TY - THES A1 - Önal-Hartmann, Cigdem T1 - Emotional Modulation of Motor Memory Formation T1 - Emotionale Modulation des Motorischen Gedächtnises N2 - Hintergründe: Wie eine Vielzahl von Studien belegt, kann das explizite Gedächtnis, das die bewusste Erinnerung an enkodierte Informationen beinhaltet, durch Emotionen beeinflusst werden, und zwar über den Einfluss auf verschiedene Verarbeitungsebenen (Enkodierung, Konsolidierung, Abruf usw.). Bisher wenig untersucht ist, ob und wie Emotionen Vorgänge der motorischen Gedächtnisbildung, die nicht auf bewusster Erinnerung beruhen und sich stattdessen durch Veränderungen im Verhalten darstellen, modulieren. Experiment 1: Das Ziel des ersten Experimentes war es, den Einfluss von Emotionen auf motorisches Lernen zu untersuchen. Vier Gruppen von Probanden mussten in einer motorischen Lernaufgabe schnelle, seitliche Bewegungen mit dem Daumen ausführen. Während dieser Aufgabe hörten die Probanden emotionale Klänge, die in Valenz und Arousal variierten: 1. Valenz negativ/ Arousal niedrig (V-/A-), 2. Valenz negativ/ Arousal hoch (V-/A+), 3. Valenz positiv/ Arousal niedrig (V+/A-), 4. Valenz positiv/ Arousal hoch (V+/A+). Die deskriptive Analyse aller Daten sprach für beste Ergebnisse für das motorische Lernen in der Bedingung V-/A-, aber die Unterschiede zwischen den Bedingungen waren nicht signifikant. Die Interaktion zwischen Valenz und Arousal emotionaler Töne scheint demnach motorische Enkodierungsprozesse zu modulieren, jedoch müssen zukünftige Studien mit unterschiedlichen emotionalen Stimuli die Annahme weiter untersuchen, dass negative Stimuli mit niedrigem Arousal während der Enkodierung einen fördernden Effekt auf das motorische Kurzzeitgedächtnis haben. Experiment 2: Die Absicht des zweiten Experimentes war es, die Auswirkungen emotionaler Interferenzen auf die Konsolidierung beim Sequenzlernen zu untersuchen. Sechs Gruppen von Probanden trainierten zuerst in getrennten Sitzungen eine SRTT-Aufgabe (serial reaction time task). Um die Konsolidierung der neu erlernten Fertigkeit zu modulieren, wurden die Probanden nach dem Training einer von drei unterschiedlichen Klassen emotionaler Stimuli (positiv, negativ oder neutral) ausgesetzt. Diese bestanden aus einem Set emotionaler Bilder, die mit emotional kongruenten Musikstücken oder neutralen Klängen kombiniert waren. Bei den Probandengruppen wurde die emotionale Interferenz nach zwei unterschiedlichen Zeitintervallen realisiert, entweder direkt nach der Trainingssitzung oder sechs Stunden später. 72 Stunden nach der Trainingssitzung wurde jede Gruppe erneut mit der SRTT-Aufgabe getestet. Die Leistung in diesem Nachtest wurde mittels Reaktionszeit und Genauigkeit bei der Ausführung der Zielsequenz analysiert. Die emotionale Interferenz beeinflusste weder die Nachtestergebnisse für die Reaktionszeit noch die für die Genauigkeit. Allerdings konnte eine Steigerung der expliziten Sequenzerkennung durch erregende negative Stimuli festgestellt werden, wenn diese direkt nach der ersten Trainingseinheit (0h) dargeboten wurden. Diese Ergebnisse lassen vermuten, dass die Konsolidierung der expliziten Aspekte prozeduralen Lernens in einer stärkeren Wechselwirkung mit emotionalen Interferenzen stehen könnte als die der impliziten Aspekte. Die Konsolidierung unterschiedlicher Ebenen des Fertigkeitserwerbs könnte demnach von unterschiedlichen Mechanismen gesteuert werden. Da Performanz und explizites Sequenzerkennen nicht korrelierten, vermuten wir, dass implizite und explizite Modalitäten bei der Durchführung der SRTT-Aufgabe nicht komplementär sind. Experiment 3: Es sollte untersucht werden, ob es eine Präferenz der linken Gehirnhemisphäre bei der Kontrolle von Flexionsreaktionen auf positive Stimuli gibt und der rechten Hemisphäre bei der Kontrolle von Extensionsreaktionen auf negative Stimuli. Zu diesem Zweck sollten rechtshändige Probanden einen Joystick zu sich ziehen oder von sich weg drücken, nachdem sie einen positiven oder negativen Stimulus in ihrem linken oder rechten Gesichtsfeld gesehen hatten. Die Flexionsreaktionen waren bei positiven Stimuli schneller, Extensionsreaktion hingegen bei negativen Stimuli. Insgesamt war die Performanz