TY - THES A1 - Troge, Anja T1 - Studien am Flagellensystem des Escherichia coli Stammes Nissle 1917 (EcN) im Hinblick auf seine Funktion als Probiotikum T1 - Studies on the flagellar system of Escherichia coli Nissle 1917 (EcN) with regard to its function as a probiotic N2 - Escherichia coli Nissle 1917 (EcN) gehört zu den am besten untersuchten und charakterisierten probiotischen Bakterienstämmen. Seit Beginn des letzten Jahrhunderts wird er als Medikament eingesetzt, um verschiedene Darmerkrankungen wie z.B. Diarrhöe, entzündliche Darmerkrankungen und Verstopfung zu behandeln. Die Flagelle des EcN vermittelt Beweglichkeit und kann die Produktion von humanem β-Defensin 2 (hBD2) durch Epithelzellen induzieren. Somit ist dieses Organell direkt in die probiotische Funktion des EcN involviert. Es konnte gezeigt werden, dass die Flagellen anderer Bakterien, wie z.B. dem probiotischen Stamm Bacillus cereus CH oder den pathogenen Stämmen Pseudomonas aeruginosa und Clostridium difficile, die Adhäsion an intestinalen Mucus, welcher von Epithelzellen sekretiert wird, vermitteln. Allerdings blieb unklar, welcher Teil der Flagelle an welche Mucuskomponente bindet. Die Fähigkeit effizient an Wirtgewebe zu adhärieren wird als wichtiges Attribut eines probiotischen Stammes angesehen. Ex vivo Adhäsionsstudien mit Kryoschnitten humaner Darmbiopsien haben gezeigt, dass die Flagelle des EcN in die effiziente Adhäsion an humanes Darmgewebe involviert sein muss. Aus diesem Grund wurde in dieser Arbeit die Funktion der Flagelle des EcN als Adhäsin untersucht. Zunächst wurde die hyperflagellierte Variante EcN ATHF isoliert und durch verschiedene Experimente, z.B. Schwärmagartests und Elektronenmikroskopie, charakterisiert. Weitere ex vivo Adhäsionsstudien mit EcN ATHF zeigten eine höhere Adhäsionseffizienz dieser hyperflagellierten Variante und bestätigten damit die Rolle der Flagelle bei der effizienten Adhäsion von EcN an die Kryoschnitte der humanen Darmbiopsien. Interessanterweise fungierte die Flagelle in in vitro Studien mit den humanen Epithelzellen Caco-2 und T24 nicht als Adhäsin. Diese Unterschiede zwischen den in vitro und ex vivo Studien führten zu der Annahme, dass die Flagelle des EcN in vivo die Adhäsion an Mucus vermittelt, welcher von den Caco-2- und T24-Zellen nicht produziert wird, aber in den Kryoschnitten der Darmbiopsien nachgewiesen wurde. Diese Vermutung wurde durch in vitro Adhäsionsstudien mit der Mucin-produzierenden Epithelzelllinie LS174-T bestätigt, da die Flagellen für eine effektive Adhäsion an diese Zellen essentiell waren. Zudem reduzierte die Präinkubation flagellierter EcN-Stämme mit Mucin2 ihre Adhäsionseffizienz an Kryoschnitte humaner Darmbiopsien. Um die direkte Interaktion zwischen Flagellen des EcN Wildtyps und Mucus zu zeigen, wurde ein ELISA etabliert. Es konnte eine direkte konzentrationsabhängige Interaktion zwischen isolierten Flagellen des EcN Wildtyps und Mucin2, bzw. humanem Mucus (Kolon) beobachtet werden. Interessanterweise konnte keine Interaktion zwischen isolierten Flagellen des EcN Wildtyps und murinem Mucus (Duodenum, Ileum, Caecum, Colon) festgestellt werden. Dies weist darauf hin, dass die Mucuszusammensetzung zwischen verschiedenen Spezies variiert. Verschiedene Kohlenhydrate, welche bekannte Mucusbestandteile sind, wurden auf ihre Interaktion mit der Flagelle von EcN getestet und Gluconat wurde als ein Rezeptor identifiziert. Die Präinkubation isolierter Flagellen mit Gluconat reduzierte ihre Interaktion mit Mucin2, bzw. humanem Mucus signifikant. Zudem wurde die oberflächenexponierte Domäne D3 des Flagellins, der Hauptuntereinheit der Flagelle, als möglicher Interaktionspartner von Mucin2, bzw. humanem Mucus ausgeschlossen. Flagellen, die aus einer Domäne D3 Deletionsmutante isoliert wurden, zeigten sogar eine effizientere Bindung an