TY - THES A1 - Topczak, Anna Katharina T1 - Mechanismen des exzitonischen Transports und deren Dynamik in molekularen Dünnschichten für die organische Photovoltaik T1 - Mechanisms of the exciton transport and its dynamics in molecular thin films for organic photovoltaic applications N2 - Der Fokus dieser Arbeit liegt in der Untersuchung des exzitonischen Transports, sowie der Dynamik exzitonischer Zustände in organischen Halbleitern. Als fundamentale Fragestellung werden die inhärenten, materialspezifischen Parameter untersucht, welche Einfluss auf die Exzitonen-Diffusionslänge besitzen. Sowohl der Einfluss der strukturellen Ordnung als auch die fundamentalen exzitonischen Transporteigenschaften in molekularen Schichten werden anhand der archetypischen, morphologisch unterschiedlichen organischen Halbleiter Diindenoperylen (DIP), sowie dessen Derivaten, α-6T und C60 studiert. Die resultierende Filmbeschaffenheit wird mittels Röntgendiffraktometrie (XRD) und Rasterkraftmikroskopie (AFM) analysiert, welche Informationen über die Morphologie, die strukturelle Ordnung und die Mikrostruktur der jeweiligen molekularen Schichten auf verschiedenen Längenskalen liefern. Um Informationen über die Exzitonen-Diffusion und die damit einhergehende Exzitonen- Diffusionslänge LD zu erhalten, wurde die Methode des Photolumineszenz (PL)-Quenchings gewählt. Um umfassende Informationen zur Exzitonen-Bewegung in molekularen Dünnschichten zu erhalten, wurde mit Hilfe der Femtosekunden-Transienten-Absorptionsspektroskopie (TAS) und der zeitkorrelierten Einzelphotonenzählung (TCSPC) die Dynamik angeregter Energiezustände und deren jeweiliger Lebensdauer untersucht. Beide Messverfahren gewähren Einblicke in den zeitabhängigen Exzitonen-Transport und ermöglichen eine Bestimmung des Ursprungs möglicher Zerfallskanäle. Die zentralen Ergebnisse dieser Arbeit zeigen zum einen eine Korrelation zwischen LD und der strukturellen Ordnung der Schichtmorphologie, zum anderen weist die temperaturunabhängige Exzitonen-Bewegung in hochgeordneten polykristallinen DIP-Filmen auf die Möglichkeit der Existenz eines kohärenten Exzitonen-Transports bei tiefen Temperaturen unterhalb von 80 K hin. Zeitaufgelöste spektroskopische Untersuchungen lassen zudem auf ein breites Absorptionsband höherer angeregter Zustände schließen und weisen eine höhere Exzitonen- Zustandsdichte in polykristallinen DIP-Schichten im Vergleich zu ungeordneten Filmen auf. N2 - The objective of this work is the examination of the excitonic transport and its dynamics in organic semiconductors. A fundamental question dealt with in this thesis was related to inherent transport mechanisms, which govern the exciton diffusion length LD. To pursue this question, the excitonic transport in organic semiconductor thin films was examined in particular with regard to the influence of the structural coherence on LD as well as to the fundamental excitonic transport mechanisms. The resulting film structure of the samples is analyzed by means of X-ray diffraction (XRD) and atomic force microscopy (AFM), which yield to information on the morphology, the structural order and the microstructure of the molecular films on various length scales. PL-quenching investigations were performed to determine the exciton transport properties in different archetypical organic semiconductors represented by thin films of Diindenoperylene (DIP) and its derivatives, C60 and α-6T. To receive a comprehensive picture of exciton motion in molecular thin films, the exciton dynamics were investigated by femtosecond transient absorption spectroscopy (TAS) and time correlated single photon spectroscopy (TCSPC). Both measurement techniques gain insights into the time dependent exciton transport as well as help to assign the origin of the occurring decay-channels. The main results of this work reveal a correlation of LD with the structural order of the film morphology. In addition, a temperature independent excitonic motion in polycrystalline films of DIP at low temperatures < 80 K hints at the existence of a coherent exciton transport. Furthermore, time dependent spectroscopic investigations indicate a broad absorption band formed by higher excited states which exhibits a higher excitonic density of states in crystalline DIP-layers compared to films with a lower degree of structural order or amorphous texture. KW - Organische Solarzelle KW - Exzitonen Transport KW - Exzitonenbeweglichkeit KW - Exzitonen Diffusionslänge KW - Exzitonen Dynamik KW - Photolumineszenz Quenching KW - Diindenoperylen KW - C60 KW - Transiente Absorptionsspektroskopie KW - Exziton KW - Organische Halbleiter KW - Photolumineszenz Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-132280 ER - TY - THES A1 - Süß, Jasmin T1 - Theoretische Untersuchungen an molekularen Aggregaten: 2D-Spektroskopie und Exzitonendynamik T1 - Theoretical studies on molecular aggregates: 2D spectroscopy and exciton dynamics N2 - Diese Dissertation beschäftigt sich mit der Exzitonendynamik molekularer Aggregate, die nach Mehrphotonen-Anregung auf ultrakurzer Zeitskala stattfindet. Hierbei liegt der Fokus auf der Charakterisierung der Exziton-Exziton-Annihilierung (EEA) mithilfe von zweidimensionaler optischer Spektroskopie fünfter Ordnung. Dazu werden zwei verschiedene Modellsysteme implementiert: Das elektronische Homodimer und das elektronische Homotrimer-Modell, wobei Letzteres eine Erweiterung des Dimer-Modells darstellt. Die Kopplung des quantenmechanischen Systems an die Umgebung wird mithilfe des Quantum-Jump-Ansatzes umgesetzt. Besonderes Interesse kommt der Analyse des Signals fünfter Ordnung in Abhängigkeit der Populationszeit T zu. Anhand des Dimer-Modells als kleinstmögliches Aggregat lassen sich bereits gute Vorhersagen auch über das Verhalten größerer molekularer Aggregate treffen. Der Zerfall des oszillierenden Signals für lange Populationszeiten korreliert mit der EEA. Dies zeigt, dass die zweidimensionale optische Spektroskopie genutzt werden kann, um den Annihilierungsprozess zu charakterisieren. Innerhalb des Modells des Dimers wird weiterhin der Einfluss der Intraband-Relaxation untersucht. Zunehmende Intraband-Relaxation verhindert den Austausch zwischen den lokalen Zuständen, der essentiell für den Annihilierungsprozess ist, und die EEA wird blockiert. Das elektronische Trimer-Modell erweitert das Dimer-Modell um eine Monomereinheit. Somit befinden sich die Exzitonen im Anschluss an die Anregung nicht mehr unvermeidlich nebeneinander. Es gibt somit eine Konfiguration, bei der sich die Exzitonen zunächst zueinander bewegen müssen, bevor die Startbedingung des Annihilierungsprozesses gegeben ist. Dieser zusätzliche Schritt wird auch Exzitonendiffusion genannt. Die Ergebnisse dieser Arbeit legen nahe, dass das erwartete Verhalten nur zu sehr kurzen Zeiten im Femtosekundenbereich auftritt und somit die Zeitskala der Exzitonendiffusion im Falle des Trimers nicht sichtbar wird. Es bedarf demnach eines größeren Modellsystems, bei dem sich der Effekt der zeitverzögert eintretenden EEA deutlich in der Zerfallsdynamik manifestieren kann. N2 - This work addresses the exciton dynamics of molecular aggregates which occur after femtosecond multi-photon laser excitation. Thereby, the focus is on the characterization of exciton-exciton annihilation (EEA) via fifth order two dimensional optical spectroscopy. Two model systems are employed: the electronic homodimer model and the electronic homotrimer model, where the latter one is an extension of the dimer system. The systems are coupled to the surrounding. In the numerical calculation, the system-bath interaction is realized via the quantum jump approach. Particular attention is payed to energy-integrated spectra as a function of the population time T. The dimer is the smallest molecular aggregate, but it is a good reference system if larger aggregates are supposed to be understood. The decay of the oscillating fifth-order signal corresponds to the EEA. This indicates that two dimensional optical spectroscopy can be used to monitor the annihilation process. Furthermore, the effect of intraband relaxation is studied within the dimer model. The results display that increasing the intraband relaxation inhibits the population transfer between the localized states of the system. This blocks the EEA. In extending the dimer model system by one monomer unit, one obtains the electronic trimer model system. Within this model, the situation after excitation differs from the one in the dimer model. The excitons do not exclusively reside next to each other so that EEA is immediately possible. In that case, the excitons have to diffuse to each other before they eventually meet and the annihilation process starts. The results suggest that the expected properties are merely correct at very short times around a few femtoseconds. Within the trimer model, the additional time scale for the exciton diffusion doesn't show in the results. In particular, it requires a larger model system for the effect of the delayed EEA to be seen in the regarded signal. KW - Molekulardynamik KW - Quantenmechanik KW - Spektroskopie KW - Exziton KW - Exziton-Exziton-Annihilierung KW - Quantum-Jump-Ansatz KW - Wellenpaketdynamik Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-247136 ER - TY - THES A1 - Stich, Dominik T1 - Zur Exziton- und Ladungsträgerdynamik in einwandigen Kohlenstoffnanoröhren T1 - Exciton and charge carrier dynamics in single-wall carbon nanotubes N2 - In dieser Dissertation wurde die Exziton- und Ladungsträgerdynamik in halbleitenden und metallischen einwandigen Kohlenstoffnanoröhren (SWNTs) mittels zeitkorreliertem Einzelphotonenzählen (TCSPC) und transienter Absorptionsspektroskopie untersucht. Die Experimente wurden an Tensid- oder DNA-stabilisierten SWNT-Proben in Suspension durchgeführt, in denen durch Dichtegradientenultrazentrifugation (DGU) halbleitende (6,5)-Röhren oder