spektren beobachten, dass die elektronischen Übergänge jeweils an hauptsächlich eine Schwingungsmode koppeln. Die hochaufgelösten XPS Spektren der Moleküle NTCDA, PTCDA, NDCA, BPDCA und ANQ zeigen bestimmte systematische Unterschiede, so dass diese Spektren als Fingerabdruck für die jeweilige Substanz verwendet werden können. Durch die vergleichende Auswertung der Spektren konnten die 1s Bindungsenergien aller chemisch unterschiedlichen Kohlenstoff- und Sauerstoffatome bestimmt werden. Zusätzliche Strukturen in den Spektren können shake-up Satelliten zugeschrieben werden. Die fünf Moleküle stellen ein ideales Modellsystem dar, um fundamentale Aspekte der Rumpfelektronenspektroskopie zu untersuchen, wie Anfangs- und Endzustandseffekte und Satelliten, die durch die intramolekulare und intermolekulare Elektronendichteverteilung im Grund- und rumpfionisierten Zustand beeinflusst werden. Ein wichtiger Punkt dieser Dissertation sind spektroskopische Untersuchungen strukturell unterschiedlicher NTCDA Monolagenphasen auf Ag(111), deren Existenz aus vorangegangenen Arbeiten bekannt ist. Deutliche Unterschiede in der elektronischen Struktur der verschiedenen Phasen, die auf die Metall-Adsorbat Wechselwirkung zurückzuführen sind, konnten sowohl mittels XPS als auch mittels NEXAFS aufgezeigt werden. Sowohl für die komprimierte also auch für die relaxierte NTCDA Monolage kann die Bindung ans Substrat als schwach chemisorptiv charakterisiert werden, was eindeutig aus der Analyse der Satellitenstrukturen in den O 1s und C 1s XPS Spektren hervorgeht, die durch die dynamische Abschirmung durch Ladungstransfer vom Substrat erzeugt werden. Die NEXAFS Daten zeigen konsistent eine teilweise Besetzung des NTCDA LUMOs. Sowohl für die komprimierte als auch für die relaxierte NTCDA Monolage finden hochinteressante Phasenübergänge in ungeordnete Tieftemperaturphasen beim Abkühlen auf 160 K statt. Dabei wird die Adsorbat-Substrat Wechselwirkung stärker und das LUMO wird vollständig besetzt. Dies kann in den NEXAFS Spektren anhand des Verschwindens der zughörigen Übergänge beobachtet werden. Die XPS Spektren zeigen gleichzeitig eine deutliche Abnahme der Intensität schlecht abgeschirmter Photoemissionszustände, was auf die nun effektivere Ladungstransferabschirmung zurückzuführen ist. Für den Phasenübergang der relaxierten Monolage konnte mittels temperaturabhängiger NEXAFS Messungen eindeutig ein Hystereseverhalten gezeigt und die Hysteresekurve bestimmt werden. Die Hysterese beträgt etwa 20 K. Des weiteren wurde aus SPA-LEED Messungen die Aktivierungsenergie für den Phasenübergang der relaxierten Monolage beim Abkühlen auf ca. 60 meV bestimmt. Schließlich wurden NEXAFS Untersuchungen an Polyäthylenproben mit verschiedenem Komonomergehalt durchgeführt. Unterschiede in den Absorptionsspektren von Proben mit unterschiedlichem Komonomeranteil konnten eindeutig auf die unterschiedliche Kristallinität der Proben zurückgeführt werden, indem eine hochkristalline Probe in situ bis zur Schmelztemperatur geheizt wurde. Ab initio Rechnungen an einer Modelmatrix aus Butanmolekülen zeigen, dass die Spektren von kristallinem und amorphem Polyäthylen aufgrund der intermolekularen Wechselwirkung deutliche Unterschiede hauptsächlich für Resonanzen mit starkem Rydberg Charakter aufweisen. Damit lassen sich die Unterschiede in den Polyäthylenspektren durch die Überlagerung der Signaturen der kristallinen und amorphen Anteile erklären, die je nach Kristallinität der Probe in unterschiedlichen Verhältnissen vorliegen. N2 - This work is investigating the electronic structure of organic thin films. A central question in this respect is the influence of the interaction between the molecules in the condensed phase and the interaction at metal-organic interfaces on the electronic properties. For this purpose the experimental methods Photoelectron Spectroscopy (PES) and Near Edge X-ray Absorption Finestructure Spectroscopy (NEXAFS) were applied with highest energy resolution. In addition, ab initio calculations were performed for the theoretical simulation of NEXFAS spectra. The investigation is mainly focussing on thin, vacuum sublimated films of aromatic model molecules with