TY - THES A1 - Ullrich, Melanie T1 - Identification of SPRED2 as a Novel Regulator of Hypothalamic-Pituitary-Adrenal Axis Activity and of Body Homeostasis T1 - SPRED2 - Ein neuer Regulator der Hypothalamus-Hypophysen-Nebennierenrindenachse und der Hormonbalance N2 - SPRED proteins are inhibitors of the Ras/ERK/MAPK signaling pathway, an evolutionary highly conserved and very widespread signaling cascade regulating cell proliferation, differentiation, and growth. To elucidate physiological consequences of SPRED2 deficiency, SPRED2 KO mice were generated by a gene trap approach. An initial phenotypical characterization of KO mice aged up to five months identified SPRED2 as a regulator of chondrocyte differentiation and bone growth. Here, the loss of SPRED2 leads to an augmented FGFR-dependent ERK activity, which in turn causes hypochondroplasia-like dwarfism. However, long term observations of older KO mice revealed a generally bad state of health and manifold further symptoms, including excessive grooming associated with severe self-inflicted wounds, an abnormally high water uptake, clear morphological signs of kidney deterioration, and a reduced survival due to sudden death. Based on these observations, the aim of this study was to discover an elicitor of this complex and versatile phenotype. The observed kidney degeneration in our SPRED2 KO mice was ascribed to hydronephrosis characterized by severe kidney atrophy and apoptosis of renal tubular cells. Kidney damage prompted us to analyze drinking behavior and routine serum parameters. Despite polydipsia, which was characterized by a nearly doubled daily water uptake, the significantly elevated Na+ and Cl- levels and the resulting serum hyperosmolality could not be compensated in SPRED2 KOs. Since salt and water balance is primarily under hormonal control of aldosterone and AVP, we analyzed both hormone levels. While serum AVP was similar in WTs and KOs, even after experimental water deprivation and an extreme loss of body fluid, serum aldosterone was doubled in SPRED2 KO mice. Systematic investigation of contributing upstream hormone axes demonstrated that hyperaldosteronism developed independently of an overactivated Renin-Angiotensin system as indicated by halved serum Ang II levels in KO mice. However, aldosterone synthase expression in the adrenal gland was substantially augmented. Serum corticosterone, which is like aldosterone released from the adrenal cortex, was more than doubled in SPRED2 KOs, too. Similar to corticosterone, the production of aldosterone is at least in part under control of pituitary ACTH, which is further regulated by upstream hypothalamic CRH release. In fact, stress hormone secretion from this complete hypothalamic-pituitary-adrenal axis was upregulated because serum ACTH, the mid acting pituitary hormone, and hypothalamic CRH, the upstream hormonal inductor of HPA axis activity, were also elevated by 30% in SPRED2 KO mice. This was accompanied by an upregulated ERK activity in paraventricular nucleus-containing hypothalamic brain regions and by augmented hypothalamic CRH mRNA levels in our SPRED2 KO mice. In vitro studies using the hypothalamic cell line mHypoE-44 further demonstrated that both SPRED1 and SPRED2 were able to downregulate CRH promoter activity, CRH secretion, and Ets factor-dependent CRH transcription. This was in line with the presence of various Ets factor binding sites in the CRH promoter region, especially for Ets1. Thus, this study shows for the first time that SPRED2-dependent inhibition of Ras/ERK/MAPK signaling by suppression of ERK activity leads to a downregulation of Ets1 factor-dependent transcription, which further results in inhibition of CRH promoter activity, CRH transcription, and CRH release from the hypothalamus. The consecutive hyperactivity of the complete HPA axis in our SPRED2 KO mice reflects an elevated endogenous stress response becoming manifest by excessive grooming behavior and self-inflicted skin lesions