am schnellsten, wenn die emotionalen Stimuli im linken Gesichtsfeld präsentiert wurden. Dieser Vorrang der rechten Gehirnhemisphäre war besonders deutlich für negative Stimuli, wohingegen die Reaktionszeiten auf positive Bilder keine hemisphärische Differenzierung zeigten. Wir konnten keine Interaktion zwischen Gesichtsfeld und Reaktionstyp belegen, auch fand sich keine Dreifachinteraktion zwischen Valenz, Gesichtsfeld und Reaktionstyp. In unserem experimentellen Kontext scheint die Interaktion zwischen Valenz und Gesichtsfeld stärker zu sein als die Interaktion zwischen Valenz und motorischem Verhalten. Auf Grund dieser Ergebnisse vermuten wir, dass unter gewissen Bedingungen eine Hierarchisierung der asymmetrischen Muster Vorrang hat, die möglicherweise andere vorhandene Asymmetrien maskieren könnte. N2 - Background: There is extensive evidence that explicit memory, which involves conscious recall of encoded information, can be modulated by emotions; emotions may influence encoding, consolidation or retrieval of information. However, less is known about the modulatory effects of emotions on procedural processes like motor memory, which do not depend upon conscious recall and are instead demonstrated through changes in behaviour. Experiment 1: The goal of the first experiment was to examine the influence of emotions on motor learning. Four groups of subjects completed a motor learning task performing brisk isometric abductions with their thumb. While performing the motor task, the subjects heard emotional sounds varying in arousal and valence: (1) valence negative / arousal low (V-/A-), (2) valence negative / arousal high (V-/A+), (3) valence positive / arousal low (V+/A-), and (4) valence positive / arousal high (V+/A+). Descriptive analysis of the complete data set showed best performances for motor learning in the V-/A- condition, but the differences between the conditions did not reach significance. Results suggest that the interaction between valence and arousal may modulate motor encoding processes. Since limitations of the study cannot be ruled out, future studies with different emotional stimuli have to test the assumption that exposure to low arousing negative stimuli during encoding has a facilitating effect on short term motor memory. Experiment 2: The purpose of the second experiment was to investigate the effects of emotional interference on consolidation of sequential learning. In different sessions, 6 groups of subjects were initially trained on a serial reaction time task (SRTT). To modulate consolidation of the newly learned skill, subjects were exposed, after the training, to 1 of 3 (positive, negative or neutral) different classes of emotional stimuli which consisted of a set of emotional pictures combined with congruent emotional musical pieces or neutral sound. Emotional intervention for each subject group was done in 2 different time intervals (either directly after the training session, or 6 h later). After a 72 h post-training interval, each group was retested on the SRTT. Re-test performance was evaluated in terms of response times and accuracy during performance of the target sequence. Emotional intervention did not influence either response times or accuracy of re-testing SRTT task performance. However, explicit awareness of sequence knowledge was enhanced by arousing negative stimuli applied at 0 h after training. These findings suggest that consolidation of explicit aspects of procedural learning may be more responsive toward emotional interference than are implicit aspects. Consolidation of different domains of skill acquisition may be governed by different mechanisms. Since skill performance did not correlate with explicit awareness we suggest that implicit and explicit modes of SRTT performance are not complementary. Experiment 3: The aim of the third experiment was to analyze if the left hemisphere preferentially controls flexion responses towards positive stimuli, while the right hemisphere is specialized towards extensor responses to negative pictures. To this end, right-handed subjects had to pull or push a joystick subsequent to seeing a positive or a negative stimulus in their