metallische (9,9)-Röhren angereichert wurden. Für die Herstellung der metallischen SWNT-Proben wurde das DGU-Verfahren optimiert. Metallische SWNT-Proben wiesen eine Verunreinigung von etwa 3% halbleitenden SWNTs auf. Von den angereicherten metallischen SWNTs war die (9,9)-Röhre mit einem relativen Anteil von 40% die vorherrschende Chiralität. Für transiente Absorptionsmessungen wurden die metallischen SWNT-Proben zudem durch Filtration aufkonzentriert. Halbleitende (6,5)-Proben wurden mit einem standardmäßig verwendeten Rezept hergestellt. Mit TCSPC-Messungen an (6,5)-Proben wurde erstmals gezeigt, dass halbleitende SWNTs neben der kurzlebigen Fluoreszenz des S1-Exzitons, die auf der ps-Zeitskala abläuft, auch eine langlebig Fluoreszenzkomponente aufweisen. Diese klingt mit t^−1 ab und stammt ebenfalls aus dem S1-Exzitonzustand. Das relative Gewicht der langlebigen Komponente an der Quantenausbeute beträgt (7 ± 2)%. Bei der langlebige Fluoreszenzkomponente handelt es sich um verzögerte Fluoreszenz. Diese entsteht durch die Wiederbesetzung des S1-Zustands aus einem tiefergelegenen Triplettzustand. Der vorherrschende Zerfall des Tripletts skaliert mit t^-0,5 und ist auf das nicht-Fick’sche Diffusionsverhalten der Tripletts zurückzuführen, die an Störstellen gefangen werden und abreagieren. Wird vor dem Übergang in den Grundzustand ein weiteres Triplett eingefangen, so kommt es zu einer Triplett-Triplett-Annihilation, die eine Wiederbesetzung des S1-Zustandes bewirkt. Für die transienten Absorptionsexperimente wurde ein Messaufbau verwirklicht, der Anregung und Abfrage im VIS und NIR Spektralbereich mit einer Zeitauflösung von bis zu 50 fs ermöglicht. Die Detektion des Abfragelichts erfolgt spektral aufgelöst mit einer CCD-Kamera. Der Aufbau ermöglicht Nachweisempfindlichkeiten von bis zu 0,2 mOD bei einer Integrationszeit von einer Sekunde. Durch unterschiedliche Modulation von Anregungs- und Abfragestrahl ist eine Detektion auf der Differenzfrequenz der Modulationen möglich, wodurch Einflüsse des Anregungslichts im Abfragespektrum effizient unterdrückt werden. In transienten Absorptionsexperimenten wurde die Exziton- und Ladungsträgerdynamik der (9,9)-Röhre untersucht. Die transienten Absorptionsdaten wurden mit einer globalen Fitroutine angepasst, der ein Vierniveausystem zugrunde lag. Aus dem globalen Fit sind die Photoanregungsspektren (PAS) - die Beiträge der drei angeregten Niveaus zu den transienten Absorptionsspektren - sowie die Zerfallszeiten zugänglich. Die PAS sind durch die Exzitonresonanz gekennzeichnet. Breite PB-Banden aufgrund der Besetzungsänderung der linearen E00-Bänder sind im Gegensatz zu transienten Absorptionsmessungen an Graphen oder Graphit nicht erkennbar. Die PAS des schnellen und mittleren Zerfalls sind ähnlich und weisen eine starkes PB-Signal bei der Energie des M1-Exzitons der (9,9)-Röhre auf, das von PA-Banden bei höheren undtieferen Energien begleitet wird. Der langsame Zerfall ist hingegen durch eine blauverschobene PB-Bande gekennzeichnet, die nur auf der niederenergetischen Seite mit einem PA-Signal einhergeht. Die Zerfallszeiten nehmen mit steigender Anregungsleistung zu und liegen im Bereich von 30 fs bis 120 fs, 500 fs bis 1000 fs und 40 ps. Die schnelle Zerfallskomponente wird mit der Dissoziation der Exzitonen sowie der Thermalisierung der freien Ladungsträgen in den linearen Leitungsbändern zu einer heißen Ladungsträgerverteilung assoziiert. Die mittlere Zerfallskomponente beschreibt die Abkühlung und Rekombination der freien Elektronen und Löcher. Entscheidender Mechanismus ist hierbei die Streuung an hochenergetischen optischen Phononmoden. Die langsame Zerfallskomponente kann durch langlebige, wahrscheinlich an Störstellen gefangene Ladungsträger erklärt werden, deren elektrische Felder durch den Stark-Effekt das ableitungsähnliche transiente Absorptionsspektrum erzeugen. Mittels transienter Absorptionsmessungen an (6,5)-Röhren wurde aus dem anregungsleistungsabhängigen maximalen PB-Signal des S1-Exzitons die Größe des S1-Exzitons zu (7,2 ± 2,5) nm bestimmt. Aus dem Vergleich der leistungsabhängigen maximalen PB-Signale bei Anregung in das S1- und das S2-Exziton ergibt sich, dass die Konversionseffizienz aus dem S2- in den S1-Zustand 1 ± 0,1 beträgt und innerhalb der experimentellen Zeitauflösung von 60 fs vollständig abläuft. Die Exzitongröße in metallischen (9,9)-Röhren wurde bei Exzitonlebensdauern von 15 fs bis 30 fs zu etwa 7 nm bis 12 nm abgeschätzt. N2 - Within the course of this work, the electron- and exciton-dynamics in metallic and semiconducting single-wall carbon nanotubes (SWNTs) were examined by timecorrelated single-photon counting (TCSPC) spectroscopy and transient absorption spectroscopy. In the experiments surfactant- or DNA-stabilized SWNT-suspensions were used in which the semiconducting (6,5)-chirality or the metallic (9,9)-chirality were enriched by means of density gradient ultracentrifugation. The preparation method for metallic samples was optimized. It yields samples that contain 40% of the predominant (9,9)-chirality and show a contamination with semiconducting SWNTs of only 3%. Metallic SWNT samples for transient absorption experiments were concentrated by filtration. Semiconducting (6,5)-samples were prepared following a standard recipe. TCSPC-measurements on (6,5)-samples revealed that semiconducting SWNTs also exhibit a long-lived fluorescence component besides the short-lived fluorescence of the S1-exciton which emits on the ps-timescale. The long-lived component shows a t^−1 powerlaw decay behavior. It also stems from the S1-exciton state and accounts for (7 ± 2) % of the total quantum yield. The long-lived component is due to delayed fluorescence which is caused by the repopulation of the S1-exciton state from a lower-lying triplet state. The decay of the triplet state scales with t^−0,5 and is due to non-Fickian diffusion of the triplets which eventually get trapped at defect sites and decay. In the case that a second triplet is captured at an already occupied defect site, triplet-triplet-annihilation occurs, which leads to the reoccupation of the S1-exciton state. A transient absorption experiment was set up which allows pumping and probing in the visible and near-infrared spectral range with a temporal resolution of up to 60 fs. The spectrally resolved probe light is detected by a CCD-camera. The experimental setup reaches a detection sensitivity of up to 0,2 mOD at an integration time of one second. The experimental setup also allows for the detection on the difference frequency of the modulated pump- and probe-beams. This strongly suppresses contributions of stray light from the pump beam in the transient absorption spectrum. The exciton and charge carrier dynamics in metallic (9,9)-SWNTs were investigated with transient absorption measurements. A global fit routine, based on a four level model, was applied to the data. The decay times as well as the photo excitation spectra – the contributions of each of the three excited levels to the transient absorption spectra - are directly accessible from the global fit. All photo excitation spectra are dominated by PA- and PB-contributions from the exciton resonance. Broad PB-features due to the population of the linear E00-bands, as evidenced in graphene or graphite, were not found. The photo excitation spectra of the fast and medium decay component are similar. Both exhibit a strong PB-signal at the energy of the M1-excitons of the (9,9)-tube, which is accompanied by PA-Bands on the high and the low energy sides. The slow decay component is characterized by a blue-shifted PB-peak with a PA-band on the low energy side only. The decay times increase with rising excitation power and are in the range of 30 fs to 120 fs, 500 fs to 1000 fs, and 40 ps, respectively. The fast decay is associated with rapid exciton dissociation and thermalization of the charge carriers in the linear bands. The medium decay is governed by cooling of the hot charge carrier distribution and recombination of electrons and holes. Both processes are mediated by high energy optical phonons. The slow decay originates from long-lived charge carriers, likely trapped at defect sites. The derivative-like photo excitation spectrum is a sign of the Stark-effect, caused by the electric field of the charge carriers. Using transient absorption measurements, the size of the S1-exciton in (6,5)-tubes was determined from the excitation dependent maximum of the S1-PB-signal to be (7,2 ± 2,5) nm. Comparing the excitation dependent maximum PB-signal after exciting the S1- or the S2-exciton-states shows that the conversion efficency from the S2- into the S1-exciton state is 1 ± 0,1 and is completed within the experimental temporal resolution of 60 fs. The exciton size in metallic (9,9)-tubes is in the range from 7 nm to 12 nm for excitonic lifetimes of 15 fs to 30 fs. KW - Kohlenstoff-Nanoröhre KW - Verzögerte Fluoreszenz KW - Exziton KW - Kohlenstoffnanoröhre KW - metallisch KW - Exziton KW - verzögerte Fluoreszenz KW - single-wall carbon nanotube KW - metallic KW - exciton KW - delayed fluorescence Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-70193 ER - TY - THES A1 - Steindamm, Andreas T1 - Exzitonische Verlustmechanismen in organischen Bilagen-Solarzellen T1 - Excitonic loss mechanisms in organic bilayer solar cells N2 - Um die Wirkungsgrade organischer Solarzellen weiter zu steigern, ist ein Verständnis der auftretenden Verlustmechanismen entscheidend. Im Vergleich zu anorganischen photovoltaischen Zellen sind in den organischen Halbleitern die durch Absorption erzeugten Elektron-Loch-Paare, die als Exzitonen bezeichnet werden, sehr viel stärker gebunden. Daher müssen sie an einer Heterogrenzfläche, gebildet durch ein Donator- und ein Akzeptormaterial, in freie Ladungsträger getrennt werden. Mit dem erforderlichen Transportweg an die Heterogrenzschicht sind