oxygen-containing functional groups (NTCDA, PTCDA, NDCA, BPDCA and ANQ) and Ag(111) surfaces. Due to their large, delocalised p-systems these molecules have very interesting properties for their application in electronic devices. Due to the high energy resolution of third generation synchrotron sources the vibronic fine structure in the NEXAFS spectra of these large molecules could be resolved for the first time in the condensed phase. A comparison of the data of the different molecules provides interesting insight into the coupling between electronic transition and vibronic excitation. Although for these molecules a variety of different vibronic modes exist, the NEXAFS data show that preferentially only on mode couples to each electronic transition. The high-resolution PES spectra of the molecules NTCDA, PTCDA, NDCA, BPDCA and ANQ show distinct differences thus providing a fingerprint for each investigated substance. A comparative analysis of the spectra enabled us to define the 1s binding energies of all chemically different carbon and oxygen atoms. Additional structures in the spectra can be assigned as shake-up satellites. The five molecules are an ideal model system for the investigation of fundamental aspects of core electron spectroscopy, such as initial and final state effects and satellites, that are influenced by the intra- and intermolecular electron distribution in the ground and core ionized state. An important aspect in this thesis is the spectroscopic investigation of structurally different NTCDA monolayer phases on the Ag(111) surface. Marked differences in the electronic structures of the different phases, that can be assigned to differences in the metal-adsorbate interaction, could be demonstrated by XPS and NEXAFS. The substrate bonding can be characterized as chemisorptive for both, the compressed as well as the relaxed NTCDA monolayer, which can be unambiguously deduced from the analysis of satellite structures in the O 1s and C 1s XPS spectra. These satellites are due to dynamic screening by charge transfer from the substrate. The NEXAFS data show consistently, that the NTCDA LUMO becomes partly occupied upon adsorption. Highly interesting phase transitions into disordered low-temperature phases occur upon cooling to 160 K for both, the compressed and the relaxed NTCDA monolayer. Thereby, the adsorbate-substrate bonding is increased and the NTCDA LUMO becomes completely occupied. This can be observed in the NEXAFS data, where transitions involving LUMO final states are quenched. Simultaneously, the XPS data show a distinctly decreased intensity of unscreened photoemission states due to enhanced charge transfer screening. In addition, a hysteresis behaviour could be demonstrated for the phase transition of the relaxed monolayer by temperature dependent NEXAFS experiments and the hysteresis curve was determined. The hysteresis could be quantified to approx. 20 K. From SPA-LEED experiments the activating energy for the phase transition of the relaxed monolayer upon cooling could be determined to 60 meV. Finally, a NEXAFS investigation of polyethylene samples with different comonomer content is presented. Differences in the absorption spectra between samples with different comonomer content could be unambiguously assigned to the different crystallinities of the samples by heating a highly crystalline sample in situ close to the melting temperature. Ab initio calculations on a model matrix of butane molecules show, that the spectra of crystalline and amorphous polyethylene differ distinctly due to the intermolecular interaction, which can be observed best for resonances with strong Rydberg character. Thus, the differences in the PE spectra can be explained by the superposition of the signatures of crystalline and amorphous moieties, that are mixed according to the respective crystallinity. KW - Dünne Schicht KW - Organische Verbindungen KW - Elektronenstruktur KW - Organische Dünnschichten KW - elektronische Struktur KW - NEXAFS KW - XPS KW - Spektroskopie KW - organic thin films KW - electronic structure KW - NEXAFS KW - XPS KW - spectroscopy Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-10809 ER -