TY - THES A1 - Sandblad, Linda T1 - Seam Binding, a Novel Mechanism for Microtubule Stabilization T1 - Naht Bindung, ein Neuartiger Mechanismus zur Stabilisierung von Mikrotubuli N2 - Microtubules are a fascinating component of the cellular scaffold protein network, the cytoskeleton. These hollow tubular structures are assembled of laterally associated proto-filaments containing ab-tubulin heterodimers in a head to tail arrangement. Accordingly microtubules have a defined polarity, which sets the base for the polarity of the cell. The microtubule lattice can be arranged in two conformations: In the more abundant B-lattice conformation, where the protofilaments interact laterally through a- to a- and b- to b-tubulin contacts and in the less stable A-lattice conformation, where a-tubulin interacts laterally with b-tubulin. In cells the microtubules generally contain 13 protofilaments of which usually one pair interacts in the A-lattice conformation, forming the so-called lattice seam. Microtubule dynamics and interactions are strongly regulated by micro-tubule associate proteins (MAPs). Structural investigations on MAPs and microtubule associated motor proteins in complex with microtubules have become possible in combination with modern electron microscopy (EM) and image processing. We have used biochemistry and different advanced EM techniques to study the interaction between microtubules and the MAP Mal3p in vitro. Mal3p is the sole member of the end-binding protein 1 (EB1) protein family in the fission yeast Schizosaccharomyces pombe. Previous in vivo studies have shown that Mal3p promotes microtubule growth. Our studies with high-resolution unidirectional shadowing EM revealed that Mal3p interacts with the microtubule lattice in a novel way, using binding sites on the microtubule that are different from those reported for other MAPs or motor proteins. Full-length Mal3p preferentially binds between two protofilaments on the microtubule lattice, leaving the rest of the lattice free. A case where Mal3p was found in two adjacent protofilament, revealed an A-lattice conformation on the microtubules, surprisingly indicating specific binding of Mal3p to the microtubule seam. With a lattice enhancer, in form of a b-tubulin binding kinesin motor domain, it was demonstrated that Mal3p stabilizes the seam which is thought to be the weakest part of a microtubule. Further, the presence of Mal3p during microtubule polymerization enhances the closure of protofilament sheets into a tubular organization. Cryo-EM and 3-D helical reconstruction on a monomeric microtubule binding domain of Mal3p, confirm the localization in between the protofilament and result in an accurate localization on the microtubule lattice. The results also indicate Mal3p’s capacity to influence the microtubule lattice conformation. Together, studies approached in vitro demonstrate that an EB1-family homolog not only interacts with the microtubule plus end, but also with the microtubule lattice. The structure of Mal3p interacting with microtubules reveals a new mechanism for microtubule stabilization and further insight on how plus end binding proteins are able promote microtubule growth. These findings further suggest that microtubules exhibit two distinct reaction platforms on their surface that can independently interact with selected MAPs or motors. N2 - Mikrotubuli sind eine faszinierende Komponente des Zytoskeletts einer Zelle. Ihre Struktur entspricht der eines Hohlzylinders. Sie sind aus seitlich assoziierten Proto-filamenten zusammengesetzt, die aus a- und b-Tubulin Untereinheiten bestehen. Diese Heterodimere sind gerichtet, bedingt durch ihre Kopf-Schwanz Anordnung. Folglich besitzen Mikrotubuli eine definierte Polarität, welche die Basis für die Polarität der Zelle bildet. Die Anordnung der Untereinheiten zu einem so genannten Mikrotubulus Gitter kann in zwei Konformationen vorkommen: In der häufigeren B-Gitter Formation, in welcher die Protofilamente seitlich durch a- zu a- und b- zu b-Tubulin interagieren und in der weniger stabilen A-Gitter Konformation, in der a-Tubulin lateral mit b-Tubulin wechselwirkt. In der Zelle vorkommende Mikrotubuli haben grundsätzlich 13 Proto-filamente. Mindestens ein Paar dieser Protofilamente interagiert in der A-Gitter Kon-formation und bildet die so genannte Gitter-Naht (lattice seam). Mikrotubuli Dynamik und Interaktionen sind streng durch Mikrotubuli assoziierte Proteine (MAPs) reguliert. Die Kombination aus moderner Elektronenmikroskopie (EM) und Bild-verarbeitung macht strukturelle Untersuchungen an MAPs und Motorproteinen im Zusammenhang mit Mikrutubuli möglich. Wir haben biochemische und hoch entwickelte EM Techniken benutzt, um