TY - JOUR A1 - Kirchner, André A1 - Herrmann, Nico A1 - Matras, Paul A1 - Müller, Iris A1 - Meister, Julia A1 - Schattner, Thomas G. T1 - A pedo-geomorphological view on land use and its potential in the surroundings of the ancient Hispano-Roman city Munigua (Seville, SW Spain) JF - E&G Quaternary Science Journal N2 - This study investigates the surroundings of Munigua (municipium Flavium Muniguense), a small Roman town in the ancient province of Hispania Baetica (SW Spain). The city's economy was based primarily on copper and iron mining, which brought financial prosperity to its citizens. Local production of agricultural goods is thought to have been of little importance, as the regional soil conditions do not seem to be suitable for extensive agriculture. To evaluate the recent soil agro-potential and to find evidence for prehistoric and historic land use in the surroundings of Munigua, we applied a pedo-geomorphological approach based on the physico-chemical analysis of 14 representative soil and sediment exposures. Selected samples were analyzed for bulk chemistry, texture and phytoliths. The chronostratigraphy of the sequences was based on radiocarbon dating of charcoal samples. The site evaluation of the present-day soil agro-potential was carried out according to standard procedures and included evaluation of potential rootability, available water-storage capacity and nutrient budget within the uppermost 1 m. The results show that moderate to very good soil agro-potential prevails in the granitic and floodplain areas surrounding Munigua. Clearly, recent soil agro-potential in these areas allows the production of basic agricultural goods, and similar limited agricultural use should also have been possible in ancient times. In contrast, weak to very weak present-day soil agro-potential prevails in the metamorphic landscape due to the occurrence of shallow and sandy to stony soils. In addition, the study provides pedo-geomorphological evidence for prehistoric and historic land use in pre-Roman, Roman and post-Roman times. Catenary soil mapping in the vicinity of a Roman house complex reveals multi-layered colluvial deposits. They document phases of hillslope erosion mainly triggered by human land use between 4063 ± 82 and 3796 ± 76 cal BP, around 2601 ± 115 cal BP, and between 1424 ± 96 and 421 ± 88 cal BP. Moreover, geochemical and phytolith analyses of a Roman hortic Anthrosol indicate the local cultivation of agricultural products that contributed to the food supply of Munigua. Overall, the evidence of Roman agricultural use in the Munigua area indicates that the city's economy was by no means focused solely on mining. The production of basic agricultural products was also part of Munigua's economic portfolio. Our geoarcheological study thus supports the archeological concept of economically diversified Roman cities in the province of Baetica and in Hispania. KW - land use KW - Munigua KW - geomorphology Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-300141 VL - 71 IS - 2 SP - 123 EP - 143 ER - TY - JOUR A1 - Trappe, Julian A1 - Kneisel, Christof T1 - Geophysical and sedimentological investigations of Peatlands for the assessment of lithology and subsurface water pathways JF - Geosciences N2 - Peatlands located on slopes (herein called slope bogs) are typical landscape units in the Hunsrueck, a low mountain range in Southwestern Germany. The pathways of the water feeding the slope bogs have not yet been documented and analyzed. The identification of the different mechanisms allowing these peatlands to originate and survive requires a better understanding of the subsurface lithology and hydrogeology. Hence, we applied a multi-method approach to two case study sites in order to characterize the subsurface lithology and to image the variable spatio-temporal hydrological conditions. The combination of Electrical Resistivity Tomography (ERT) and an ERT-Monitoring and Ground Penetrating Radar (GPR), in conjunction with direct methods and data (borehole drilling and meteorological data), allowed us to gain deeper insights into the subsurface characteristics and dynamics of the peatlands and their catchment area. The precipitation influences the hydrology of the peatlands as well as the interflow in the subsurface. Especially, the geoelectrical monitoring data, in combination with the precipitation and temperature data, indicate that there are several forces driving the hydrology and hydrogeology of the peatlands. While the water content of the uppermost layers changes with the weather conditions, the bottom layer seems to be more stable and changes to a lesser extent. At the selected case study sites, small differences in subsurface properties can have a huge impact on the subsurface hydrogeology and the water paths. Based on the collected data, conceptual models have been deduced for the two case study sites. KW - peatland KW - slope bogs KW - geomorphology KW - subsurface hydrology KW - electrical resistivity