Mucin2, bzw. humanen Mucus. Weiterhin konnte gezeigt werden, dass Änderungen des pH-Wertes signifikante Effekte auf die Interaktion zwischen Mucus und isolierten Flagellen hatten, vermutlich aufgrund von Konformationsänderungen. Zusammenfassend wurde in dieser Arbeit die Flagelle als neues und scheinbar wichtigstes Adhäsin in vivo für den probiotischen Stamm EcN identifiziert. Hierfür wurden sowohl eine hyperflagellierte Variante, eine ΔfliC Mutante, sowie der dazugehörige komplementierte Stamm verwendet. EcN ist zudem der erste probiotische Stamm für den eine direkte Bindung der Flagellen an humanen Mucus nachgewiesen werden konnte. Die Mucuskomponente Gluconat konnte dabei als wichtiger Rezeptor identifiziert werden. Da einige pathogene Bakterien ihre Flagelle zur Adhäsion an Wirtsgewebe nutzen, könnte dieses Organell EcN dazu befähigen, mit Pathogenen um die erfolgreiche Kolonisierung des Darms zu konkurrieren, was als wichtige Eigenschaft eines Probiotikums betrachtet wird. N2 - Escherichia coli Nissle 1917 (EcN) is one of the best studied and characterized probiotic bacterial strains. It is in use as a drug since the beginning of last century to treat various diseases and dysfunctions of the human intestinal tract, e.g. diarrhea, inflammatory bowel diseases and obstipation. The flagellum of EcN mediates motility and is able to induce human beta defensin 2 (hBD2) production by epithelial cells. Therefore, this organelle is directly involved in EcN’s probiotic function. It has been shown that the flagella of several other bacteria, including the probiotic strain Bacillus cereus CH or the pathogenic strains Pseudomonas aeruginosa and Clostridium difficile, mediate adhesion to intestinal mucus, which is secreted by epithelial cells. However it remained unclear which part of the flagella binds to which mucus component. The ability to adhere efficiently to host tissue is considered to be an important attribute for a probiotic strain. Ex vivo adhesion studies with cryosections of human gut biopsies have revealed, that the flagellum of EcN must be involved in efficient adhesion to human intestinal tissue. Thus, the function of EcN’s flagellum as an adhesin was investigated in this work. First, the hyperflagellated variant EcN ATHF was isolated and characterized by several experiments, e.g. motility tests and electron microscopy. Further ex vivo adhesion studies with EcN ATHF demonstrated a higher adhesion efficiency of this hyperflagellated variant confirming the role of the flagellum for adhesion of EcN to cryosections of human gut biopsies. Interestingly, EcN’s flagellum did not function as an adhesin in in vitro adhesion studies with the human epithelial cells Caco-2 and T24. These differences between the in vitro and ex vivo studies led to the assumption, that in vivo the flagellum of EcN mediates adhesion to mucus, which is not produced by Caco-2 and T24 cells, but was shown to be present in the cryosections of human gut biopsies. This was confirmed by in vitro adhesion studies with the mucin-producing epithelial cell line LS174-T, as flagella were essential for efficient adhesion to these cells. Furthermore, preincubation of flagellated EcN strains with mucin2 (porcine stomach) reduced their adhesion effiency to cryosections of human gut biopsies. To demonstrate the direct interaction between flagella from EcN wildtype and mucus, an ELISA was established. A direct concentration-dependent interaction between isolated flagella from EcN wildtype and mucin2 as well as human mucus (Colon) could be observed. In contrast, there was no direct interaction between isolated flagella from EcN wildtype and murine mucus (Duodenum, Ileum, Ceacum, Colon), indicating that mucus composition varies among different species. By testing different carbohydrates - known to be constituents of mucus - for