die Interaktion zwischen Mikrotubuli und dem Mikrotubuli assoziierten Protein Mal3 in vitro zu untersuchen. Mal3p ist ein Homolog des konservierten Ende-Bindungs Protein 1 (EB1) in der Spalthefe Schizosaccharomyces pombe. Es wurde bereits gezeigt, dass EB1 die Struktur von Mikrotubuli stabilisiert. Mit Hilfe einer speziellen, hochauflösenden EM Schattierungstechnik haben wir demonstriert, dass Mal3p auf neuartige Weise mit dem Mikrotubulus Gitter interagiert. Dabei besetzt Mal3p Bindungsstellen am Mikrotubulus, die sich von denen der anderen MAPs oder Motorproteinen unterscheiden. Mal3p bevorzugt die Bindung zwischen zwei Proto-filamenten, lässt jedoch das übrigen Gitter unbesetzt. In seltenen Fällen wurde Mal3p in zwei nebeneinander angrenzenden Protofilamenten gefunden. An diesen Stellen zeigt sich überraschenderweise eine A-Gitter-Konformation am Mikrotubulus, was auf eine spezifische Naht-Bindung hinweist. Mit Hilfe einer Gitterverstärkung in Form einer Kinesin-Motor-Domäne, die an jede b-Untereinheit bindet, konnte gezeigt werden, dass Mal3p die Naht, den schwächsten Teil eines Mikrotubulus, stabilisiert. Des Weiteren unterstützt die Anwesenheit von Mal3p während der Mikrotubulus Polymerisation die Formierung zur Bildung des Hohlzylinders. Die Untersuchung der monomeren Mikrotubuli-Bindungs-Domäne von Mal3p unter Anwendung von Kryo-EM und anschließender 3-D helikalen Rekonstruktion, führte zur genauen Lokalisierung des Proteins auf dem Mikrotubulus Gerüst. Hierbei bestätigte sich auch die Lokalisation zwischen den Protofilamenten. Des Weiteren konnte gezeigt werden, dass Mal3p die Fähigkeit besitzt, die Konformation des Mikrotubulus Gitters zu beeinflussen. Zusammenfassend lässt sich sagen, dass das EB1-Homolog nicht nur an das Mikrotubulus Plus Ende, sondern auch an der Naht entlang des ganzen Mikrotubulus bindet. Die Art wie Mal3p mit den Mikrotubuli interagiert, zeigt einen neuen Mecha-nismus der Mikrotubuli Stabilisierung und eröffnet weitere Sichtweisen, wie Plus End Bindungsproteine die Dynamik von Mikrotubuli beeinflussen. Die Ergebnisse belegen, dass Mikrotubuli zwei definierte Reaktionsplattformen auf ihrer Oberfläche besitzen, die unabhängig mit verschiedenen MAPs und Motorproteinen interagieren KW - Mikrotubulus KW - Elektronenmikroskopie KW - Mikrotubule KW - Tubulin KW - Mal3p KW - EB1 KW - Microtubules KW - Electron Microscopy KW - Seam KW - Lattice KW - EB1 Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-24714 ER - TY - THES A1 - Thangaraj Selvaraj, Bhuvaneish T1 - Role of CNTF-STAT3 signaling for microtubule dynamics inaxon growth and maintenance: Implications in motoneuron diseases T1 - Die Funktion des CNTF-STAT3 Signalweges für die Microtubuli Dynamik in Axonalem Wachstum und Axon Erhalt: Implikationen für Motoneuronenerkrankungen N2 - Neurotrophic factor signaling modulates differentiation, axon growth and maintenance, synaptic plasticity and regeneration of neurons after injury. Ciliary neurotrophic factor (CNTF), a Schwann cell derived neurotrophic factor, has an exclusive role in axon maintenance, sprouting and synaptic preservation. CNTF, but not GDNF, has been shown to alleviate motoneuron degeneration in pmn mutant mice carrying a missense mutation in Tbce gene, a model for Amyotrophic Lateral Sclerosis (ALS). This current study elucidates the distinct signaling mechanism by which CNTF rescues the axonal degeneration in pmn mutant mice. ... N2 - Neurotrophe Faktoren beeinflussendie die neuronale Differenzierung, das Wachstum und die Stabilisierung von Axonen sowie Synaptische Plastizität und die Regeneration von Neuronen nach Verletzung. Der von Schwannzellen synthetisierte neurotrophe Faktor Ciliary neurotrophic factor (CNTF) spielt eine wichtige Rolle bei der axonalen Erhaltung sowie bei der Induktion und Reduktion von axonalen Verzweigungen. Die Behandlung der pmn Mausmutante mit CNTF, aber nicht mit GDNF führt zu einem späteren Krankheitsbeginn und verminderten Fortschreiten der Motoneuronendegeneration. Diese Mausmutante, die eine Punktmutation im Tbce Gen trägt, dient als Modell für die Amyotrophe Lateralsklerose. Ziel der vorliegenden Arbeit war es, die zugrunde liegenden Signalkaskaden aufzudecken, die den CNTF-vermittelten Effekt auf den Krnakheitsverlauf bei der pmn Maus verursachen. ... KW - Ciliary neurotrophic factor KW - STAT KW - CNTF KW - STAT3 KW - Stathmin KW - Microtubules KW - Signaltransduktion KW - Motoneuron KW - Krankheit Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-76889 ER - TY - THES A1 - Wawrowsky, Kolja Alexander T1 - Analysis and Visualization in Multidimensional Microscopy T1 - Analyse und Visualisierung in der multidimensionalen Mikroskopie N2 - The live sciences