TY - THES A1 - Emmert, Adrian Alexander T1 - The Internal Structure of Periglacial Landforms - Assessments of Subsurface Variations in Permafrost-related and Frost-related Phenomena by Multi-dimensional Geophysical Investigations T1 - Der innere Aufbau Periglazialer Landformen N2 - The internal structure of periglacial landforms contains valuable information on past and present environmental conditions. To benefit from this archive, however, an enhanced understanding of subsurface variations is crucial. This enables to assess the influence of the internal structure on prevailing process regimes and to evaluate the sensitivity of different landform units to environmental changes. This thesis investigates structural variations in the subsurface of (i) rock glaciers,(ii) solifluction lobes, (iii) palsas/ lithalsas and (iv) patterned ground, which occur between the different landform types, but also between landform units of the same type. Investigated variables comprise (i) the spatial distribution of permafrost, (ii) ground ice content, (iii) the origin of ground ice, (iv) thickness of the active layer and (v) frost table topography. Multi-dimensional investigations by the geophysical methods Electrical Resistivity Imaging (ERI) and Ground-Penetrating Radar (GPR) were performed in six study areas (a–f): four of them are located in high-alpine environments in Switzerland and two of them are located in the subarctic highlands of Iceland. Additionally, surface and subsurface temperature values were continuously recorded at selected study sites. At one study site, pF-values, representing the matric potential (or water potential), were recorded. From a methodological view, this thesis focuses on the application of quasi-3-D ERI, an approach in which many two-dimensional data sets are combined to create one three-dimensional data set. This permits e.g., a three-dimensional delimitation of subsurface structures and a spatial investigation of the distribution of ground ice. Besides the analysis of field data, this thesis incudes a comparison between inversion models produced with different software products, based on two synthetic data sets. The detection of resistivity structures and reflection patterns provides valuable insights into the internal structure of the investigated landform units: At the high-alpine study site at (a) Piz Nair, a highly variable ice content indicates a complex development of the investigated rock glacier assembly. The local formation of ground ice is attributed to an embedding of surface patches of snow or ice into the subsurface by rockfall. Results of geoelectric monitoring surveys on selected rock glaciers show the influence of seasonal alterations in the internal structure on subsurface meltwater flow. At the study site at (b) Piz Üertsch, results indicate the occurrences of isolated ground ice patches in a significantly larger rock glacier. Detected characteristics of the internal structure enable to reconstruct the development of the rock glacier, in which a temporary override of an adjacent glacier tongue on the rock glacier is considered crucial for the current distribution of ground ice. However, results of this thesis clearly show the absence of buried glacier ice in the subsurface of the rock glacier. Results from a rock glacier near the (c) Las Trais Fluors mountain ridge affirm the existence of a water-permeable frozen layer, which was assumed in previous studies. Furthermore, results show that the rock glacier contains large amounts of rockfall deposits. A joint interpretation of ERI and GPR results from the investigated scree slope at the mountain (d) Blauberg (Furka Pass) reveals characteristic structures in the subsurface, which enable a differentiation between solifluction lobes and pebbly rock glaciers. At the subarctic study site (e) Orravatnsrústir, results show that the internal structure of palsas can be used to deduce their current development stage and to assess past and future developments. Presented results affirm a long history of palsa development at the study site, as assumed in previous studies, but indicate recently changing environmental conditions. The investigated occurrences of patterned ground in the proglacial area of the glacier (f) Hofsjökull are currently not influenced by the detected occurrence of permafrost, according to the presented results. Therefore, a