Rekombinationsverluste der exzitonischen Anregungen verbunden, die aus einer Vielzahl unterschiedlicher Prozesse resultieren und einen der Hauptverlustkanäle in organischen Solarzellen darstellen. Aus diesem Grund wird der Fokus dieser Arbeit auf die Charakterisierung und mögliche Reduzierung solcher exzitonischen Verlustmechanismen gelegt. Als Modellsystem wird dazu eine planare Bilagen-Struktur auf Basis des Donatormaterials Diindenoperylen (DIP) und des Akzeptors Fulleren C60 verwendet. Durch die Kombination von elektrischen und spektroskopischen Messmethoden werden unterschiedliche exzitonische Verlustmechanismen in den aktiven Schichten charakterisiert und die zugrunde liegenden mikroskopischen Ursachen diskutiert. Dazu wird zuerst auf die strukturellen, optischen und elektrischen Eigenschaften von DIP/C60-Solarzellen eingegangen. In einem zweiten Abschnitt werden die mikroskopischen Einflüsse einer Exzitonen blockierenden Lage (EBL, exciton blocking layer) aus Bathophenanthrolin (BPhen) durch eine komplementäre Charakterisierung von Photolumineszenz und elektrischen Parametern der Solarzellen untersucht, wobei auch die Notwendigkeit der EBL zur Unterbindung von Metalleinlagerungen in den aktiven organischen Schichten analysiert wird. Die anschließende Studie der Intensitäts- und Temperaturabhängigkeit der j(U)-Kennlinien gibt Aufschluss über die intrinsischen Zellparameter sowie die Rekombinationsmechanismen von Ladungsträgern in den aktiven Schichten. Ferner werden durch temperaturabhängige spektroskopische Untersuchungen der Photo- und Elektrolumineszenz der Solarzellen Informationen über die elektronischen Zustände der DIP-Schicht erlangt, die für Rekombinationsverluste der generierten Exzitonen verantwortlich sind. Zusätzlich werden Raman-Messungen an den Solarzellen und Einzelschichten diskutiert. In einer abschließenden Studie werden exzitonische Verluste unter Arbeitsbedingungen der Solarzelle durch Ladungsträgerwechselwirkungen in der Donator-Schicht quantifiziert. In dieser Arbeit konnten verschiedene relevante Verlustprozesse in organischen Solarzellen reduziert werden. Durch die Identifizierung der mikroskopischen Ursachen dieser Verluste wurde eine wichtige Voraussetzung für eine weitere Steigerung der Leistungseffizienz geschaffen. N2 - To increase the efficiencies of organic solar cells, understanding of the occurring loss mechanisms is crucial. In comparison to inorganic photovoltaic cells the electron hole pairs, referred to as excitons, are bound much stronger in organic semiconductors. Therefore dissociation into free charge carriers takes place at a hetero interface of a donor and an acceptor material. The necessary diffusion path to this interface entails recombination loss mechanisms resulting from diverse processes which represent one of the main loss channels in organic solar cells. Thus the focus of this work is set on the characterization and potential reduction of such excitonic loss mechanisms. As a model system planar heterojunction solar cells consisting of diindenoperylene (DIP) as donor and fullerene C60 as acceptor material were used. By combining electrical with spectroscopic measurement techniques diverse excitonic loss mechanisms in the active layers are characterized and the underlying microscopic processes are discussed. Firstly the structural, optical and electrical properties of the DIP/C60 solar cells are observed. In a second section the microscopic effects of an exciton blocking layer (EBL) consisting of bathophenanthroline (BPhen) are investigated by a complementary analysis of photoluminescence and electrical parameters of the solar cells. In doing so also metal penetration into the active organic layers is analyzed and effectively suppressed. The following study of intensity and temperature dependent j(V) characteristics reveals intrinsic cell parameters as well as recombination mechanisms of charge carriers in the active layers. Moreover information about the electronic states of the DIP layer responsible for recombination losses is obtained by temperature dependent spectroscopic analyses of photo- and electroluminescence of the solar cells. Additionally Raman spectra of solar cells and the individual organic thin films are discussed. Finally excitonic losses in solar cells at working conditions due to charge carrier interaction are quantified for the donor layer. During this work diverse relevant loss mechanisms in organic solar cells could be reduced. By identifying the microscopic origins of such losses an important prerequisite was set for further power efficiency enhancement of organic photovoltaic cells. KW - Organische Solarzelle KW - Exziton KW - Diindenoperylen KW - diindenoperylene KW - C60 KW - Bathophenanthrolin KW - bathophenanthroline KW - Bilagen-Solarzelle KW - exciton blocking layer KW - Rekombination KW - Photolumineszenz KW - Elektrolumineszenz KW - Raman-Spektroskopie Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-124002 ER - TY - THES A1 - Schöppler, Friedrich Eugen T1 - Photolumineszenzmikroskopie und-spektroskopie halbleitender Kohlenstoffnanoröhren T1 - Photoluminescence microscopy and spectroscopy of semiconducting nanotubes N2 - Im Rahmen dieser Dissertation wurden optische Eigenschaften von halbleitenden, einwandigen Kohlenstoffnanoröhren (SWNTs) der (6,5)-Chiralität untersucht. Dies gelang durch Ensemblemessungen aber vor allem durch den Aufbau eines Mikroskops zur Messung an einzelnen SWNTs. Dieses Einzel- SWNT-Mikroskop ermöglichte nebst „normaler“ Bildgebung durch Sammlung und Abbildung der nahinfraroten Photolumineszenz (PL) der (6,5)-SWNTs auch die spektral- und zeitaufgelöste Untersuchung der PL. Durch Verwendung von Dichtegradientenultrazentrifugation (DGU) zur chiralen Aufreinigung des SWNT-Rohmaterials konnten alle Messungen unter Minimierung des störenden Einflusses von Aggregaten oder SWNTs anderer Chiralität durchgeführt werden. Untersucht und bestimmt wurde der Absorptionsquerschnitt und die Exzitonengröße, die PL-Eigenschaften aggregierter SWNTs und der Einfluß der Permittivität auf die PL einzelner SWNTs. N2 - Within the course of this work fundamental optical properties of semiconducting single-walled carbon nanotubes (SWNTs) of the (6,5)-chirality were examined by utilizing ensemble measurements and in particular a home-built microscope setup for measurements of individual SWNTs. This single-SWNTmicroscope allowed for „standard“ imaging of the near infrared photoluminescence (PL) signal of the (6,5)-SWNTs as well as for spectrally and timeresolved PL measurements. Facilitating density gradient ultracentrifugation (DGU) for chiral enrichment of the SWNT soot, all measurements were carried out with minimum influence of aggregates or minority species of other SWNT chiralities. The absorption cross section, the exciton size, PL-features of aggregated SWNTs and the influence of permittivity on SWNT-PL have been investigated. KW - Mikroskopie KW - Photolumineszenz KW - Photolumineszenzspektroskopie KW - Kohlenstoff-Nanoröhre KW - Halbleiter KW - Spektroskopie KW - NIR-Spektroskopie KW - Lebensdauer KW - Laserinduzierte Fluoreszenz KW - Aggregation KW - Exziton KW - Dielektrizitätszahl KW - microscopy KW - spectroscopy KW - carbon nanotubes KW - fluorescence Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-73329 ER - TY - THES A1 - Schmidt, Thomas T1 - Optische Untersuchung und Kontrolle der Spindynamik in Mn dotierten II-VI Quantenpunkten T1 - Optical Investigations and Control of Spindynamics in Mn doped II-VI Quantum Dots N2 - Die vorliegende Arbeit befasste sich mit dem Spin- und dem damit eng verbundenen Polarisationszustand von Ladungsträgern in CdSe/ZnSe Quantenpunkten. II-VI Materialsysteme können in geeigneter Weise mit dem Nebengruppenelement Mangan gemischt werden. Diese semimagnetischen Nanostrukturen weisen eine Vielzahl von charakteristischen optischen und elektrischen Besonderheiten auf. Verantwortlich dafür ist eine Austauschwechselwirkung zwischen dem Spin optisch erzeugter Ladungsträger und den 3d Elektronen der Mn Ionen. Im Rahmen dieser Arbeit erfolgte die Adressierung gezielter Spinzustände durch optische Anregung der Ladungsträger. Die Besetzung unterschiedlicher Spinzustände konnte durch Detektion des Polarisationsgrades der emittierten Photolumineszenz (PL) bestimmt werden. Dabei kamen verschiedene optische Methoden wie zeitaufgelöste und zeitintegrierte PL-Spektroskopie sowie Untersuchungen in Magnetfeldern zum Einsatz. N2 - The present thesis deals with the spin of charge carriers confined in CdSe/ZnSe quantum dots (QDs) closely linked to the polarization of emitted photons. II-VI material systems can be adequately mixed with the B-group element manganese. Such semimagnetic nanostructures offer a number of characteristic optical and electronic features. This is caused by an exchange interaction between the spin of optically excited carriers and the 3d electrons of the Mn ions. Within the framework of this thesis addressing of well defined spin states was realized by optical excitation of charge carriers. The occupation of different spin states was detected by the degree of polarization of the emitted photoluminescence (PL) light. For that purpose different optical methods of time-resolved and time-integrated spectroscopy as well as investigations in magnetic fields were applied. KW - Halbleiterschicht KW - Niederdimensionaler Halbleiter KW - Quantenpunkt KW - Optische Spektroskopie KW - Zirkularpolarisation KW - Polarisiertes Licht KW - Exziton KW - Spindynamik KW - semiconductor quantum dots KW - optical spectroscopy KW - circular polarization KW - exciton KW - spindynamic Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-36033 ER - TY - THES A1 - Schilling, Daniel T1 - Zur spektralen Diffusions- und Energietransferdynamik in halbleitenden einwandigen Kohlenstoffnanoröhren T1 - Spectral diffusion and energy transfer dynamics in semiconducting