on the one hand; on the other hand, in combination with elevated aldosterone synthase expression, this upregulated HPA hormone release explains hyperaldosteronism and the associated salt and water imbalances. Both hyperaldosteronism and polydipsia very likely contribute further to the observed kidney damage. Taken together, this study initially demonstrates that SPRED2 is essential for the appropriate regulation of HPA axis activity and of body homeostasis. To further enlighten and compare consequences of SPRED2 deficiency in mice and particularly in humans, two follow-up studies investigating SPRED2 function especially in heart and brain, and a genetic screen to identify human SPRED2 loss-of-function mutations are already in progress. N2 - SPRED-Proteine sind Inhibitoren des hochkonservierten und in allen Geweben verbreiteten Ras/ERK/MAPK-Signalwegs, welcher Proliferation, Differenzierung und das Wachstum von Zellen reguliert. Um physiologische Konsequenzen der SPRED2-Defizienz im lebenden Modellorganismus aufzuklären, haben wir SPRED2-KO-Mäuse mithilfe der „gene trap“-Methode generiert. Eine erste Studie zur phänotypischen Charakterisierung mit KO-Mäusen bis zu einem Alter von fünf Monaten identifizierte SPRED2 als Regulator der Chondrozytendifferenzierung und des Knochenwachstums. So bewirkt der Verlust der SPRED2-Proteinfunktion eine erhöhte FGFR-vermittelte ERK-Aktivität, was wiederum einen Hypochondroplasie-ähnlichen Minderwuchs verursacht. Allerdings offenbarten Langzeitbeobachtungen älterer KO-Mäuse einen im Allgemeinen sehr schlechten Gesundheitszustand und weitere facettenreiche Symptome, darunter exzessives Putzverhalten mit schweren, selbst zugefügten Wunden, einen abnorm hohen täglichen Wasserkonsum, klare morphologische Anzeichen einer Nierenschädigung und eine reduzierte Überlebenswahrscheinlichkeit durch plötzlichen Tod. Ziel dieser Studie war es, basierend auf unseren Beobachtungen, einen Auslöser für diesen komplexen und vielseitigen Phänotyp zu finden. Die beobachtete Nierendegeneration in unseren SPRED2-KO-Mäusen war auf eine Hydronephrose zurückzuführen, welche durch schwere Atrophie des Nierengewebes und Apoptose von Nierentubuluszellen gekennzeichnet war. Aufgrund des Nierenschadens haben wir Trinkverhalten und gängige Serumparameter analysiert. Trotz der Polydipsie, die sich durch eine nahezu verdoppelte tägliche Wasseraufnahme manifestierte, konnten signifikant erhöhte Na+- und Cl--Werte und die daraus resultierende Hyperosmolalität im Serum der SPRED2-KOs nicht kompensiert werden. Weil Salz- und Wasserhaushalt zum größten Teil unter der hormonellen Kontrolle von Aldosteron und ADH stehen, haben wir beide Hormonspiegel untersucht. Während die ADH-Werte im Serum von WT- und KO-Mäusen vergleichbar waren, insbesondere nach experimentellem Wasserentzug und einem extremen Verlust von Körperflüssigkeit, waren die Serumspiegel von Aldosteron in den SPRED2-KO-Mäusen verdoppelt. Die systematische Untersuchung übergeordneter regulatorischer Hormonachsen ergab, dass sich der Hyperaldosteronismus unabhängig von einer erhöhten Aktivität des Renin-Angiotensin-Systems entwickelte, da die Serum-Ang II-Spiegel in den SPRED2-KOs etwa um die Hälfte reduziert waren. Die Expression der Aldosteronsynthase in der Nebenniere war jedoch wesentlich erhöht. Für Kortikosteron, das wie Aldosteron von der Nebennierenrinde freigesetzt wird, konnten wir ebenfalls mehr als doppelt so hohe Werte im Serum der KO-Tiere detektieren. Die Aldosteron-Produktion steht, ähnlich wie bei Kortikosteron, zumindest teilweise unter der Kontrolle des hypophysären Hormons ACTH, dessen Sekretion wiederum übergeordnet durch die Freisetzung von CRH aus dem Hypothalamus geregelt wird. Tatsächlich war die Stresshormon-Sekretion entlang dieser gesamten Hypothalamus-Hypophysen-Nebennierenrinden-Achse erhöht, da Serum-ACTH, das mittlere, hypophysäre Hormon, und hypothalamisches CRH, der übergeordnete hormonelle Induktor der HPA-Achse, in den SPRED2-KOs auch um 