their interaction with the flagellum of EcN, gluconate was identified as one receptor. Preincubation of isolated flagella with gluconate significantly reduced their interaction with mucin2 or human mucus. Additionally, the surface exposed domain D3 of flagellin, the major subunit of the flagellum, could be excluded to be responsible for the interaction with mucin2 or human mucus. Flagella, which were isolated from a domain D3 deficient mutant, bound even more efficient to mucin2 as well as to human mucus. Furthermore the change of pH had significant effects on the interaction between mucus and isolated flagella, probably due to conformational changes. In summary, this study identified the flagellum as a novel and apparently major adhesin in vivo of the probiotic EcN by employing a hyperflagellated variant, a ΔfliC mutant as well as the corresponding complemented strain. Additionally, EcN is so far the first probiotic strain, for which it has been shown, that its flagella directly bind to human mucus. Thereby the mucus component gluconate was identified as an important receptor. As some pathogens have been reported to use their flagella for adhesion to human host tissue, this organelle might enable EcN to compete with pathogens for successful colonization of the gut, which has been postulated to be a prerequisite for probiotics. KW - Escherichia coli KW - Probiotikum KW - Geißel KW - Adhäsion KW - Adhärenz KW - E.coli Nissle 1917 KW - Flagelle KW - adhesion KW - E. coli Nissle 1917 KW - flagellum Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-74201 ER - TY - THES A1 - Dietrich, Claudia T1 - Molekularbiologische Studien zur Bedeutung der Flagelle für die Virulenz von Legionella pneumophila T1 - Molecular studies of flagellar function in Legionella pneumophila virulence N2 - Legionella pneumophila, der Erreger der Legionärskrankheit, ist ein fakultativ intrazelluläres, ubiquitär vorkommendes Umweltbakterium. Die Rolle, die Flagelle und Motilität der Legionellen bei der Infektion von Protozoen oder humanen Zellen spielen können, ist bisher noch nicht geklärt. Um etwas über noch unbekannte Flagellengene und deren Organisation in Legionella zu erfahren, wurde mit Hilfe einer Cosmid-Genbank des Stammes L. pneumophila Philadelphia I die flaA-Region näher charakterisiert. Im 5´-Bereich von flaA konnten auf dem Gegenstrang zwei Stoffwechselgene (accD und folC) identifiziert werden, im 3´-Bereich schliessen sich die Flagellengene flaG, fliD und fliS, sowie zwei offene Leseraster mit Homologien zu den erst kürzlich bei Legionella beschriebenen Genen enhA und milA an. Zur Untersuchung des Einflusses der Flagelle auf den Infektionsverlauf wurde die flaA-negative Mutante KH3, bei der das flaA-Gen durch Insertion einer Kanamycin-Kassette unterbrochen worden war, wieder komplementiert. Dies gelang durch Reintegration des intakten flaA-Gens mit Hilfe des „Suicide“-Vektors pMSS704 in das Chromosom von KH3, wodurch Stamm CD10 entstand. Durch Westernblot-Analyse konnte gezeigt werden, dass der Stamm wieder in der Lage war, Flagellin zu exprimieren. Elektronenmikroskopische Aufnahmen bestätigten außerdem das Vorhandensein intakter Flagellen. Das Verhalten von flagellierten und nicht flagellierten Legionellen bei der Infektion von Wirtszellen wurde hinsichtlich Auffinden, Adhärenz, Invasion, intrazellulärer Vermehrung und Lyse der Zellen untersucht. Als Wirtszellen wurden sowohl Protozoen (Acanthamoeba castellanii), als auch humane Zellen (HL-60 Zellen und frisch isolierte Blutmonozyten) verwendet. Dabei wurde deutlich, dass die Flagelle für das Erreichen der Wirtszellen eine wichtige Funktion hat. Wurde der Motilitätsdefekt der flaA-Mutanten durch Zentrifugation auf die Zielzellen aufgehoben, so konnten mit den gewählten Versuchsbedingungen bezüglich des Adhärenzvermögens der Stämme keine