temporary formation of pattered ground is assumed, which is linked to the retreat of the glacier. This thesis shows discrepancies between the internal structure of some of the investigated landform units and the recent environmental conditions. This indicates a delayed adaption and a low sensitivity of the landform units to environmental changes. Findings indicate that the future development of permafrost will be strongly affected by variations in snowfall. Furthermore, the detection of isolated occurrences of ground ice at several study sites contradicts the widely assumed effectivity of balancing heat fluxes to create homogenous subsurface conditions in relatively fine-grained subsurface materials. N2 - Der strukturelle Aufbau periglazialer Landformen beinhaltet wertvolle Informationen über vergangene und heutige Umweltbedingungen. Um diese Informationen nutzen zu können, muss jedoch ein vertieftes Verständnis für den Zustand der inneren Struktur und möglicher Variationen entwickelt werden. Dieses Wissen ermöglicht beispielsweise eine Abschätzung des Einflusses der inneren Struktur auf das momentan dominierende Prozess-Regime und eine Beurteilung der Sensitivität gegenüber sich verändernden Umweltbedingungen. Die vorliegende Arbeit untersucht Unterschiede im Aufbau von (i) Blockgletschern, (ii) Solifluktionsloben, (iii) Palsas/ Lithalsas und (iv) Frostmusterböden, die zwischen den Landformtypen, aber auch zwischen einzelnen Einheiten desselben Typs bestehen. Betrachtet werden dabei (i) die räumliche Verbreitung von Permafrost,(ii) der Eisgehalt im Untergrund, (iii) die Entstehung von Untergrundeis, (iv) die Mächtigkeit der Auftauschicht sowie (v) die Formung der Frosttafel. In sechs Untersuchungsgebieten (a–f), davon vier in Hochgebirgsregionen der Schweiz und zwei im subarktischen Hochland Islands, wurden Untersuchungen mittels mehr-dimensionaler geophysikalischer Verfahren, Widerstandsgeoelektrik (ERI) und Bodenradar (GPR), durchgeführt. Zudem wurden an ausgewählten Standorten kontinuierlich Temperaturwerte der Oberfläche und des Untergrunds aufgezeichnet. An einem Standort wurden ergänzend pF-Werte, die die Saugspannung des Porenwassers angeben, aufgezeichnet. Methodischer Schwerpunkt der vorliegenden Arbeit ist die Anwendung von quasi-3-D ERI, einem Ansatz bei dem Datenpunkte mehrerer zweidimensionaler Datensätze zu einem dreidimensionalen Datensatz vereinigt werden. Dies erlaubt beispielsweise eine dreidimensionale Abgrenzung von Untergrundstrukturen und damit eine räumliche Untersuchung der Verbreitung von Untergrundeis. Ergänzend zur Arbeit mit Felddaten enthält die vorliegende Arbeit einen Vergleich zwischen Inversionsmodellen, die auf Basis von zwei identischen, synthetischen Datensätzen mit unterschiedlichen Softwareprodukten generiert wurden. Durch die Detektion von Widerstandsstrukturen und Reflektionsmustern lassen sich wertvolle Erkenntnisse über den strukturellen Aufbau der untersuchten Einheiten gewinnen: Im hochalpinen Untersuchungsgebiet am (a) Piz Nair weisen stark schwankende Eisgehalte auf eine komplexe Entwicklungsgeschichte der untersuchten Blockgletschergruppe hin. Die lokale Entstehung von Untergrundeis wird auf Verschüttungen oberflächlicher Schnee- oder Eisfelder durch Steinschlag zurückgeführt. An einem Blockgletscher der Gruppe wird mittels geoelektrischer Wiederholungsmessungen der saisonale Einfluss der inneren Struktur auf den Schmelzwasserabfluss im Untergrund durch Veränderungen der Permafrosttafel gezeigt. An einem deutlich größeren Blockgletscher im Untersuchungsgebiet am (b) Piz Üertsch zeigen die Ergebnisse dieser Arbeit isolierte Vorkommen von Untergrundeis. Hier kann anhand der inneren Struktur die Entwicklung des Blockgletschers nachvollzogen werden, wobei insbesondere eine zeitweilige Überdeckung des Blockgletschers durch eine benachbarte Gletscherzunge als ausschlaggebend für die lokale Verteilung von Untergrundeis angesehen wird. Die Ergebnisse zeigen, dass kein Gletschereis in den Block gletscher eingebettet wurde. Die vorgestellten Ergebnisse der Untersuchungen an einem Blockgletscher nahe des Bergkamms (c) Las Trais Fluors bestätigen die dort in vorherigen Studien angenommene Wasserdurchlässigkeit der Frosttafel. Zudem zeigt der Aufbau des Blockgletschers das Auftreten großer Mengen von Steinschlagablagerungen. Am untersuchten Schutthang am (d) Blauberg (Furkapass) können durch