TY - THES A1 - Wermser, Charlotte T1 - Morphology, regulation and interstrain interactions in a new macrocolony biofilm model of the human pathogen \(Staphylococcus\) \(aureus\) T1 - Morphologie, Regulation und stammübergreifende Wechselwirkungen in einem neuen Makrokolonie-Biofilmmodell des Humanpathogens \(Staphylococcus\) \(aureus\) N2 - The role of multicellularity as the predominant microbial lifestyle has been affirmed by studies on the genetic regulation of biofilms and the conditions driving their formation. Biofilms are of prime importance for the pathology of chronic infections of the opportunistic human pathogen Staphylococcus aureus. The recent development of a macrocolony biofilm model in S. aureus opened new opportunities to study evolution and physiological specialization in biofilm communities in this organism. In the macrocolony biofilm model, bacteria form complex aggregates with a sophisticated spatial organization on the micro- and macroscale. The central positive and negative regulators of this organization in S. aureus are the alternative sigma factor σB and the quorum sensing system Agr, respectively. Nevertheless, nothing is known on additional factors controlling the macrocolony morphogenesis. In this work, the genome of S. aureus was screened for novel factors that are required for the development of the macrocolony architecture. A central role for basic metabolic pathways was demonstrated in this context as the macrocolony architecture was strongly altered by the disruption of nucleotide and carbohydrate synthesis. Environmental signals further modulate macrocolony morphogenesis as illustrated by the role of an oxygen-sensitive gene regulator, which is required for the formation of complex surface structures. A further application of the macrocolony biofilm model was demonstrated in the study of interstrain interactions. The integrity of macrocolony communities was macroscopically visibly disturbed by competitive interactions between clinical isolates of S. aureus. The results of this work contribute to the characterization of the macrocolony biofilm model and improve our understanding of developmental processes relevant in staphylococcal infections. The identification of anti-biofilm effects exercised through competitive interactions could lead to the design of novel antimicrobial strategies targeting multicellular bacterial communities. N2 - Die Rolle von Multizellularität als der vorherrschende mikrobielle Lebensstil wurde durch Studien über die genetische Steuerung von Biofilmen und über Biofilmbildung-fördernde Bedingungen bestätigt. Biofilme sind wichtige Faktoren in der Pathogenese chronischer Infektionen durch das opportunistische Humanpathogen Staphylococcus aureus. Die kürzlich erfolgte Entwicklung eines Makrokolonie-Biofilmmodells für S. aureus eröffnet neue Möglichkeiten evolutionäre Entwicklungen und die physiologische Spezialisierung in bakteriellen Gemeinschaften zu untersuchen. Im Makrokolonie-Biofilmmodell bilden Bakterien komplexe Aggregate, die sich durch eine hochentwickelte räumliche Organisation auf mikroskopischer und makroskopischer Ebene auszeichnen. Die positiven und negativen Hauptregulatoren dieser Organisation sind der alternative Sigmafaktor σB sowie das Quorum sensing System Agr. Dennoch sind weitere Faktoren, die die Morphogenese der Makrokolonien steuern, unbekannt. In dieser Arbeit wurde das Genom von S. aureus im Hinblick auf neue Faktoren, die für die Entwicklung der Makrokoloniearchitektur nötig sind, analysiert. Dabei wurde belegt, dass zentrale Stoffwechselwege eine zentrale Rolle spielen. Störungen der Nukleotid- und Kohlenhydrat-Synthese hatten starke Auswirkungen auf die Makrokoloniearchitektur. Weiterhin wurde anhand eines Sauerstoff-sensitiven Genregulators, der für die Ausbildung von Oberflächenstrukturen nötig ist, demonstriert, wie die Morphogenese der Makrokolonien durch Umweltsignale moduliert wird. Das Makrokolonie-Biofilmmodell fand weitere Anwendung in der Untersuchung von stammübergreifenden Interaktionen. Die Integrität der Makrokolonie-Biofilme wurde durch die Wechselwirkungen in Konkurrenz stehender klinischer Isolate stark herabgesetzt. Die Ergebnisse dieser Arbeit tragen zur Charakterisierung des Makrokolonie-Biofilmmodells bei und geben Einsicht in Entwicklungsprozesse, die während Staphylokokken-Infektionen ablaufen. Die Beschreibung der negativen