single wall carbon nanotubes N2 - Einwandige Kohlenstoffnanoröhren weisen aufgrund ihrer besonderen Struktur viele für ein rein kohlenstoffhaltiges Makromolekül ungewöhnliche Eigenschaften auf. Dies macht sie sowohl für die Erforschung grundlegender Phänomene in eindimensionalen Nanostrukturen als auch für potenzielle Anwendungen äußerst interessant. Da alle Atome einer SWNT Oberflächenatome sind, führt dies zu einer besonders ausgeprägten Empfindlichkeit ihrer elektronischen Eigenschaften auf Wechselwirkungen mit der Umgebung. Lokale zeitabhängige Änderungen in diesen Wechselwirkungen führen daher zu Phänomenen wie dem Photolumineszenz-Blinken und spektraler Diffusion. Die Erforschung und Kontrolle der Parameter, die für die Beeinflussung der elektronischen Eigenschaften von SWNTs durch Umgebungseinflüsse entscheidend sind, wird neben der spezifischen Synthese eine maßgebliche Rolle dabei spielen, ob und in welcher Form SWNTs in optoelektronischen Bauteilen zukünftig Anwendung finden. Die vorliegende Arbeit liefert einen Beitrag zum Verständnis dieser Wechselwirkungen, indem die Dynamik von Energietransferprozessen innerhalb von SWNTs und zwischen SWNTs untersucht wurde. Im Rahmen dieser Arbeit wurden homogene und inhomogene Beiträge zur Linienverbreiterung von in einer Matrix eingebetteten SWNTs bestimmt. Dabei wurde erstmals beobachtet, dass die spektrale Diffusion sowohl bei Raumtemperatur als auch bei 17 K auf einer ultraschnellen Zeitskala, d. h. innerhalb von weniger als 1 ps abläuft. Mittels transienter Lochbrennspektroskopie konnte gezeigt werden, dass die homogene Linienbreite von (6,5)-SWNTs mit 3.6 meV nur den geringsten Beitrag zur Absorptionslinienbreite liefert, während die größte Verbreiterung mit mehr als 99 % inhomogen ist. Die inhomogene Linienbreite wurde aus inkohärenten 2D-Spektren, welche durch spektrale Lochbrennexperimente bei Variation der Anregungswellenlänge erhalten werden konnten, zu \(54\pm5\)meV bestimmt. Die Dynamik der spektralen Diffusion wird mit einer Exzitonendiffusion in einer durch lokale Umgebungswechselwirkungen verursachten inhomogenen Energielandschaft entlang der Nanorohrachse erklärt. Durch zeitaufgelöste Lochbrennexperimente unter nichtresonanter Anregung konnte gezeigt werden, dass die Populationsumverteilung innerhalb dieser Energielandschaft für eine energetisch abwärts gerichtete Relaxation ein spontaner Prozess ist. Im umgekehrten Fall ist sie dagegen thermisch aktiviert. Mögliche Einflüsse von Artefakten wurden anhand von Referenzmessungen diskutiert und die Bestimmung der homogenen Linienbreite durch komplementäre CW-Lochbrennexperimente ergänzt. Durch Monte-Carlo-Simulationen konnten erstmals Informationen über die Form der Potenzialenergielandschaft entlang einer SWNT erhalten und die Größenordnung der Plateaubreite mit nahezu konstanter Energie innerhalb der Potenziallandschaft zu 5.8-18.2nm ermittelt werden. Dies gelang durch eine Kalibrierung der Simulationszeit anhand experimenteller transienter Absorptionsspektren. Im Rahmen dieses Modells wurde darüber hinaus die Zeit für einen Sprung zu einem benachbarten Gitterplatz der Energielandschaft zu 0.1 ps bestimmt. Inter- und intraband-Relaxationsprozesse von SWNTs wurden mittels Photolumineszenzspektroskopie untersucht. Die Ergebnisse deuten auf eine temperaturunabhängige Effizienz der internen Konversion und die photostimulierte Generierung von Löschzentren hin. Anhand temperaturabhängiger PL-Messungen, die erstmals bei Anregung des \(S_1\)-Zustands durchgeführt wurden, konnte die Energiedifferenz zwischen dem hellen und dunklen Exziton für (6,5)-SWNTs im Rahmen des Modells eines Dreiniveausystems zu \(\delta = (3.7\pm0.1)\)meV bestimmt werden. Aus der guten Übereinstimmung des temperaturabhängigen Trends der PL-Intensität unter \(S_1\)-Anregung mit in früheren Studien erhaltenen Ergebnissen unter \(S_2\)-Anregung konnte geschlussfolgert werden, dass die Effizienz der internen Konversion nicht ausgeprägt temperaturabhängig ist. Für SWNT-Gelfilme wurde unter \(S_2\)-Anregung eine deutliche Abweichung zur \(S_1\)-Anregung in Form eines Bleichens der Photolumineszenz beobachtet. Dieses Phänomen ist in der Literatur wenig diskutiert und wurde daher in leistungsabhängigen PL-Experimenten weiter untersucht. Dabei wurde für die \(S_2\)- im Vergleich zur \(S_1\)-Anregung eine stärker ausgeprägte sublineare Leistungsabhängigkeit gefunden. Die Abweichung vom linearen Zusammenhang der PL-Intensität mit der Leistung trat hier schon bei um eine Größenordnung geringeren Leistungsdichten auf als in früheren Studien und kann mit einer Exziton-Exziton-Annihilation allein nicht erklärt werden. Möglicherweise ist die Öffnung zusätzlicher Zerfallskanäle durch metastabile Löschzentren für dieses Verhalten verantwortlich. Die PL-Experimente zeigten zudem ein zeitabhängiges irreversibles Bleichen unter \(S_2\)-Anregung, welches bei 30 K stärker ausgeprägt war als bei Raumtemperatur. Dessen Abhängigkeit von der eingestrahlten Photonenzahl lässt auf eine Akkumulation von Löschzentren schließen. Daher wird eine mögliche Redoxreaktion mit Wasser, ausgelöst durch die intrinsische p-Dotierung der SWNTs, als Quelle der Löschzentren diskutiert. Das Verzweigungsverhältnis für die Relaxation nach \(S_2\)-Anregung von SWNTs wurde in Form der relativen Quantenausbeute bestimmt und eine nahezu quantitative interne Konversion des \(S_2\)-Exzitons gefunden. Dieses Ergebnis hat eine wichtige Bedeutung für potenzielle Anwendungen von SWNTs in der Photovoltaik, da die Verluste durch die interband-Relaxation bei einer Anregung des zweiten Subband-Exzitons <3% zu sein scheinen. Die Herausforderung des Experiments wird hier durch die geringe Stokes-Verschiebung von SWNTs verursacht, die eine quantitative Trennung von PL- und Streulicht unmöglich macht. Daher wurde ein Aufbau realisiert, in dem ein großer Teil des Streulichts bereits räumlich entfernt wird und die PL unter \(S_1\)- bzw. \(S_2\)-Anregung quantifizierbar und ohne eine Annahme über Streulicht-Anteile direkt vergleichbar ist. Sowohl für SDS- als auch für Polymer-stabilisierte SWNTs wurde eine relative Quantenausbeute von \(\xi \approxeq 1\) erhalten, was eine nahezu quantitative interne Konversion von \(S_2\)- zu \(S_1\)-Exzitonen innerhalb der PL-Lebensdauer nahelegt. Anregungsenergietransferprozesse zwischen Kohlenstoffnanoröhren in mono- und bidispersen SWNT-Netzwerkfilmen definierter Zusammensetzung wurden mittels zeitaufgelöster Polarisationsanisotropie untersucht. Dabei wurden neben einem ultraschnellen Energietransfer in weniger als 1 ps auch Hinweise auf Beiträge des \(S_2\)-Exzitons an diesem Prozess gefunden. Die Ergebnisse der Experimente mit bidispersen SWNT-Netzwerkfilmen bestätigen den auch in PLE-Spektren beobachteten energetisch abwärts gerichteten Energietransfer von SWNTs mit großer zu solchen mit kleiner Bandlücke und liefern darüber hinaus eine Zeitskala von weniger als 1 ps für diesen Prozess. Die umgekehrte Transferrichtung konnte weder aus dem \(S_1\)- noch aus dem \(S_2\)-Exziton beobachtet werden. Eine Beschleunigung der Anisotropiedynamik bei \(S_2\)- im Vergleich zu S\uu1-Anregung deutet auf einen Beitrag des \(S_2\)-Exzitons am Energietransferprozess in Konkurrenz zur internen Konversion hin. Durch Referenzexperimente mit monodispersen Netzwerkfilmen konnte eine Beteiligung von Energietransferprozessen zwischen SWNTs der gleichen Chiralität auf einer Zeitskala von 1-2ps nachgewiesen werden. Dadurch konnten Beobachtungen von zeitabhängigen Anisotropieänderungen, die einen energetisch aufwärts gerichteten Energietransfer suggerieren, mit einem intra-Spezies-Transfer erklärt werden - Hinweise auf energetisch aufwärts gerichtete EET-Prozesse wurden nicht gefunden. Eine wichtige Erkenntnis aus diesen Experimenten ist die Tatsache, dass die Überlappung von Signalbeiträgen zu einer Verfälschung der Anisotropie und damit zu fehlerhaften Interpretationen führen kann. Darüber hinaus wurde auf den Einfluss der Probenheterogenität und der Alterung von SWNT-Netzwerkfilmen hingewiesen. Diese Untersuchungen legen nahe, dass ein effizienter Exzitonentransfer in SWNT-Netzwerkfilmen auch zwischen den einzelnen Röhrensträngen erfolgen kann und es somit möglich ist, die Effizienz entsprechender Solarzellen zu verbessern. Im letzten Teil der Arbeit wurden erstmals transiente Absorptionsexperimente im Femtosekundenbereich mit SWNTs unter \(Gate-Doping\) durchgeführt. In ersten Experimenten konnte gezeigt werden, dass analog zur chemischen Dotierung von SWNTs die Dynamik des \(S_1\)-Bleichens eines (6,5)-SWNT-Netzwerkfilms nach \(S_2\)-Anregung unter \(Gate-Doping\) eine Beschleunigung durch zusätzliche Zerfallskanäle erfährt. Die elektrochemische Bandlücke wurde für (6,5)-Nanoröhren zu 1.5 eV bestimmt. Eine Verringerung der Photoabsorptionsamplitude mit zunehmendem Potenzial lässt Vermutungen über die Natur dieses in transienten Absorptionsexperimenten beobachteten PA-Merkmals in Form der Absorption einer dotierten SWNT-Spezies zu. Diese Untersuchungen liefern erste Einblicke in die Art und Weise, wie eine elektrochemische Modifizierung von SWNTs die elektronische Bandstruktur und Ladungsträgerdynamik verändert. N2 - Due to their unique structure single wall carbon nanotubes exhibit many exceptional properties compared to other carbon based macromolecules. Their striking properties make SWNTs ideal candidates for the investigation of fundamental phenomena in one-dimensional nanostructures as well as for potential applications. Since all carbon atoms are at the SWNT surface their electronic properties are strongly sensitive towards local environmental interactions. Time-dependent local modifications of these interactions result in phenomena like photoluminescence blinking and spectral diffusion. In addition to specific synthesis, the investigation as well as the proper control of the parameters that affect the environmental