currently undergo a paradigm shift to computer aided discoveries. Discoveries in the live sciences were historically made by either direct observation or as a result of chemical assays. Today we see a growing shift toward computer aided analysis and visualization. This gradual process happens in microscopy. Multidimensional laser scanning microscopy can acquire very complex multichannel data from fixed or live specimen. New probes such as visible fluorescent proteins let us observe the expression of genes and track protein localization. Ion sensitive dyes change intensity with the concentration of ions in the cell. The laser scanning confocal allows us to record these processes in three dimensions over time. This work demonstrates the application of software analysis to multidimensional microscopy data. We introduce methods for volume investigation, ion flux analysis and molecular modeling. The visualization methods are based on a multidimensional data model to accommodate complex datasets. The software uses vector processing and multiple processors to accelerate volume rendering and achieve interactive rendering. The algorithms are based on human visual perception and allow the observer a wide range of mixed render modes. The software was used to reconstruct the pituitary development in zebrafish and observe the degeneration of neurons after injury in a mouse model. Calicum indicator dyes have long been used to study calcium fluxes. We optimized the imaging method to minimize impact on the cell. Live cells were imaged continuously for 45 minutes and subjected to increasing does of a drug. We correlated the amplitude of calcium oscillations to increasing doses of a drug and obtain single cell dose response curves. Because this method is very sensitive and measures single cell responses it has potential in drug discovery and characterization. Microtubules form a dynamic cytoskeleton, which is responsible for cell shape, intracellular transport and has an integral role in mitosis. A hallmark of microtubule organization is lateral interactions. Microtubules are bundles by proteins into dense structures. To estimate the contribution of this bundling process, we created a fractal model of microtubule organization. This model demonstrates that morphology of complex microtubule arrays can be explained by bundling alone. In summary we showed that advances in software for visualization, data analysis and modeling lead to new discoveries. N2 - Die biologische Forschung befindet sich in einem Paradigmenwandel, in dem Endeckungen immer mehr von Computeranalyse ermöglicht werden. Entdeckungen in der biologischen Forschung wurden historisch gesehen durch direkte Beobachtung and mit Hilfe chemischer Analysemethoden gemacht. Heute sehen wir einen wachsenden Trend zur computerunterstützten Analyse und Visualisierung. Dieser graduelle Umschwung spielt sich auch in der Mikroskopie ab. Multidimensionale Laser Scanning Mikroskopie kann sehr komplexe Multikanalbilder von fixierten oder lebenden Präparaten aufnehmen. Neue Methoden (wie z.B. fluoreszierende Proteine) erlauben es, Genexpression und Proteinlokalisierung direkt sichtbar zu machen. Ionensensitive Farbstoffe ändern ihre Helligkeit mit der Konzentration der Ionen in der Zelle. Die konfokale Mikroskopie erlaubt es, diese Änderungen dreidimensional über die Zeit aufzunehmen. Die hier vorgestellte Arbeit demonstriert die Anwendung speziell entwickelter Software für die Analyse multidimensionaler Daten. Die hierbei entwickelten Methoden wurden für Volumendarstellung, Ionenfluxanalyse und zur molekularen Modellierung eingesetzt. Die Visualisierungsmethoden basieren auf einem multidimensionalen Datenmodel, um auch komplexe Daten verarbeiten zu können. Die Software benutzt Vektorverarbeitung und Multiprozessorunterstützung um Volumendarstellung schneller und interaktiv zu machen. Die Algorithmen beruhen auf Erkenntnissen der Wahrnehmungsforschung und erlauben es dem Anwender, eine Reihe von verschiedenen Darstellungsmodi zu kombinieren. Die Software wurde erstmals verwendet, um einerseits die Entwicklung der Hypophyse im Zebrafisch zu rekonstruieren, und andererseits die Degenerierung von Neuronen im Mausmodell bildlich zu verfolgen. Kalziumfarbstoffe wurden schon länger zum Studium von Kalziumoszillationen in Zellen eingesetzt. Wir optimierten die Bildaufnahmemethode um Schädigungen der Zelle zu minimieren. Zellen wurden kontinuierlich in 45 Minuten Zeitintervallen aufgenommen und dabei wachsenden Dosen der zu untersuchenden Substanz ausgesetzt. Durch Korrelation von Dosis und Oszillationsamplitude konnten pharmakologische Wirkungskurven für jede einzelne Zelle ermittelt werden. Diese Methode hat wegen der