eine gemeinsame Auswertung der Ergebnisse von ERI und GPR charakteristische Strukturen detektiert werden, durch die sich die dort auftretenden Lobenstrukturen in Solifluktionsloben und Feinmaterial-Blockgletscher (Pebbly Rock Glaciers) unterscheiden lassen. Im subarktischen Untersuchungsgebiet (e) Orravatnsrústir zeigen die Ergebnisse, dass vom strukturellen Aufbau von Palsas auf deren gegenwärtiges Entwicklungsstadium geschlossen werden kann und dass Rückschlüsse auf vergangene und zukünftige Entwicklungen möglich sind. Die vorgestellten Ergebnisse bestätigen die in vorherigen Studien getroffene Annahme einer lange zurückreichenden Entwicklungsgeschichte der Palsas, weisen aber auch auf sich seit kurzem verändernde Umweltbedingungen hin. Die untersuchten Frostmusterböden im Gletschervorfeld des (f) Hofsjökull zeigen gegenwärtig keine Beeinflussung durch Permafrost, obwohl ein rezentes Vorkommen von Permafrost angenommen wird. Daher wird eine temporäre Bildung der untersuchten Oberflächenstrukturen angenommen, die an den Rückzug des Gletschers gebunden ist. Die vorliegende Arbeit zeigt, dass die innere Struktur einiger der untersuchten Landform-Einheiten Diskrepanzen zu den momentanen Umweltbedingungen aufweist. Dies deutet auf eine geringe Sensitivität, beziehungsweise eine verzögerte Anpassung der Landschaftsformung auf sich verändernde Umweltbedingungen hin. Des Weiteren zeigt die vorliegende Arbeit, dass besonders Veränderungen im Schneedeckenauf- und abbau wesentlich zur zukünftigen Entwicklung von Permafrost in den untersuchten Gebieten beitragen werden. Die Beobachtung isolierter Vorkommen von Untergrundeis in mehreren Untersuchungsgebieten steht in Kontrast zur verbreiteten Annahme, dass die ausgleichende Wirkung von Wärmeströmen im Untergrund in feinkörnigem Material besonders stark ist N2 - Periglacial environments are facing dramatic changes. Warming air temperatures and strong snow cover variations fundamentally affect landforming processes in this hotspot region of Climate Change. But before we can assess the response of landform development to a changing climate, we need to enhance our understanding of the internal structure of those landforms. Within this study, a broad scope of landform types from alpine and subarctic regions is investigated: rock glaciers, solifluction lobes, palsas and patterned ground. By using the geophysical methods 2-D and 3-D ERI, as well as GPR surveying, structural differences and similarities between landform units of different or the same landform types are highlighted. This enables a reconstruction of their past and a projection of their future development. KW - Permafrost KW - Geophysik KW - permafrost KW - internal structure KW - applied geophysics KW - periglacial landform Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-202437 SN - 978-3-95826-138-9 SN - 978-3-95826-139-6 N1 - Parallel erschienen als Druckausgabe in Würzburg University Press, 978-3-95826-138-9, 34,90 EUR. PB - Würzburg University Press CY - Würzburg ET - 1. Auflage ER - TY - THES A1 - Spitznagel, Niko T1 - Energy transfer during molten fuel coolant interaction T1 - Energieübertragung während Schmelze-Wasser-Interaktion N2 - The contact of hot melt with liquid water - called Molten Fuel Coolant Interaction (MFCI) - can result in vivid explosions. Such explosions can occur in different scenarios: in steel or powerplants but also in volcanoes. Because of the possible dramatic consequences of such explosions an investigation of the explosion process is necessary. Fundamental basics of this process are already discovered and explained, such as the frame conditions for these explosions. It has been shown that energy transfer during an MFCI-process can be very high because of the transfer of thermal energy caused by positive feedback mechanisms. Up to now the influence of several varying parameters on the energy transfer and the explosions is not yet investigated sufficiently. An important parameter is the melt temperature, because the amount of possibly transferable energy depends on it. The investigation of this influence is the main aim of this work. Therefor metallic tin melt was used, because of its nearly constant thermal material properties in a wide temperature range. With tin melt research in the temperature range from 400 °C up to 1000 °C are possible. One important result is the lower temperature limit