Beeinflussung der Biofilme durch bakterielle Wechselwirkungen könnte zur Entwicklung neuer antimikrobieller Strategien, die gezielt gegen multizelluläre bakterielle Gemeinschaften wirksam sind, beitragen. KW - Staphylococcus aureus KW - Biofilm KW - MRSA KW - macrocolony KW - interactions KW - biofilm architecture KW - Makrokolonie KW - Wechselwirkungen KW - Biofilmarchitektur Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-165931 ER - TY - THES A1 - Menzel, Thomas Michael T1 - Studien zum Wirkungsmechanismus neuer antiinfektiver Bisnaphthalimide gegen Staphylococcus aureus und Transkriptomanalysen zur Auswirkung von Antibiotika auf S. epidermidis T1 - Mode-of-action studies of novel antiinfective bisnaphthalimides on Staphylococcus aureus and transcriptional analysis of the effect of antibiotics on S. epidermidis N2 - Die Therapie von bakteriellen Infektionen beruht heutzutage zum Großteil auf dem Einsatz von Antibiotika. Die schnelle Entwicklung und rasche Verbreitung von resistenten Stämmen mancher Erreger gegen diese Antibiotika stellt ein enormes Problem für das Gesundheitswesen dar. Da momentan zur Antibiotikatherapie keine Alternativen bestehen, kommt der Erforschung neuer potenzieller Wirkstoffe eine sehr große Bedeutung zu. In einem Screening-Verfahren lagen die minimalen Hemmkonzentrationen einiger bisquartärer Bisnaphthalimide gegen Staphylococcus aureus und S. epidermidis im Bereich von 0,6 bis 2,5 µg/ml. Die Substanz mit den geringsten minimalen Hemmkonzentrationen war MT02. Daraufhin wurde das Wirkungsspektrum von MT02 gegen Bakterien detaillierter untersucht und gefunden, dass die Substanz vorwiegend gegen Gram-positive Erreger und nicht gegen Gram-negative Bakterien wirksam ist. Zytotoxizitätstests ergaben eine geringe bis nicht nachweisbare Toxizität gegen verschiedene Zelllinien im Bereich von 73 bis mehr als 150 µg/ml. Um die Wirkungsweise von MT02 genauer zu untersuchen wurden zunächst DNA-Microarray-Untersuchungen an S. aureus durchgeführt. Deren Ergebnisse ließen einen Einfluss der Substanz auf viele Gene des DNA-Metabolismus erkennen. Inkorporationsstudien mittels radioaktiver Ganzzellmarkierung bestätigten die Auswirkung von MT02 auf den DNA-Stoffwechsel. Durch kompetitive Inkubation wurde festgestellt, dass MT02 in der Lage ist Ethidiumbromid von DNA zu verdrängen bzw. dessen Bindung zu verhindern. Genauere Untersuchungen mittels Oberflächen-Plasmon-Resonanz ergaben, dass MT02 konzentrationsabhängig, reversibel und sequenzunspezifisch an DNA bindet. Die thermodynamischen Dissoziationskonstanten lagen im Mittel bei ca. 4 x 10-8 mol/l und beschrieben somit eine relativ starke Bindung von MT02 an DNA. Neben diesem primären Wirkungsmechanismus der DNA-Bindung gaben mehrere Befunde Hinweise auf einen sekundären Wirkmechanismus, der die Zellwand-Struktur bzw. Zellwand-Biosynthese beinhaltet. Eine MT02-resistente Mutante von S. aureus HG001 konnte durch vielfaches Passagieren in MT02-haltigem Medium generiert werden. Diese erzeugte bei Wachstum mit hohen Konzentrationen an MT02 einen roten Phänotyp. Die Natur dieses roten Farbstoffes konnte bislang nicht aufgeklärt werden, jedoch gibt es Hinweise, dass dieser auf Abbauprodukte von MT02 zurückzuführen ist. In einem weiteren Projekt wurde mittels Transkriptionsstudien die Auswirkung von verschiedenen bekannten Antibiotika sowie von neuen Wirkstoffen auf das Transkriptom von S. epidermidis untersucht. Die Ergebnisse dieser Studien können durch vergleichende Analysen als Grundlage für die Einordnung des Wirkmechanismus neuer Substanzen dienen. N2 - The treatment of bacterial infections is nowadays mostly accomplished by the application of antibiotics. However, the rapid development and vast distribution of resistant strains of some pathogens against a variety of antibiotics form an enormous challenge for public health care systems worldwide. As until now there are no applicable alternatives to antibiotic therapy against most pathogens, there is an urgent need for the discovery of new antibacterial substances. Screening several newly synthesized compounds, the minimal inhibitory concentrations of some bisquaternary bisnaphthalimides ranged from 0.6 to 2.5 µg/ml against Staphylococcus aureus and S. epidermidis. Thereof one substance, designated MT02, revealed the lowest minimal inhibitory concentrations of this compound class. Following these susceptibility