Unterschiede detektiert werden. Es wurde jedoch eine signifikante Reduktion der Invasionseffizienz für die nicht flagellierten Legionellen beobachtet. Diese war bei den humanen Zellen besonders ausgeprägt. Hinsichtlich der intrazellulären Vermehrung konnte keine Attenuierung der Mutante festgestellt werden. Allerdings führte vermutlich die Reduktion der Invasivität zu einer geringeren Ausbreitungsgeschwindigkeit im HL-60 Modell, die bei niedriger Infektionsdosis mit einer verlangsamten Wachstumsrate der Bakterien einherging. Durch Sequenzierung des Genbank-Cosmids 12/44, auf welchem die Gene fliA und motA lokalisiert waren, konnten im „upstream“-Bereich von fliA zwei putative Flagellenregulatorgene identifiziert werden (motR und flhF). Im 3´-Bereich von motA schließt sich, um 26 bp überlappend, das Gen motB an, welches für den Motor der Flagelle eine Rolle spielt, gefolgt von einem Leseraster unbekannter Funktion und einem ORF mit Homologien zu prfB. Durch Insertion einer Kanamycin-Kassette in das motA-Gen von L. pneumophila Corby konnte in dieser Arbeit eine motA-negative Mutante hergestellt werden. Westernblot-Analyse und elektronenmikroskopische Untersuchungen bestätigten, dass es weiterhin zur Expression und zur Polymerisation des Flagellins kommt. Lichtmikroskopisch war jedoch zu beobachten, dass die hergestellte Mutante im Gegensatz zum Wildtyp durch den fehlerhaften Flagellenmotor nicht mehr in der Lage ist, gerichtete Strecken zu schwimmen. Untersuchungen mit den Wirtszellen A. castellanii und humanen HL-60 Zellen belegten, wie schon bei der flaA-Mutante, eine Beteiligung der Motilität an Vorgängen wie Auffinden der Zielzelle und deren Invasion, wohingegen die Adhärenz und die intrazelluläre Vermehrung nicht beeinträchtigt waren. Eine Southernblot-Analyse des erst kürzlich beschriebenen Transkriptionsregulators FlaR ergab, dass es sich hierbei vermutlich um einen L. pneumophila-spezifischen Regulationsfaktor handelt, welcher in Kombination mit dem „upstream“ auf dem Gegenstrang liegenden ORF234 vorkommt. Fusionen der Promotorbereiche mit dem Reportergen gfp zeigten, dass beide Gene auch in Legionella aktiv sind und temperaturabhängig reguliert werden. N2 - Legionella pneumophila, the etiological agent of Legionnaires´ disease, lives as a facultative intracellular bacterium in the environment and has the capability to survive and replicate both in protozoa and human phagocytic and non-phagocytic cells. The role of flagella and motility in the infection of host cells still has to be determined. To better characterize the flaA-region of Legionella and to learn about the organisation of flagellar genes, two clones of a cosmid library harbouring this region from the genome of L. pneumophila Philadelphia I have been sequenced. Upstream of flaA, leading in the opposite direction, the metabolic genes accD and folC could be identified. Downstream of flaA the flagellar genes flaG, fliD, coding for the flagella-capping-protein, and fliS are located. Further downstream, two ORFs with homologies to the recently described Legionella genes enhA and milA have been identified. To investigate the influence of the flagella on the infection process, the flaA negative mutant strain KH3, where the flaA gene was inactivated by insertion of a kanamycin cassette, was complemented. This could be achieved, using the suicide vector pMSS704, by integration of the intact flaA gene back into the chromosome, leading to the complemented strain CD10. It could be shown by Western blotting that strain CD10 regained the ability to express the flagellin protein. Electronmicrographs also confirmed the presence of intact assembled flagella. Using the three strains, L. pneumophila Corby wild-type, the flaA mutant KH3, and the complemented flaA mutant CD10, the behaviour of the flagellated and non flagellated strains