influence on the electronic properties of SWNTs will be key factors for the question if and how SWNTs will be used in future optoelectronic devices. This thesis contributes to the understanding of these environmental interactions by means of an investigation of energy transfer dynamics within and between SWNTs. Within the scope of this work, homogeneous and inhomogeneous contributions to the line broadening of matrix embedded SWNTs were determined. It was observed for the first time that spectral diffusion takes place on an ultrafast time scale within less than 1 ps both, at room temperature and at 17 K. Transient hole-burning spectroscopy was used to show, that the homogeneous linewidth of (6,5)-SWNTs is 3.6 meV and thus contributes only a small fraction to the absorption linewidth, whereas inhomogeneous broadening represents the largest contribution with more than 99 %. The inhomogeneous linewidth was deduced from incoherent 2D-spectra which were obtained by excitation wavelength dependent hole-burning spectroscopy. The dynamics of spectral diffusion is consistent with an exciton diffusion in an inhomogeneous energy landscape along the SWNT axis, caused by local environmental interactions. Off-resonant spectral hole-burning experiments revealed that a bathochromic spectral diffusion is a spontaneous process, whereas its hypsochromic equivalent is thermally activated. Control experiments were performed to show possible influences of artifacts on the determination of the homogeneous linewidth. The latter was accompanied by means of complementary CW hole-burning spectroscopy experiments. From Monte-Carlo simulations information about the granularity of the potential energy landscape along the SWNT axis was obtained. The width of plateau regions with nearly constant energy was found to be in the range of 5.8-18.2nm. This was accomplished by calibration of the simulation time on the basis of experimental transient absorption spectra. Within this model the time interval for a population hop to adjacent lattice sites was deduced to be on the order of 0.1 ps. Inter- and intraband relaxation processes of SWNTs were investigated by means of photoluminescence spectroscopy. The results suggest that the efficiency of internal conversion is temperature-independent and that quenching centers are generated by irradiation of SWNTs with light. From the PL temperature dependence, which was carried out under \(S_1\) excitation for the first time, the energy splitting \(\delta\) between the bright and dark exciton states for (6,5)-SWNTs was determined. Within the model of a three level system a value of \(\delta = 3.7\pm0.1\)meV was deduced. The good agreement of the temperature dependence of PL intensity under \(S_1\) excitation with previously published studies under \(S_2\) excitation suggests, that the efficiency of internal conversion exhibits no pronounced temperature dependence. A strong PL bleaching was observed for SWNT gelatin films under \(S_2\) excitation, which has not been found in case of \(S_1\) excitation. Since this discrepancy is only little discussed in literature, power dependent PL experiments were performed for further investigation. For \(S_2\) excitation the sublinear power dependence was found to be more pronounced compared to \(S_1\) excitation. The deviation of PL intensity from a linear trend with increasing excitation power occurred at excitation densities which are one order of magnitude lower as compared to earlier studies and cannot be explained by pure exciton-exciton annihilation. Instead, additional relaxation channels seem to be opened, possibly by the formation of metastable quenching species. The PL experiments also revealed an irreversible time-dependent bleaching under \(S_2\) excitation which was found to be more pronounced at 30 K compared to room temperature. The bleaching dependence on the photon number suggests an accumulation of quenching sites. A possible candidate might be a quenching SWNT species formed by a redox reaction with water in presence of intrinsic p-doping. The branching ratio for relaxation after \(S_2\) excitation was determined as the relative PL quantum yield of the second and first subband exciton for which an almost quantitative internal conversion was deduced. This result is important for potential applications of SWNTs in photovoltaic devices since the loss due to interband relaxation of the \(S_2\) exciton seems to be < 3%. The small Stokes shift in SWNTs hampers the quantitative separation of PL and excitation intensity. In order to avoid contributions from scattered excitation light, a setup was implemented that allows spatial removal of a large fraction of excitation intensity. Furthermore, the PL intensity for both excitation pathways can be quantified at the same time within the same setup and without assumptions about stray light contributions. For SDS- as well as polymer-stabilized SWNT dispersions a relative quantum yield of \(\xi \approxeq 1\) was determined which suggests, that internal conversion of \(S_2\) excitons has a quantum yield of almost unity within the PL lifetime. Excitation energy transfer processes between carbon nanotubes in mono- and bidisperse SWNT network films of predefined composition were investigated by means of time-resolved polarization anisotropy. An ultrafast energy transfer within less than 1 ps as well as contributions of the \(S_2\) exciton to EET were found. The results confirm observations of downhill energy transfer in bidisperse network films from larger to smaller bandgap SWNTs as observed in PLE spectra. The transfer occurs in less than one picosecond. An uphill energy transfer from small to large bandgap tubes has been observed neither for \(S_1\) nor for \(S_2\) excitation. An increase of anisotropy decay rate for \(S_2\) excitation suggests a contribution of energy transfer from the \(S_2\) state as a competing pathway. From reference experiments with monodisperse SWNT network films evidence for a contribution of energy transfer between the same SWNT species within 1-2 ps was provided. This explains consistently the observation of an anisotropy decay after excitation of small band gap tubes in bidisperse networks which could be misinterpreted as an uphill energy transfer. One of the key findings in this work is the fact that anisotropy values might be corrupted due to signal overlap in the transient absorption spectra. Furthermore, it was pointed out that effects of sample heterogeneity and film aging might be important in the context of applications of SWNT thin films under ambient conditions. The results suggest that efficient exciton transfer in SWNT network films is possible between individual SWNT fibers, which can help to improve the efficiency of corresponding photovoltaic devices. In the last part of this work transient absorption experiments on the femtosecond time-scale were performed with SWNTs in the presence of gate doping for the first time. The experiments show that analogous to the case of chemical doping the dynamics of the \(S_1\) bleach recovery of a (6,5)-SWNT network film accelerate in the presence of gate doping. This demonstrates that doping opens an additional relaxation channel. The electrochemical band gap was determined for (6,5)-SWNTs from transient absorption spectroscopy to be 1.50 eV. The observation of a decrease in photoabsorption amplitude with increasing potential leads to speculations about the nature of the PA as an absorption of a doped SWNT species. The investigation provides first insight into the way how electrochemical modification of SWNTs alters their electronic band structure and charge carrier dynamics. KW - Einwandige Kohlenstoff-Nanoröhre KW - Photolumineszenzspektroskopie KW - Pump-Probe-Technik KW - Exziton KW - (6,5)-Kohlenstoffnanoröhre KW - Spektrale Diffusion KW - Energietransfer Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-122772 ER - TY - THES A1 - Mann, Christoph T1 - Exzitonengröße und -dynamik in (6,5)-Kohlenstoffnanoröhren : Transiente Absorptions- und Photolumineszenzmessungen T1 - Exciton size and -dynamics in (6,5) carbon nanotubes N2 - Zahlreiche theoretische und experimentelle Untersuchungen haben erwiesen, dass in halbleitenden Kohlenstoffnanoröhren durch Absorption von Licht hauptsächlich Exzitonen erzeugt werden. Die photophysikalischen Eigenschaften und insbesondere die Prozesse nach der optischen Anregung sind aber gegenwärtig noch nicht vollständig verstanden. Zeitaufgelöste Spektroskopie bietet die Möglichkeit, diese Prozesse zu verfolgen und somit detaillierten Einblick in das photophysikalische Verhalten von Kohlenstoffnanoröhren zu nehmen. Hierbei scheinen auch extrinsische Faktoren - zu nennen sind die Herstellungsmethode, die Art der Probenpräparation, der Aggregationsgrad sowie der durch das Lösungs- bzw. Dispersionsmittel bedingte Einfluss - eine entscheidende Rolle zu spielen. In dieser Dissertation wurden die Exzitonengröße sowie die exzitonische Dynamik in einwandigen Kohlenstoffnanoröhren mittels transienter Absorptionsspektroskopie sowie stationärer und zeitaufgelöster Photolumineszenzmessungen untersucht. Alle Experimente fanden dabei an halbleitenden (6,5)-Kohlenstoffnanoröhren statt, deren chirale Anreicherung durch Dichtegradientenultrazentrifugation gelang. Für die temperaturabhängigen Messungen wurde ein Verfahren zur Herstellung von tensidstabilisierten Gelatinefilmen entwickelt. Diese zeichnen sich durch eine hohe Temperaturstabilität bei gleichzeitiger Minimierung von Streulichteffekten aus. Die Bestimmung der Exzitonengröße erfolgte mit Hilfe des Phasenraumfüllmodells, das die intensitätsabhängige Änderung der Oszillatorstärke eines Übergangs mit der Exzitonengröße verknüpft. Hierfür wurden leistungsabhängige Messungen der transienten Absorption durchgeführt und die Signalintensität des Photobleichens gegen die absorbierte Photonenflussdichte aufgetragen. Da