left or right hemifield. Flexion responses were faster for positive stimuli, while negative stimuli were associated with faster extensions responses. Overall, performance was fastest when emotional stimuli were presented to the left visual hemifield. This right hemisphere superiority was especially clear for negative stimuli, while reaction times towards positive pictures showed no hemispheric difference. We did not find any interaction between hemifield and response type. Neither was there a triple interaction between valence, hemifield and response type. In our experimental context the interaction between valence and hemifield seems to be stronger than the interaction between valence and motor behaviour. From these results we suppose that under certain conditions a hierarchy scaling of the asymmetry patterns prevails, which might mask any other existing asymmetries. KW - Motorisches Lernen KW - Gefühl KW - Motorisches Gedächtnis KW - Emotionen KW - Konsolidierung KW - Motor Memory KW - Emotion Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-64838 ER - TY - THES A1 - Andreatta, Marta T1 - Emotional reactions after event learning : a Rift between Implicit and Explicit Conditioned Valence in Humans Pain Relief Lerning T1 - Emotionale Reaktionen nach dem Event-Learning N2 - Organismen vermeiden Gefahren und streben nach Belohnungen, um zu überleben. Klassische Konditionierung ist ein einfaches Model, das erklärt, wie Tiere und Menschen Ereignisse in Verbindung bringen. Dieses Lernen ermöglicht Lebewesen Gefahr oder Belohnung direkt vorherzusehen. Normalerweise besteht das Konditionierungsparadigma aus der Präsentation eines neutralen Stimulus zusammen mit einem biologisch bedeutsamen Event (der unkonditionierte Stimulus – US). Aufgrund dieser Assoziation erwirbt der neutrale Stimulus affektive Eigenschaften und wird dann konditionierter Stimulus (CS+) genannt. Wenn der CS+ mit Schmerz während der Trainingsphase assoziiert wird, leitet er eine defensive Reaktion, wie z.B. Vermeidung ein. Wenn der CS+ mit einer Belohnung assoziiert wird, leitet er eine appetitive Reaktion, wie z.B. Annäherungsreaktionen ein. Interessanterweise haben Tierstudien gezeigt, dass ein konditionierter Stimulus vermieden wurde, wenn er einem aversiven US in der Trainingsphase vorausgegangen war (CS+US; Vorwärtskonditionierung). Das deutet darauf hin, dass der CS+ aversive Eigenschaften erlangt hat. Jedoch führte ein konditionierter Stimulus zu einer Annäherung, wenn er in der Trainingsphase auf einen aversiven US folgt (US CS+; Rückwärtskonditionierung). Das deutet darauf hin, dass der CS+ appetitive Eigenschaften erlangt hat. Kann das Event Timing sowohl aversive als auch appetitive konditionierten Reaktionen auch bei Menschen auslösen, die zu Kognitionen bezüglich der Assoziationen fähig sind? Um diese Fragestellung zu beantworten, wurden vier Studien durchgeführt. Die Studien hatten den gleichen Ablauf, variiert wurde nur die Zeit zwischen CS+ und US (das Interstimulusintervall – ISI – ist als das Zeitintervall zwischen dem Onset des CS+ und dem Onset des US definiert). Während der Akquisitionsphase (Konditionierung) wurden, zwei einfache geometrische Figuren als konditionierte Stimuli dargeboten. Eine geometrische Figur (der CS+) war immer mit einem leichten schmerzhaften elektrischen Reiz (der aversive US) assoziiert; die andere Figur (der CS-) war nie mit dem elektrischen Reiz assoziiert. In einem between-subjects Design wurde entweder eine Vorwärtskonditionierung oder eine Rückwärtskonditionierung durchgeführt. Während der Testsphase (Extinktion) wurden CS+ und CS- präsentiert sowie zusätzlich eine neue neutrale geometrische Figur präsentiert, die als Kontrollstimulus fungierte; der US wurde in dieser Phase nie dargeboten. Vor und nach der Konditionierung wurden die Probanden sowohl bezüglich der Valenz (bzw. Unangenehmheit und Angenehmheit) als auch der Erregung (bzw. Ruhe und Aufregung) hinsichtlich der geometrischen Figuren befragt. In der ersten Studie wurde der Schreckreflex (Startle Reflex) als Maß für die implizite Valenz der Stimuli gemessen. Der Schreckreflex ist eine defensive Urreaktion, die aus einem Muskelzucken des Gesichts