hohen Sensitivität und Auflösung bis zur einzelnen Zelle Potential für pharmakologische Untersuchungen. Mikrotubuli formen ein dynamisches Zytoskelett, das für Zellform und intrazellularen Transport zuständig ist und eine integrale Rolle bei der Mitose spielt. Eine besondere Eigenschaft der Mikrotubuli ist die laterale Interaktion. Mikrotubuli werden von Motorproteinen zu dichten Strukturen gebündelt. Um den möglichen Einfluß dieses Vorgangs auf die Organisation der Mikotubuli zu testen, wurde ein fraktales Model erstellt. Dieses Modell demonstriert, daß die komplexe Organisation der Mikrotubuli in einigen Fällen allein mit dem Bündelungsprozess erklärt werden kann. Zusammenfassend konnte in dieser Arbeit demonstriert werden, daß der Einsatz speziell entwickelter Software für Visualisierung, Datenanalyse und Modellierung zu neuen wissenschaftlichen Erkenntnissen führen kann. KW - Konfokale Mikroskopie KW - Laser-Rastermikroskopie KW - Leica-Mikroskopie und -Systeme GmbH KW - Mikroskopie KW - Visualisierung KW - Bildverarbeitung KW - Mikrotubuli KW - Visualization KW - Image Processing KW - Microtubules Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-23867 ER - TY - JOUR A1 - Weber, Klaus A1 - Osborn, Mary A1 - Franke, Werner W. A1 - Seib, Erinita A1 - Scheer, Ulrich A1 - Herth, Werner T1 - Identification of microtubular structures in diverse plant and animal cells by immunological cross-reaction revealed in immunofluorescence microscopy using antibodies against tubulin from porcine brain N2 - Antibody against tubulin from porcine brain was used to evaluate the immunological cross reactivity of tubulin from a variety of animal and plant cells. Indirect immunofluorescence microscopy revealed microtubule-containing structures including cytoplasmic microtubules, spindle microtubules, cilia and fIagella. Thus tubulin from diverse species of both mammals and plants show immunological cross-reactivity with tubulin from porcine brain. Results obtained by immunofluorescence microscopy are whenever possible compared with previously known ultrastructural results obtained by electron microscopy. KW - Cytologie KW - Microtubules KW - immunofluorescence KW - evolution KW - antibody KW - sperm Y1 - 1977 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-41383 ER - TY - JOUR A1 - Yadav, Preeti A1 - Selvaraj, Bhuvaneish T. A1 - Bender, Florian L. P. A1 - Behringer, Marcus A1 - Moradi, Mehri A1 - Sivadasan, Rajeeve A1 - Dombert, Benjamin A1 - Blum, Robert A1 - Asan, Esther A1 - Sauer, Markus A1 - Julien, Jean-Pierre A1 - Sendtner, Michael T1 - Neurofilament depletion improves microtubule dynamics via modulation of Stat3/stathmin signaling JF - Acta Neuropathologica N2 - In neurons, microtubules form a dense array within axons, and the stability and function of this microtubule network is modulated by neurofilaments. Accumulation of neurofilaments has been observed in several forms of neurodegenerative diseases, but the mechanisms how elevated neurofilament levels destabilize axons are unknown so far. Here, we show that increased neurofilament expression in motor nerves of pmn mutant mice, a model of motoneuron disease, causes disturbed microtubule dynamics. The disease is caused by a point mutation in the tubulin-specific chaperone E (Tbce) gene, leading to an exchange of the most C-terminal amino acid tryptophan to glycine. As a consequence, the TBCE protein becomes instable which then results in destabilization of axonal microtubules and defects in axonal transport, in particular in motoneurons. Depletion of neurofilament increases the number and regrowth of microtubules in pmn mutant motoneurons and restores axon elongation. This effect is mediated by interaction of neurofilament with the stathmin complex. Accumulating neurofilaments associate with stathmin in axons of pmn mutant motoneurons. Depletion of neurofilament by Nefl knockout increases Stat3-stathmin interaction and stabilizes the microtubules in pmn mutant motoneurons. Consequently, counteracting enhanced neurofilament expression improves axonal maintenance and prolongs survival of pmn mutant mice. We propose that this mechanism could also be relevant for other neurodegenerative diseases in which neurofilament accumulation and loss of microtubules are prominent features. KW - Amyotrophic-lateral-sclerosis KW - Transgenic mice KW - Mouse model KW - Alzheimers disease KW - Neurofilament KW - Progressive motor neuronopathy KW - Axonal transport KW - Intermediate filaments KW - Motoneuron disease KW - Lacking neurofilaments KW - Missense mutation KW - Axon degeneration KW - Microtubules KW - Stathmin KW - Stat3 Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-188234 VL - 132 IS - 1 ER -