was investigated concerning encountering, adherence, invasion, intracellular multiplication and lysis of host cells. Both protozoa (A. castellanii) and human phagocytes (HL-60 cells and freshly isolated blood monocytes) have been utilized as potential host cells. It could be shown that flagellation enables the bacteria to reach the cells. In contrast, when the motility defect was artificially overcome by centrifugation, no difference in attachment of the three strains could be detected in our experiments. However, there was a significant reduction in the invasion efficiency for the flaA negative strain which was extremely relevant to the invasion of human phagocytes. Concerning the intracellular replication rate no difference could be observed, although most likely the defect in infectivity of the flaA mutant leads to a slower growth curve in the HL-60 model when using low MOIs. For the flaA mutant strain KH1, an unexpected decrease in cytotoxicity could also be observed. However, as the flaA mutant KH3 showed wildtype behaviour in this respect, the defect is most probably independent of flagellation. The sequencing of the cosmid library clone 12/44, harbouring the genes fliA and motA, showed the clustering of further flagellar genes of Legionella. Upstream of fliA two genes could be identified, showing high similarities to the putative flagellar regulator genes motR and flhF, respectively. Downstream of motA, overlapping by 26 bp, motB is located. It also plays a major role in the function of the flagellar motor and is followed by an ORF of unknown function. Still further downstream an ORF with homologies to prfB of E. coli could be sequenced. Southern blot analysis of different Legionella-strains with a motA specific probe gave positive signals for all L. pneumophila strains, as well as for some non-pneumophila strains (e. g. L. gormanii, L. jordanis, and L. bozemanii). By insertion of a kanamycin cassette into the motA gene of L. pneumophila Corby, a motA negative mutant could also be constructed. Western blot analysis and electronmicrographs confirmed that flagellin was still expressed and assembled into flagella, while light microscopy demonstrated the inability of the mutant to swim due to the impaired flagellar motor. Experiments with A. castellanii and HL-60 cells revealed the importance of motility for the finding and the invasion of host cells as already demonstrated for the flaA mutant, while intracellular replication was not affected. Recently, a gene (flaR) has been described for L. pneumophila Corby, belonging to the LysR-familiy of transcriptional regulators. It could be shown that this regulator is able to bind both to its own promotor as well as to a lower extent to the flaA promotor. Southern hybridization of different Legionella species with a flaR specific probe revealed that FlaR must be a L. pneumophila specific factor, only being present in L. pneumophila strains, together with an upstream gene (ORF234), which is leading in the opposite direction. Fusions of the promotor regions of the two genes with the reporter gene gfp (green fluorescent protein gene) demonstrated that both promotors are actually functional in Legionella, being more active at 37°C than at 30°C. Furthermore, their activity during intracellular replication in amoebae could be demonstrated. In conclusion, the flagellum and the motility, both subject to strict regulation, are of great importance to Legionella´s ability to reach and infect potential host cells KW - Legionella pneumophila KW - Virulenz KW - Geißel KW - Molekularbiologie KW - Legionellen KW - Flagelle KW - Virulenz KW - Invasion KW - intrazelluläre Vermehrung KW - Legionella KW - flagella KW - virulence KW - invasion KW - intracellular multiplication Y1 - 2000 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-1081 ER -