for vapor film stability in the experiments. For low melt temperatures up to about 600 °C the vapor film is so unstable that it already can collapse before the mechanical trigger. As expected the transferred thermal energy all in all increases with higher temperatures. Although this effect sometimes is superposed by other influences such as the premix of melt and water, the result is confirmed after a consequent filtering of the remaining influences. This trend is not only recognizable in the amount of transferred energy, but also in the fragmentation of melt or the vaporizing water. But also the other influences on MFCI-explosions showed interesting results in the frame of this work. To perform the experiments the installation and preparation of the experimental Setup in the laboratory were necessary. In order to compare the results to volcanism and to get a better investigation of the brittle fragmentation of melt additional runs with magmatic melt were made. In the results the thermal power during energy transfer could be estimated. Furthermore the model of “cooling fragments “ could be usefully applied. N2 - Das Zusammentreffen von heißer Schmelze mit flüssigem Wasser (Schmelze-Wasser-Interaktion) - auf Englisch Molten-Fuel-Coolant-Interaction (MFCI) - kann zu heftigen Explosionen führen. Diese Explosionen sind in verschiedenen Szenarien möglich: in Stahl- und Kraftwerken, aber auch bei Vulkanen. Wegen der möglichen dramatischen Folgen solcher Explosionen ist eine Erforschung dieser Explosionsvorgänge notwendig. Wesentliche Grundlagen, unter welchen Voraussetzungen Schmelze-Wasser-Interaktionen zu Explosionen führen können, und der Ablauf dieser Vorgänge wurden weitgehend erforscht. Wie diese Forschungen gezeigt haben, kann die übertragene Energie bei diesen Vorgängen wegen positiver Rückkopplungsprozesse sehr hoch sein. Bislang wurden aber noch nicht in ausreichendem Maß die Einflussparameter auf die Energieübertragung und damit auf die Explosionsheftigkeit geprüft. Ein wichtiger Parameter ist die Schmelzetemperatur, da von ihr abhängt, wie viel thermische Energie freigesetzt werden kann. Die Untersuchung des Einflusses dieses Parameters ist das Hauptziel der vorliegenden Arbeit. Hierfür wurde bei den meisten Versuchen metallische Zinnschmelze verwendet, da die Materialwerte von Zinn über einen weiten Temperaturbereich annähernd konstant sind, von denen die Wärmeübertragung abhängt. Mit dieser Zinnschmelze war die Untersuchung der Schmelzetemperatur im Bereich von 400 °C bis 1000 °C möglich. Ein wesentliches Ergebnis zeigt die Abhängigkeit der Dampffilmstabilität von der Schmelzetemepratur. Bei niedrigen Schmelzetemperaturen bis etwa 600 °C ist der Dampffilm so instabil, dass er in den Experimenten bereits vor einer mechanischen Erschütterung zusammenbrach, die zu seiner Zerstörung eingesetzt wurde. Wie erwartet ist zu erkennen, dass mit höherer Schmelzetemperatur grundsätzlich mehr Energie umgesetzt werden kann. Obwohl dieser Effekt von weiteren Einflüssen auf die Explosionsstärke unter bestimmten Umständen überdeckt werden kann, wird dieses Ergebnis nach einer konsequenten Filterung der übrigen Einflüsse bestätigt. Diese Tendenz ist nicht nur an den berechneten übertragenen Gesamtenergiemengen erkennbar, sondern auch an den einzelnen Effekten wie z. B. der Fragmentation oder der Wasserverdampfung. Aber auch die weiteren Einflüsse auf die Energieübertragung wie z. B. die Vorvermischung von Schmelze und Wasser zeigten im Rahmen dieser Arbeit und der durchgeführten Experimente interessante Ergebnisse. Um diese Versuche durchführen zu können, waren die Einrichtung und Vorbereitung einer Versuchsanlage erforderlich. Zum Vergleich mit dem Vulkanismus und zur besseren Untersuchung der Feinfragmentation während ärmeübertagung wurden Versuche mit magmatischer Schmelze durchgeführt. In den Ergebnissen konnten thermische Leistungen während der Schmelze-Wasser-Interaktion bestimmt werden. Außerdem konnte das aufgestellte Modell der “kühlenden Fragmente “ sinnvoll angewendet werden. KW - Vulkanologie KW - Geophysik KW - Thermodynamik KW - Statisktik KW - Explosion KW - Sprödbruch KW - brittle fragmentation KW - Temperatureinfluss KW - Vorvermischung KW - Energieübertragung KW - Rückkopplung KW - influence of temperature KW - premix KW - energy transfer KW - feedback Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-142891 ER -