diese beiden Größen nur bei geringer Exzitonendichte in einer linearen Beziehung stehen, aus der sich die Exzitonengröße berechnen lässt, wurde im Experiment besonderer Wert auf niedrige Anregungsfluenzen und deren exakte Bestimmung gelegt. Um den Einfluss der Aggregation quantifizieren zu können und den Vergleich mit der Literatur zu erleichtern, fanden die Untersuchungen sowohl an individualisierten als auch an aggregierten Röhrenproben statt. Die Datenanalyse, bei der erstmalig die stimulierte Emission sowie der spektrale Überlapp von Photoabsorptions- und Photobleichbande Berücksichtigung fanden, ergab für individualisierte (6,5)-Nanoröhren einen Wert von 12.0 nm für die Größe des S1-Exzitons, während diese bei der aggregierten Röhrenprobe nur 5.6 nm beträgt. Die Probenabhängigkeit der Exzitonengröße macht den Vergleich mit anderen experimentell ermittelten Werten schwierig. Diese liegen fast ausschließlich zwischen 1 nm und 4.5 nm, ihre Bestimmung fand aber teilweise an stark aggregierten bzw. polydispersen Proben statt. Theoretische Berechnungen liefern für die Exzitonengröße Werte zwischen 1 nm und 4 nm. Zwar gelten einige der Berechnungen für Vakuum, was verglichen zu einer experimentell in Lösung bzw. im Film bestimmten Exzitonengröße einen kleineren Wert mit sich bringt, jedoch kann allein hierdurch die Diskrepanz zu der in dieser Arbeit ermittelten Exzitonengröße von 12.0 nm nicht erklärt werden. Setzt man experimentell und theoretisch für Vakuum bestimmte Werte für die Exzitonengröße und die Bindungsenergie in einen einfachen Zusammenhang, entspricht eine Exzitonengröße von 12.0 nm einer Bindungsenergie zwischen 0.21 eV und 0.27 eV. Die mittels Zweiphotonenexperimenten ermittelten Werte für die Bindungsenergie von (6,5)-Kohlenstoffnanoröhren befinden sich zwischen 0.37 eV und 0.42 eV; diese wurden allerdings unter Zuhilfenahme eines vereinfachten zylindrischen Modells abgeschätzt. Weitere experimentelle und theoretische Untersuchungen könnten klären, inwieweit eine exzitonische Bindungsenergie zwischen 0.21 eV und 0.27 eV für (6,5)-SWNTs in Betracht kommt. Strahlender und nichtstrahlender Zerfall in den Grundzustand scheinen in (6,5)-Kohlenstoffnanoröhren durch eine Dynamik zwischen verschiedenen Zuständen sowie durch die Diffusion der Exzitonen beeinflusst zu werden. Um diese für die Rekombination maßgeblichen Prozesse besser zu verstehen, wurden temperaturabhängige Messungen der stationären und zeitaufgelösten Photolumineszenz sowie der transienten Absorption durchgeführt. Die Ergebnisse der stationären PL-Experimente deuten darauf hin, dass die Exzitonen zwischen dem optisch aktiven Singulettzustand mit A2-Symmetrie - im Folgenden mit [B] bezeichnet - und einem energetisch tiefer liegenden dunklen Zustand [D] gestreut werden. Mit einem Wert von 5 meV für die energetische Aufspaltung zwischen [B] und [D] gelingt eine gute Anpassung an die Daten, was mit Blick auf die Bandstruktur von (6,5)-SWNTs vermuten lässt, dass es sich bei [D] um den A1-Singulettzustand handelt. Außerdem scheint eine nichtthermische Verteilung der Exzitonen auf [B] und [D] vorzuliegen, wobei strahlende Rekombination nur vom Zustand [B] aus möglich ist. Mit diesen Annahmen kann das temperaturabhängige Verhalten der stationären Photolumineszenz modelliert werden, die Ergebnisse der zeitaufgelösten PL-Messungen jedoch nicht. Mit einem rein diffusionsdominierten Modell gelingt dies ebenso wenig, so dass zur Interpretation des PL-Zerfalls vermutlich ein Modell entwickelt werden muss, in dem sowohl die Streuung der Exzitonen zwischen [B] und [D] als auch das durch Diffusion bedingte Löschen an Defektstellen oder Röhrenenden Berücksichtigung findet. Die Bedeutung der Diffusion von Exzitonen zu Defektstellen oder Röhrenenden, an denen bevorzugt nichtstrahlender Zerfall stattfindet, kann durch spektral- und zeitaufgelöste PL-Messungen belegt werden. Abhängig von der zur Verfügung stehenden thermischen Energie und der Höhe der Potenzialbarrieren des untersuchten Systems kann die Diffusion niederenergetischer Exzitonen, die sich in Potenzialminima befinden, soweit eingeschränkt werden, dass diese eine fast bis um den Faktor zwei längere PL-Lebensdauer aufweisen als höherenergetische Exzitonen. Das unterschiedliche Verhalten von transienter Absorption und zeitaufgelöster Photolumineszenz bei Temperaturen zwischen 14 K und 35 K zeigt, dass die Repopulation des Grundzustands hauptsächlich von einem anderen Zustand aus erfolgt als die strahlende Rekombination. Ob es sich hierbei aber um den mit [D] bezeichneten A1-Singulettzustand oder einen anderen dunklen Zustand handelt, kann nicht abschließend geklärt werden. Aufgrund inhomogener Verbreiterung stellt die Halbwertsbreite der Banden im Absorptionsspektrum ein Maß für die Höhe der Potenzialbarrieren bzw. für die energetische Verteilung der Exzitonen im angeregten Zustand dar. In dieser Arbeit wurde anhand vier verschiedener Nanorohrsuspensionen gezeigt, dass Sättigungsverhalten der transienten Absorption von (6,5)-Kohlenstoffnanoröhren und Bandenbreite im Absorptionsspektrum demselben Trend folgen. Begründen kann man dies damit, dass das Sättigungsverhalten der transienten Absorption durch Exziton-Exziton-Annihilation bestimmt wird. Aufgrund ihrer eindimensionalen Struktur unterliegen Kohlenstoffnanoröhren einer starken Beeinflussung durch die Umgebung. Abhängig vom Lösungs- bzw. Dispersionsmittel resultiert eine unterschiedliche inhomogene Verbreiterung der Absorptionsbanden und damit unterschiedlich hohe Potenzialbarrieren im angeregten Zustand. Niedrige Potenzialbarrieren erlauben eine weitreichende Diffusion der Exzitonen, sodass effiziente Exziton-Exziton-Annihilation schon bei einer vergleichsweise geringen Exzitonendichte stattfindet und das Signal der transienten Absorption bei einer niedrigen Impulsfluenz sättigt. N2 - Numerous theoretical and experimental studies have proved that in semiconducting carbon nanotubes, mainly excitons are created by light absorption. The photophysical properties and in particular the processes after optical excitation are to date not fully understood. Thanks to time-resolved spectroscopy, these processes can be pursued gaining detailed insight into the photophysical behavior of carbon nanotubes. Extrinsic factors like synthesis and preparation method, degree of aggregation as well as environmental effects appear to play a major role in this content. In this work, exciton size and dynamics in single-wall carbon nanotubes were studied by transient absorption spectroscopy as well as steady-state and time-resolved photoluminescence experiments. All measurements were done with semiconducting nanotubes of the (6,5)-chirality, which were obtained by density gradient ultracentrifugation. For temperature dependent measurements, an optimised surfactant stabilised gelatine film was developed which has a high temperature stability while minimising scattered light effects. The exciton size was determined by phase space filling analysis, which relates the intensity dependent reduction in oscillator strength of a transition with the size of the corresponding exciton. Therefore, the transient absorption was measured as a function of the power, and the intensity of the photobleach signal was plotted against the number of absorbed photons. The exciton size was calculated from the linear relationship between these two quantities at low exciton densities. Hence, great emphasis was put on working with high precision at low excitation fluences. In order to quantify the influence of the aggregation and in order to facilitate the comparison with literature, both individualised and aggregated nanotube samples were used in the experiments. From the data, the first subband exciton size was determined to be 12.0 nm and 5.6 nm for the individualised and the aggregated (6,5)-sample, respectively. Here, for the first time, both the stimulated emission and the spectral overlap of the photoabsorption and photobleach signal were taken into account. Thus, the exciton size strongly depends on the sample. This makes it difficult to compare the results with experimental values as shown in literature which almost exclusively lie between 1.0 nm and 4.5 nm but were partially determined using aggregated and polydisperse samples. Theory predicts an exciton size between 1 nm and 4 nm. In fact, some of these theoretical values were obtained for vacuum conditions leading to a smaller exciton size compared to experimental determination. However, the discrepance from the exciton size determined in this work can not be explained purely by this effect itself. Relating experimental and theoretical values of the exciton size and binding energy, an exciton size of 12.0 nm corresponds to a binding energy between 0.21 eV and 0.27 eV. Two-photon absorption experiments yield an exciton binding energy between 0.37 eV and 0.42 eV using a simplified cylindrical model. Further experimental and theoretical studies might clarify if an exciton binding energy between 0.21 eV and 0.27 eV is a realistic approach. In (6,5) carbon nanotubes, both radiative and nonradiative decay to the ground state appear to be influenced by multiple excitonic states as well as exciton diffusion. To better understand the relevant recombination processes, the stationary and time-resolved photoluminescence as well as the transient absorption was measured as a function of temperature. The stationary PL experiments suggest an exciton scattering between the optically active singlet state with A2 symmetry (hereinafter referred to as [B]) and a lower lying dark state [D]. Neglecting radiative recombination from [D], the data is well-explained by a dark-bright excitonic splitting of 5 meV and a nonthermal exciton distribution. With regard to the band structure of (6,5) carbon nanotubes, this gives rise to the presumption that [D] is the dipole forbidden A1 singlet state. This