und des Körpers besteht. Dieser Reflex ist durch plötzliche und intensive visuelle, taktile oder akustische Reize evoziert. Einerseits war die Amplitude des Startles bei der Anwesenheit des vorwärts CS+ potenziert und das deutet daraufhin, dass der CS+ eine implizite negative Valenz nach der Vorwärtskonditionierung erworben hat. Anderseits war die Amplitude des Startles bei der Anwesenheit des rückwärts CS+ abgeschwächt, was darauf hin deutet, dass der CS+ nach der Rückwärtskonditionierung eine implizite positive Valenz erworben hat. In der zweiten Studie wurde die oxygenierte Bloodsresponse (BOLD) mit funktioneller Magnetresonanztomographie (fMRI) erhoben, um neuronale Korrelate des Event-Timings zu erfassen. Eine stärkere Aktivierung wurde in der Amygdala in Erwiderung auf den vorwärts CS+ und im Striatum in Erwiderung auf den rückwärts CS+ gefunden. Zum Einen entspricht dies einer Aktivierung des Defensive Motivational Systems, da die Amygdala eine wichtige Rolle beim Angstexpression und Angstakquisition hat. Deshalb wurde der vorwärts CS+ als aversiv betrachtet. Zum Anderen entspricht dies einer Aktivierung des Appetitive Motivational System, da das Striatum eine wichtige Rolle bei Belohnung hat. Deshalb wurde der rückwärts CS+ als appetitiv betrachtet. In der dritten Studie wurden Aufmerksamkeitsprozesse beim Event-Timing näher beleuchtet, indem steady-state visuelle evozierte Potentiale (ssVEP) gemessen wurden. Sowohl der vorwärts CS+ als auch der rückwärts CS+ zog Aufmerksamkeit auf sich. Dennoch war die Amplitude der ssVEP großer während der letzen Sekunden des vorwärts CS+, d.h. direkt vor dem aversiven US. Die Amplitude der ssVEP war aber größer während der ersten Sekunden des rückwärts CS+, d.h. kurz nach dem aversiven US. Vermutlich wird die Aufmerksamkeit auf den hinsichtlich des aversiven US informativsten Teil des CS+. Alle Probanden der drei Studien haben den vorwärts CS+ und den rückwärts CS+ negativer und erregender als den Kontrollstimulus beurteilt. Daher werden die expliziten Ratings vom Event-Timing nicht beeinflusst. Bemerkenswert ist die Dissoziation zwischen den subjektiven Ratings und den physiologischen Reaktionen. Nach der Dual-Prozess Theorie werden die Verhaltensreaktionen des Menschen von zwei Systemen determiniert: einem impulsiv impliziten System, das auf assoziativen Prinzipien beruht, und einem reflektiv expliziten System, das auf der Kenntnis über Fakten und Werte basiert. Wichtig ist, dass die zwei Systeme auf synergetische oder antagonistische Weise agieren können. Folglich könnte es sein, dass das impulsive und das reflektive System nach der Rückwärtskonditionierung antagonistisch arbeiten. Zusammen deuten die vorliegenden Studien daraufhin, dass Event-Timing eine Bestrafung in eine Belohnung umwandeln kann, aber die Probanden erleben den Stimulus assoziiert mit einem aversiven Event als negativ. Diese Dissoziation könnte zum Verständnis der psychiatrischen Störungen wie z.B. Angststörungen oder Drogenabhängigkeit beitragen. N2 - In order to survive, organisms avoid threats and seek rewards. Classical conditioning is a simple model to explain how animals and humans learn associations between events that allow them to predict threats and rewards efficiently. In the classical conditioning paradigm, a neutral stimulus is paired with a biologically significant event (the unconditioned stimulus – US). In virtue of this association, the neutral stimulus acquires affective motivational properties, and becomes a conditioned stimulus (CS+). Defensive responses emerge for pairings with an aversive US (e.g., pain), and appetitive responses emerge for pairing with an appetitive event (e.g., reward). It has been observed that animals avoid a CS+ when it precedes an aversive US during a training phase (CS+  US; forward conditioning); whereas they approach a CS+ when it follows an aversive US during the training phase (US  CS+; backward conditioning). These findings indicate that the CS+ acquires aversive properties after a forward conditioning, whereas acquires appetitive properties after a backward conditioning. It is thus of interest whether event timing also modulates conditioned responses in