tomography KW - ground penetrating radar KW - boreholes KW - Hunsrueck Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-201699 VL - 9 IS - 3 ER - TY - JOUR A1 - Ullmann, Tobias A1 - Büdel, Christian A1 - Baumhauer, Roland A1 - Padashi, Majid T1 - Sentinel-1 SAR Data Revealing Fluvial Morphodynamics in Damghan (Iran): Amplitude and Coherence Change Detection JF - International Journal of Earth Science and Geophysics N2 - The Sentinel-1 Satellite (S-1) of ESA's Copernicus Mission delivers freely available C-Band Synthetic Aperture Radar (SAR) data that are suited for interferometric applications (InSAR). The high geometric resolution of less than fifteen meter and the large coverage offered by the Interferometric Wide Swath mode (IW) point to new perspectives on the comprehension and understanding of surface changes, the quantification and monitoring of dynamic processes, especially in arid regions. The contribution shows the application of S-1 intensities and InSAR coherences in time series analysis for the delineation of changes related to fluvial morphodynamics in Damghan, Iran. The investigations were carried out for the period from April to October 2015 and exhibit the potential of the S-1 data for the identification of surface disturbances, mass movements and fluvial channel activity in the surroundings of the Damghan Playa. The Amplitude Change Detection highlighted extensive material movement and accumulation - up to sizes of more than 4,000 m in width - in the east of the Playa via changes in intensity. Further, the Coherence Change Detection technique was capable to indicate small-scale channel activity of the drainage system that was neither recognizable in the S-1 intensity nor the multispectral Landsat-8 data. The run off caused a decorrelation of the SAR signals and a drop in coherence. Seen from a morphodynamic point of view, the results indicated a highly dynamic system and complex tempo-spatial patterns were observed that will be subject of future analysis. Additionally, the study revealed the necessity to collect independent reference data on fluvial activity in order to train and adjust the change detector. KW - SAR KW - InSAR KW - coherence KW - Iran KW - Sentinel-1 KW - radar KW - geomorphology KW - change detection Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-147863 VL - 2 IS - 1 ER - TY - JOUR A1 - Ullmann, Tobias A1 - Sauerbrey, Julia A1 - Hoffmeister, Dirk A1 - May, Simon Matthias A1 - Baumhauer, Roland A1 - Bubenzer, Olaf T1 - Assessing Spatiotemporal Variations of Sentinel-1 InSAR Coherence at Different Time Scales over the Atacama Desert (Chile) between 2015 and 2018 JF - Remote Sensing N2 - This study investigates synthetic aperture radar (SAR) time series of the Sentinel-1 mission acquired over the Atacama Desert, Chile, between March 2015 and December 2018. The contribution analyzes temporal and spatial variations of Sentinel-1 interferometric SAR (InSAR) coherence and exemplarily illustrates factors that are responsible for observed signal differences. The analyses are based on long temporal baselines (365–1090 days) and temporally dense time series constructed with short temporal baselines (12–24 days). Results are compared to multispectral data of Sentinel-2, morphometric features of the digital elevation model (DEM) TanDEM-X WorldDEM™, and to a detailed governmental geographic information system (GIS) dataset of the local hydrography. Sentinel-1 datasets are suited for generating extensive, nearly seamless InSAR coherence mosaics covering the entire Atacama Desert (>450 × 1100 km) at a spatial resolution of 20 × 20 meter per pixel. Temporal baselines over several years lead only to very minor decorrelation, indicating a very high signal stability of C-Band in this region, especially in the hyperarid uplands between the Coastal Cordillera and the Central Depression. Signal decorrelation was associated with certain types of surface cover (e.g., water or aeolian deposits) or with actual surface dynamics (e.g., anthropogenic disturbance (mining) or fluvial activity and overland flow). Strong rainfall events and fluvial activity in the periods 2015 to 2016 and 2017 to 2018 caused spatial patterns with significant signal decorrelation; observed linear coherence anomalies matched the reference channel network and indicated actual episodic and sporadic discharge events. In the period 2015–2016, area-wide loss of coherence appeared as strip-like patterns of more than 80 km length that matched the prevailing wind direction. These anomalies, and others observed in that period and in the period 2017–2018, were interpreted to be caused by overland flow of high magnitude, as their spatial location matched well with documented heavy rainfall events that showed cumulative precipitation amounts of more than 20 mm. KW - Chile KW - Atacama KW - Sentinel-1 KW - InSAR KW - coherence KW - geomorphology Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-193836 SN - 2072-4292 VL - 11 IS - 24 ER -