tests, the antibacterial spectrum of MT02 was determined and revealed a broad spectrum against Gram-positive bacteria but almost no activity against Gram-negative species. In cytotoxicity tests with several cell lines MT02 exhibited low or undetectable toxicity in concentrations ranging from 73 to more than 150 µg/ml. Microarray studies were conducted to further elucidate the mode of action of MT02 against S. aureus. The results suggested that MT02 has an impact on the bacterial DNA-metabolism. To verify this, radioactive whole cell labeling experiments were performed which clearly provided evidence for the inhibition of incorporation of [3H]-thymidine into bacteria by MT02 and thus for an interference of MT02 with DNA-metabolism. Coincubation and gel retardation studies showed that MT02 is able to directly interact with DNA and to displace ethidiumbromide which has intercalated into the DNA before. Surface plasmon resonance experiments pinpointed the binding of MT02 to doublestranded DNA and revealed binding constants in the range of 4 x 10-8 mol/l describing a strong binding affinity of MT02 to DNA. In addition to this primary mode of action, several results suggested a secondary mode of action comprising the structure and / or the biosynthesis of the bacterial cell wall. By passaging S. aureus HG001 in broth with increasing concentrations of MT02, a MT02-resistant mutant could be obtained. This mutant produced a red phenotype when grown with high concentrations of MT02. Studies to determine the nature of this red dye are still in progress. However, first results indicate that the red color is a degradation product of MT02. Another project dealt with the comparative analysis of transcriptomes of S. epidermidis under the influence of antibiotics with known modes of action as well as new active compounds. The results of these studies can be the basis for the assignment of new antibacterial substances to classes of antibiotics with known modes of action. KW - MRSA KW - Naphthalinderivate KW - Quartäre Bisnaphthalimide KW - MT02 KW - Antibiotikum KW - MRSA KW - Antibiotic KW - Quaternary Bisnaphthalimide KW - MT02 Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-56362 ER - TY - THES A1 - Blättner, Sebastian T1 - The role of the non-ribosomal peptide synthetase AusAB and its product phevalin in intracellular virulence of Staphylococcus aureus T1 - Die Rolle der nicht-ribosomalen Peptidsynthetase AusAB und ihres Produktes Phevalin in der intrazellulären Virulenz von Staphylococcus aureus N2 - Staphylococcus aureus is a prevalent commensal bacterium which represents one of the leading causes in health care-associated bacterial infections worldwide and can cause a variety of different diseases ranging from simple abscesses to severe and life threatening infections including pneumonia, osteomyelitis and sepsis. In recent times multi-resistant strains have emerged, causing severe problems in nosocomial as well as community-acquired (CA) infection settings, especially in the United States (USA). Therefore S. aureus has been termed as a superbug by the WHO, underlining the severe health risk originating from it. Today, infections in the USA are dominated by S. aureus genotypes which are classified as USA300 and USA400, respectively. Strains of genotype USA300 are responsible for about 70% of the CA infections. The molecular mechanisms which render S. aureus such an effective pathogen are still not understood in its entirety. For decades S. aureus was thought to be a strictly extracellular pathogen relying on pore-forming toxins like α-hemolysin to damage human cells and tissue. Only recently it has been shown that S. aureus can enter non-professional phagocytes, using adhesins like the fibronectin-binding proteins which mediate an endocytotic uptake into the host cells. The bacteria are consequently localized to endosomes, where the degradation of enclosed bacterial cells through phagosome maturation would eventually occur. S. aureus can avoid degradation, and translocate to the cellular cytoplasm, where it can replicate. The ability to cause this so-called phagosomal escape has mainly been attributed to a family of amphiphilic peptides called phenol soluble modulins (PSMs), but as studies have shown, they are not sufficient. In this work I used a transposon mutant library in combination with automated fluorescence microscopy to screen