assumption explains the temperature dependent behaviour of the stationary photoluminescence quite well, but not the behaviour of the time-resolved photoluminescence. A model that is dominated solely by diffusion does not work either. Therefore, to interpret the PL decay, both exciton scattering between [B] and [D] and diffusion limited quenching at defects or tube ends have to be taken into account. The importance of exciton diffusion to defects or tube ends where non-radiative decay preferentially takes place can be proved by spectral- and time-resolved PL measurements. Depending on the available thermal energy and the height of the potential barriers in the considered system, diffusion can be restricted in that way that low energy excitons which are located in minimums of the potential energy landscape exhibit an almost twice longer PL lifetime than high energy excitons. The differences in transient absorption and time-resolved PL between 14 K and 35 K demonstrate that recovery to the ground state occurs from another state, different from the state [B] in radiative recombination. The nature of this dark state remains unclear. Due to inhomogeneous broadening, the FWHM of the absorption bands is a measurement of the height of the potential barriers and of the energetic exciton distribution in the excited state. In this work, the fact that transient absorption saturation behaviour of (6,5) carbon nanotubes and absorption band width follow the same trend could be shown by four different nanotube suspensions. The reason for this is that transient absorption saturation behaviour is governed by exciton-exciton annihilation. Due to their one-dimensional structure, carbon nanotubes are strongly influenced by environmental effects, resulting in a varying inhomogeneous broadening of the absorption bands and thus in different excited state potential barriers for various solvents and dispersion agents. Low potential barriers permit a long ranged exciton diffusion. Hence, efficient exciton-exciton annihilation takes place at comparatively low exciton densities and the transient absorption signal saturates at low pulse fluences. KW - Exziton KW - (6,5)-Kohlenstoffnanoröhren KW - Exzitonengröße KW - Transiente Absorption KW - Exzitonendynamik KW - Zeitaufgelöste Photolumineszenz KW - (6,5) carbon nanotubes KW - exciton size KW - transient absorption KW - exciton dynamics KW - time-resolved photoluminescence KW - Kohlenstoff-Nanoröhre KW - Spektroskopie KW - Zeitauflösung KW - Zeitaufgelöste Spektroskopie Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-116712 ER - TY - THES A1 - Keller, Dirk T1 - Optische Eigenschaften ZnSe-basierter zweidimensionaler Elektronengase und ihre Wechselwirkung mit magnetischen Ionen T1 - ZnSe-based QWs with a two-dimensional electron gas: Optical properties and interaction with magnetic ions N2 - In dieser Arbeit wurden nichtmagnetische und semimagnetische ZnSe-basierte Quantentröge untersucht. Im Mittelpunkt des Interesses standen hierbei vor allem die Modifikation der optischen Spektren mit einer zunehmenden Modulationsdotierung der Strukturen und der Einfluss von Spinflip-Streuungen der freien Band-Elektronen an den Mn-Ionen auf die Magnetisierung und somit die Zeeman-Aufspaltung der Strukturen. Als experimentelle Methoden wurden Photolumineszenz (PL), Photolumineszenzanregung (PLE) und Reflexionsmessungen verwendet, die in Magnetfeldern von bis zu B=48 T und bei Temperaturen im Bereich von 1.6 K bis 70 K durchgeführt wurden. Darüber hinaus wurde die Abhängigkeit der Spin-Gitter-Relaxationszeit der Mn-Ionen von der Mn-Konzentration und der Elektronengasdichte in den Quantentrögen durch zeitaufgelöste Lumineszenzmessungen untersucht. Der Einfluss eines Gradienten in der s/p-d-Austauschwechselwirkung auf die Diffusion der Ladungsträger bildet einen weiteren Schwerpunkt dieser Arbeit. Als experimentelle Methode wurde hierbei ortsaufgelöste Lumineszenz verwendet. N2 - In the present work, nonmagnetic and semimagnetic ZnSe based quantum wells were studied. The thesis was focussed on the modification of optical spectra with an increasing modulation-doping of the structures. Further emphasis was placed on the influence of the spinflip scattering of the free carriers and the Mn ions on the magnetization and thus the giant Zeeman splitting of the structures. As experimental methods, photoluminescence spectroscopy (PL), photoluminescence excitation spectroscopy (PLE) and reflection measurements were used and were performed in magnetic fields up to B=48 T and at temperatures within the range of 1.6 K to 70 K. In addition, the dependence of the spin-lattice relaxation time of the Mn ions on the Mn concentration and the electron density was examined by time-resolved luminescence spectroscopy. The influence of a gradient in the s/p-d-exchange interaction on the diffusion of carriers was studied by spatially resolved luminescence spectroscopy. KW - Zinkselenid KW - Dimension 2 KW - Elektronengas KW - Optische Eigenschaft KW - Manganselenide KW - Quantenwell KW - Elektronenstreuung KW - Spin flip KW - Manganion KW - Quantentrog KW - Magneto-optische Eigenschaften KW - 2DEG KW - Exziton KW - Spinflip-Streuung KW - quantum wells KW - magneto-optical properties KW - 2DEG KW - excitons KW - spinflip scattering Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-14774 ER - TY - THES A1 - Hader, Kilian T1 - Lokalisierungsdynamik unter Berücksichtigung von Molekül-Feld-Wechselwirkung, Kern-Elektron-Kopplung und Exziton-Exziton-Annihilierung T1 - Localization dynamics considering molecule-field interaction, nuclear-electron coupling and exciton-exciton annihilation N2 - Diese Arbeit befasst sich mit verschiedenen Aspekten der Dynamik von Kernen, Elektronen und gekoppelten Kern-Elektron-Systemen, wobei je nach System unterschiedliche Herangehensweisen gewählt wurden. Zentrale Punkte sind bei allen drei Kapiteln einerseits die Lokalisierung von Teilchen und Energie und andererseits eine hohe Sensitivität in Bezug auf die Wahl der Anfangsbedingungen. Im ersten Teil wurden von der Carrier-Envelope-Phase (CEP) abhängende, laser-induzierte Lokalisierungen betrachtet. Das zentrale Element ist dabei das entwickelte Doppelpulsschema, mit welchem eine CEP-Abhängigkeit in beobachtbaren Größen erzeugt wird. Als Beispielsysteme wurden die Fragmentation im D₂⁺-Modellsystem und eine Isomerisierung im Doppelminimumpotential (DMP) untersucht. Als Observable wird die Asymmetrie betrachtet Im DMP kann die Asymmetrie mit dem Entantiomeren/Isomerenüberschuss gleich gesetzt werden kann und im D₂⁺-Modellsystem mit der Lokalisierung des Elektrons auf einem der beiden dissoziierenden Kerne. Eine Phasenabhängigkeit der Asymmetrien besteht nur für die CEP des zweiten Pulses φ₂, für welchen keine Begrenzungen für die Anzahl an Laserzyklen auftreten. Im DMP wurde die CEP-Abhängigkeit der Asymmetrien auch bei unterschiedlichen Startkonfigurationen untersucht. Für alle untersuchten Startkonfigurationen konnte ein Laserparametersatz gefunden werden, der für zumindest eine der beiden Asymmetrien eine CEP-Abhängigkeit liefert. Aufgrund der aufgehobenen energetischen Entartung der Paare gerader und ungerader Symmetrie ist die resultierende Lokalisierung zeitabhängig. Zur Messung der vorhergesagten Dynamiken ist z.B. die Aufnahme eines Photoelektronen-Spektrums denkbar. In nächsten Kapitel wurden unterschiedliche Dynamiken innerhalb eines 4d Kern-Elektron-Modells in der Nähe einer konischen Durchschneidung (CI) zweier Potentiale betrachtet. Hierbei ist hervorzuheben, dass eine solche gleichzeitige Untersuchung von Kern- und Elektron-Dynamik in Systemen mit CIs in der Literatur, nach Wissen des Autors, bisher nicht veröffentlicht ist. Das 4d-Potential wurde mit Hilfe des sogenannten Potfit-Algorithmus gefittet. Dieser Fit wurde anschließend verwendet, um die Dynamik des gekoppelten Systems mit Hilfe der ”Multi-Configuration Time-Dependent Hartree”(MCTDH)-Methode zu berechnen. Aus der Analyse der gekoppelten Kern-Elektron-Wellenfunktion ergaben sich zwei grundlegend unterschiedliche Klassen von Dynamiken: • Diabatisch: Kern- und Elektrondynamik sind nahezu entkoppelt. Der Kern bewegt sich und das Elektron bleibt statisch. • Adiabatisch: Kern- und Elektrondynamik sind stark gekoppelt. Die Kerndynamik findet auf Kreisbahnen statt. Mit der Rotation der Kerndichte um den Winkel φ geht eine Rotation der Elektron-Dichte einher. Die diabatische Bewegung entspricht der Dynamik durch die konische Durchschneidung und die adiabatische Bewegung der Dynamik auf der unteren Potentialfläche. Welche der beiden Dynamiken stattfindet, wird durch die Wahl der Anfangsbedingung bestimmt. Der wesentliche Unterschied zwischen den beiden Startzuständen ist dabei die Lage des Knotens im elektronischen Anteil der Wellenfunktion. In den diabatischen Bewegungen bleibt z.B. der pₓ -artige Charakter der elektronischen Wellenfunktion konstant, wohingegen sich bei der adiabatischen Dynamik der Charakter mit der Kernbewegung ändert. Die Zeitersparnis durch die Verwendung des MCTDH-Ansatzes im Vergleich zur Split-Operator-Methode liegt etwa bei einem Faktor 5. Das letzte Kapitel widmet sich der mikroskopischen Beschreibung von Exziton-Exziton- Annihilierung (EEA). Dabei werden numerische Lösungen der aus einem mikro- skopischen Modell hergeleiteten Ratengleichungen mit Messungen ( transienter Absorption) verglichen. Es wurden zwei Systeme untersucht: ein Squarain-basiertes Heteropolymer (SQA-SQB)ₙ und ein [2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenvinylen]-Polymer, auch bekannt als MEH-PPV. In beiden Fällen gelang die systematische Parameterbestimmung mit Hilfe einer Aufteilung in lokalisierte Subsysteme. Diese Subsysteme werden einzeln gewichtet und anschließend aufsummiert, wobei die Gewichte optimiert werden können. Aus den so erhaltenen Parametern ergibt sich für beide Systeme ein ähnliches Bild: • Durch ultraschnelle