such an opponent fashion in humans, who are capable of explicit cognition about the associations. For this purpose, four experiments were conducted in which a discriminative conditioning was applied in groups of participants that only differed in the temporal sequence between CS+ onset and US onset (i.e., the interstimulus interval – ISI). During the acquisition phase (conditioning), two simple geometrical shapes were presented as conditioned stimuli. One shape (CS+) was always associated with a mild painful electric shock (i.e., the aversive US) and the other one (CS-) was never associated with the shock. In a between-subjects design, participants underwent either forward or backward conditioning. During the test phase (extinction), emotional responses to CS+ and CS- were tested and the US was never presented. Additionally, a novel neutral shape (NEW) was presented as control stimulus. To assess cognitive components, participants had to rate both the valence (the degree of unpleasantness or pleasantness) and the arousal (the degree of calmness or excitation) associated with the shapes before and after conditioning. In the first study, startle responses, an ancestral defensive reflex consisting of a fast twitch of facial and body muscles evoked by sudden and intense stimuli, was measured as an index of stimulus implicit valence. Startle amplitude was potentiated in the presence of the forward CS+ whilst attenuated in the presence of the backward CS+. Respectively, the former response indicates an implicit negative valence of the CS+ and an activation of the defensive system; the latter indicated an implicit positive valence of the CS+ and an activation of the appetitive system. In the second study, the blood-oxygen level dependent (BOLD) response was measured by means of functional magnetic resonance imaging (fMRI) to investigate neural responses after event learning. Stronger amygdala activation in response to forward CS+ and stronger striatum activation in response to backward CS+ were found in comparison to CS-. These results support the notion that the defensive motivational system is activated after forward conditioning since the amygdala plays a crucial role in fear acquisition and expression. Whilst the appetitive motivational system is activated after backward conditioning since the striatum plays a crucial role in reward processing. In the third study, attentional processes underlying event learning were observed by means of steady-state visual evoked potentials (ssVEPs). This study showed that both forward and backward CS+ caught attentional resources. More specifically, ssVEP amplitude was higher during the last seconds of forward CS+ that is just before the US, but during the first seconds of backward CS+ that is just after the US. Supposedly, attentional processes were located at the most informative part of CS+ in respect to the US. Participants of all three studies rated both forward and backward CS+ more negative and arousing compared to the CS-. This indicated that event timing did not influence verbal reports similarly as the neural and behavioral responses indicating a dissociation between the explicit and implicit responses. Accordingly, dual process theories propose that human behavior is determined by the output of two systems: (1) an impulsive implicit system that works on associative principles, and (2) a reflective explicit system that functions on the basis of knowledge about facts and values. Most importantly, these two systems can operate in a synergic or antagonistic fashion. Hence, the three studies of this thesis congruently suggest that the impulsive and the reflective systems act after backward association in an antagonistic fashion. In sum, event timing may turn punishment into reward in humans even though they subjectively rate the stimulus associated with aversive events as being aversive. This dissociation might contribute to understand psychiatric disorders, like anxiety disorders or drug addiction. KW - Gefühl KW - Lernen KW - Konditionierung KW - Emotionen KW - Event Timing KW - Conditioning KW - Emotion KW - Event Timing Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-55715 ER -