for genes involved in the phagosomal escape process and intracellular survival of S. aureus. I thereby identified a number of genes, including a non-ribosomal peptide synthetase (NRPS). The NRPS, encoded by the genes ausA and ausB, produces two types of small peptides, phevalin and tyrvalin. Mutations in the ausAB genes lead to a drastic decrease in phagosomal escape rates in epithelial cells, which were readily restored by genetic complementation in trans as well as by supplementation of synthetic phevalin. In leukocytes, phevalin interferes with calcium fluxes and activation of neutrophils and promotes cytotoxicity of intracellular bacteria in both, macrophages and neutrophils. Further ausAB is involved in survival and virulence of the bacterium during mouse lung pneumoniae. The here presented data demonstrates the contribution of the bacterial cyclic dipeptide phevalin to S. aureus virulence and suggests, that phevalin directly acts on a host cell target to promote cytotoxicity of intracellular bacteria. N2 - Staphylococcus aureus ist ein weit verbreitetes kommensales Bakterium, welches zugleich einer der häufigsten Verursacher von Krankenhausinfektionen ist, und eine Reihe verschiedener Krankheiten, angefangen bei simplen Abszessen, bis hin zu schweren Erkrankungen wie Lungenentzündung, Osteomylitis und Sepsis verursachen kann. Das Risiko durch nosokomiale sowie epidemische S. aureus Infektionen ist in den vergangenen Jahren weiter gestiegen. Dazu beigetragen hat das Auftreten multiresistenter und hoch cytotoxischer Stämme, vor allem in den USA. Als Konsequenz hat die WHO S. aureus inzwischen als „Superbug“ tituliert und als globales Gesundheitsrisiko eingestuft. Bei CA-Infektionen dominieren die Isolate der Klassifizierung USA300 und USA400, wobei den Erstgenannten bis zu 70% aller in den USA registrierten CA-MRSA Infektionen der letzten Jahre zugesprochen werden. Lange Zeit wurde angenommen, dass S. aureus strikt extrazellulär im Infektionsbereich vorliegt und die cytotoxische Wirkung von z.B. α-Toxin für Wirtszelltod und Gewebeschädigungen verantwortlich ist. Erst vor kurzem wurde festgestellt, dass S. aureus auch durch fakultativ phagozytotische Zellen, wie Epithel- oder Endothelzellen, mittels zahlreicher Adhäsine aufgenommen wird. Die Aufnahme in die Zelle erfolgt zunächst in ein Phagoendosom, in dem die Pathogene durch antimikrobielle Mechanismen abgebaut würden. Um dies zu verhindern, verfügt S. aureus über Virulenzfaktoren, welche die endosomale Membran schädigen. Die Bakterien gelangen so in das Zellzytoplasma, wo sie sich vervielfältigen können, bevor die Wirtszelle schließlich getötet wird. Eine wichtige Funktion in diesem Vorgang konnte bereits in mehreren Studien den Phenol löslichen Modulinen (PSM) zugesprochen werden, Arbeiten unserer Gruppe deuten jedoch darauf hin, dass diese nicht alleine für den phagosomalen Ausbruch von S. aureus verantwortlich sind. In dieser Arbeit verwendete ich eine Transposon Mutantenbibliothek des S. aureus Stammes JE2 (USA300) in Verbindung mit automatisierter Fluoreszenzmikroskopie, um Gene zu identifizieren, die den phagosomalen Ausbruch von S. aureus beeinflussen. Unter den Mutanten, welche eine Minderung der Ausbruchsraten zeigten, fanden sich auch Mutanten in beiden Genen eines Operons, welches für die nicht-ribosomale Peptidsynthetase AusA/B codiert, die die beiden Dipeptide Phevalin und Tyrvalin produziert. Verminderte Ausbruchsraten konnten sowohl durch genetische Komplementation als auch mittels des Zusatzes synthetischen Phevalins wiederhergestellt werden. In Leukozyten verhindert Phevalin effizienten Calcium-Flux und die Aktivierung von Neutrophilen. Zudem fördert Phevalin die Cytotoxizität intrazellulärer Bakterien sowohl in Makrophagen, als auch Neutrophilen. Darüber hinaus konnten wir zeigen, dass die NRPS AusAB und ihre Produkte eine Rolle beim Überleben der Bakterien während einer Infektion im Tiermodell einnehmen. Die hier präsentierten Daten hinsichtlich des Einflusses von Phevalin auf Virulenz und der Interaktion zwischen Wirt und Pathogen lassen den Schluss zu, dass Phevalin direkt auf einen Wirtszellfaktor wirkt, um die Cytotoxicität intrazellulärer Bakterien zu stärken. KW - Staphylococcus aureus KW - MRSA KW - Virulenz KW - Intracellular virulence KW - Non-ribosomal peptide synthetase KW - USA300 Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-146662 ER -