Lokalisierung der Anregung im fs-Bereich auf kleinere Aggregateinheiten bilden sich voneinander getrennte Subsysteme. • Die in den Subsystemen lokalisierten Exzitonen können sich nur innerhalb dieser Bereiche frei bewegen. Es ist ausreichend, direkt benachbarte Mono-, Bi-, Tri- und Tetra-Exzitonen in bis zu zwei Dimensionen zu berücksichtigen. • Auf einer fs-Zeitskala annihilieren direkt benachbarte Exzitonen. • Im MEH-PPV ergibt sich der Signalzerfall im fs-Bereich als Mittelwert aus einer schnellen (zwischen Ketten) und einer langsamen (innerhalb von Ketten) Annihilierung. • Im ps- bis ns-Bereich wird sowohl durch Diffusion vermittelte Annihilierung, also auch der Zerfall der ersten angeregten Zustände bedeutsam. N2 - In the present work the dynamics of nuclei, electrons, and coupled nuclei-electron systems are examined in different ways. Items that are central in all three chapters are, on the one hand localization of particles and energy and, on the other, a high sensitivity to the choice of initial condition. In the first chapter carrier-envelope-phase (CEP) dependent, laser induced localization is examined. The main element of the considerations is a double pulse scheme, which creates a CEP-dependence in the monitored observables. As example systems the fragmentation of a D₂⁺-model and the isomerization in a double well potential (DWP) are investigated. As an observable the asymmetry is chosen. In the DWP this entity can be related to enantiomeric or isomeric excess and in the D₂⁺-model it describes the localization of the electron on a fragment. The phase dependent part of the asymmetries only relies on the CEP φ₂ of the second pulse which does not have any restrictions on the amount of laser cycles. In the DWP a CEP-dependence of the asymmetries could be examined starting from different initial configurations. For all different initial conditions a set of laser parameters could be found which produces at least one CEP-dependent asymmetry. Due to the removed degeneracy between states of even and odd parity, the resulting localization in the left or right potential well is time-dependent. - fied such that the first pulse does not populate all states equally. A possible way to test the predicted behavior experimentally is the measurement of photo-electron spectra. In the next chapter coupled nucleus-electron-dynamics in the vicinity of a conical intersections (CI) of two potentials are investigated in a 4-d model system.Such examinations of coupled nucleus-electron-dynamics on equal footing in systems containing CIs is, to the author’s knowledge, not published in literature. The 4-d potential has been fitted by use of the so-called Potfit-algorithm which subsequently could be used to calculate the dynamics of the coupled system in the ”Multi-Configuration Time-Dependent Hartree”(MCTDH)-framework. The analysis of the coupled nucleus-electron-wavefunction yielded two fundamentally different classes of dynamics: • Diabatic: Nucleus- and electron dynamics are nearly uncoupled. The nucleus moves while the electron remains static. • Adiabatic: Nucleus- and electron dynamics are strongly coupled. The dynamic of the nucleus takes place on orbits. The rotation of the nuclear density by the angle φ is accompanied by a rotation of the electron-density at the same angle. The diabatic dynamics are present if the wave packet is passing through the conical intersection and the adiabatic dynamics can be attributed to a wave packet moving on the lower potential surface. Which of the two classes of dynamics takes place can be controlled by choice of the initial wavefunction. The most significant difference between the two initial wavefunctions is the plane in which the node of the electronic wavefunction is located. In case of a diabatic motion the pₓ -like character of the wavefunctions remains constant, while in case of a adiabatic motion the character changes with the motion of the nucleus.The time saving by usage of the MCTDH-method in comparison to the Split-Operator-method is about a factor of 5. The last chapter is dedicated to the microscopic description of exciton-exciton-annihilation (EEA). The numerical solution of the rate equations which are derived starting from a microscopic Hamiltonian, are compared with measurements. The experimental data are time-dependent traces of transient absorption measurements at different laser fluences which were available for two different systems:a squaraine-based copolymer (SQA-SQB)ₙ and a [2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] polymer also know as MEH-PPV. In both cases a systematic parameter determination could be achieved by introduction of localized subsystems. These subsystems are weighted independently and are summed up whereby the weighs can be optimized. The resulting interpretation of the obtained parameters is similar for both systems: • Ultrafast localization of the excitation energy takes place in the fs-regime which leads to excitons residing on smaller subsystems. • Excitons in these subsystems can only move inside of these domains. A re- construction of experimental data is feasible by inclusion of mono-, bi-, tri- and tetra-excitons in up to two dimensions. • In the fs-regime neighbouring excitons annihilate • In the MEH-PPV polymer the signal decay in the fs-regime can be described as the average of a fast annihilation (between chains) and a slow annihilation (inside chains). •On a longer time-scale (ps to ns) diffusion-meditated annihilation and decay of the first excited states take place KW - Quantenmechanik KW - Quantenchemie KW - Laserstrahlung KW - Nichtadiabatischer Prozess KW - Exziton KW - multicycle CEP control KW - exciton exciton annihilation KW - exact conical intersection dynamics KW - coupled nuclear-electron MCTDH KW - quantum dynamics KW - Quantentheoretische Chemie Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-146735 ER - TY - THES A1 - Glaab, Fabian T1 - Simulationen zur transienten Absorptionsspektroskopie an Energie- und Ladungstransfersystemen T1 - Simulations on transient absorption spectroscopy of energy and charge transfer systems N2 - Anregungsinduzierte Ladungstransferprozesse gemischtvalenter Verbindungen in einem, bzw. zwei Vibrationsfreiheitsgraden werden mithilfe vibronischer Modellsysteme untersucht. Anhand transienter und linearer Absorptionsspektren werden die berechneten mit experimentell bestimmten Daten verglichen. Eine detailliertere theoretische Analyse erfolgt unter den Gesichtspunkten der Populations- und Wellenpaketdynamik. Darüber hinaus wird der Prozess der Exziton-Exziton-Annihilierung mithilfe eines elektronischen Modellsystems untersucht. Zu diesem Zweck werden, zusätzlich zu den oben genannten Methoden, spektroskopische Signale unterschiedlicher Emissionsrichtungen zum Vergleich herangezogen. N2 - Optically induced charge transfer processes of mixed-valence compounds in one or two vibrational degrees of freedom respectively are studied using vibronic model systems. Calculated and experimentally determined data are compared based on transient as well as linear absorptions spectra. By means of population and wave-packet dynamics a more detailed theoretical analysis is performed. Furthermore, the process of exciton-exciton annihilation is studied using an electronic model system. Therefore, in addition to the methods mentioned above, spectroscopic signals in different directions of emission are compared. KW - Absorptionsspektroskopie KW - Monte-Carlo-Simulation KW - Ladungstransfer KW - Exziton KW - Transiente Absorptionsspektroskopie KW - Exziton-Exziton-Anihillierung KW - Nicht-Störungstheoretisch Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-253400 ER - TY - THES A1 - Bialas, David T1 - Exciton Coupling in Homo- and Heterostacks of Merocyanine and Perylene Bisimide Dyes T1 - Exzitonenkopplung in Homo- und Hererostapel von Merocyanin- und Perylenbisimidfarbstoffen N2 - In the present thesis it could be demonstrated that strong exciton coupling does not only occur between same type of chromophores but also between chromophores with different excited state energies. The coupling significantly influences the optical absorption properties of the heterostacks comprising merocyanine and perylene bisimide dyes, respectively, and is an indication for coherent energy transfer between the chromophores. In addition, bis(merocyanine)-C60 conjugates have been synthesized, which self-assemble in non-polar solvents resulting in well-defined supramolecular p/n-heterojunctions in solution. These model systems enabled femtosecond transient absorption studies on the photoinduced electron transfer process, which is a key step for the formation of charge carriers in organic solar cells. N2 - In der vorliegenden Doktorarbeit konnte gezeigt werden, dass eine starke Exzitonenkopplung nicht nur zwischen gleichen Chromophoren, sondern auch zwischen Chromophoren mit unterschiedlichen Energien der angeregten Zustände möglich ist. Diese beeinflusst maßgeblich die Absorptionsspektren der Heterostapel bestehend aus Merocyanin- bzw. Perylenbisimidfarbstoffen und deutet außerdem auf einen kohärenten Energientransfer zwischen den Chromophoren hin. Weiterhin wurden Bis(merocyanin)-C60-Konjugate synthetisiert, die in unpolaren Lösungsmitteln selbst assemblieren und auf diese Weise wohldefinierte supramolekulare p/n-Heterogrenzflächen gebildet werden. An diesen wurde mithilfe von femtosekundenaufgelöster transienter Absorptionsspektroskopie der photoinduzierte Elektronentransfer untersucht, was ein wichtiger Schritt bei der Erzeugung von Ladungsträgern in organischen Solarzellen darstellt. KW - Exziton KW - Supramolekulare Chemie KW - Perylenderivate KW - Exciton Coupling KW - Heteroaggregates KW - Supramolecular Chemistry KW - Merocyanine KW - Aggregat KW - Exzitonenkopplung KW - Heteroaggregate Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-152418 ER -