30% erhöht waren. Zusätzlich waren die ERK-Aktivität ebenso wie die CRH-mRNA-Spiegel im paraventrikulären Nukleus des Hypothalamus in unseren SPRED2-KO-Mäusen deutlich höher. In vitro Studien mit der Hypothalamus-Zelllinie mHypoE-44 zeigten weiterhin, dass sowohl SPRED1 als auch SPRED2 die Aktivität des CRH-Promotors, die CRH-Sekretion und die Ets-Faktor-abhängige CRH-Transkription reduzieren können. Passend dazu enthält die CRH-Promotorregion zahlreiche verschiedene Bindungsstellen für Transkriptionsfaktoren der Ets-Familie, speziell für Ets1. Somit zeigt diese Studie zum ersten Mal, dass die durch SPRED2-vermittelte Hemmung der Ras/ERK/MAPK-Signalkaskade mittels Unterdrückung der ERK-Aktivität zu einer Herunterregulation der Ets1-Faktor-abhängigen Transkription führt, was eine Hemmung der CRH-Promotoraktivität, der CRH-Transkription und der CRH-Freisetzung aus dem Hypothalamus zur Folge hat. Die daraus resultierende Hyperaktivität der gesamten HPA-Achse in unseren SPRED2-KO-Mäusen spiegelt eine erhöhte endogene Stress-Reaktion wider und äußert sich durch übermäßiges Putzverhalten und durch selbst zugefügte Hautläsionen auf der einen Seite; auf der anderen Seite erklärt dies, in Kombination mit der erhöhten Aldosteronsynthase-Expression, den Hyperaldosteronismus und das damit verbundene Ungleichgewicht in Salz- und Wasserhaushalt. Weiterhin tragen sowohl Hyperaldosteronismus als auch Polydipsie sehr wahrscheinlich zu den beobachteten Nierenschädigungen bei. Zusammengefasst ist diese Studie ein erster Hinweis, dass SPRED2 wesentlich an der adäquaten Regulation der HPA-Achsen-Aktivität beteiligt ist und essentiell ist für die Aufrechterhaltung der Homöostase im Körper. Um die Folgen von SPRED2-Defizienz in Mäusen und vor allem im Menschen weiter aufzuklären und zu vergleichen, erforschen wir in zwei Folgeprojekten die Funktion von SPRED2 speziell im Gehirn und im Herzen und führen parallel ein genetisches Screening zur Identifikation von funktionellen SPRED2-Mutationen im Menschen durch. KW - Renin-Angiotensin-System KW - Spred-Proteine KW - MAP-Kinase KW - Hypophysen-Zwischenhirn-System KW - Knockout KW - SPRED2 KW - ERK KW - MAP Kinase Signaling KW - HPA Axis KW - Renin Angiotensin System KW - Knockout mouse KW - Spred Protein KW - Hypothalamisch-hypophysäre Achse KW - Renin-Angiotensin-Aldosteron-System KW - MAP-Kinase KW - Gen-Knockout Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-107355 ER - TY - THES A1 - Engelhardt, Catherine Marie T1 - Identification and characterisation of the Spred protein family T1 - Identifizierung und Charakterisierung der Spred Proteinfamilie N2 - The subject of this thesis was the cloning and the initial biochemical and functional characterisation of novel human proteins with an N-terminal Ena-VASP homology (EVH)-1 domain and a C-terminal Sprouty homologous region (SPR), which are related to the Drosophila AE33 protein. During the course of this work, three mouse homologues of the AE33 fly protein have been reported and termed Sprouty-related protein with an EVH-1 domain 1, 2 and 3 (Spred-1, -2, -3)(Wakioka et al, 2001; Kato et al, 2003). Spred-1, -2 and -3 are membrane associated substrates of receptor tyrosine kinases and they act as negative regulators of the Ras pathway during growth factor stimulation. As the Spred-family members seem to exert similar functions, the specific function of each member remains enigmatic. Therefore, we investigated the mRNA and protein expression patterns of the two murine protein family members Spred-1 and Spred-2 on the whole organ level. Furthermore, we focussed on the cellular localisation and the role of human and murine Spred-2 in the organism. The expression patterns of Spred-1 and Spred-2 differed markedly among various tissues and cell types. In mouse, Spred-1 is abundantly expressed in adult brain, cerebellum, and fetal tissues, whereas Spred-2 was ubiquitously expressed. In humans, Spred-2 was found to be strongly expressed in glandular epithelia and in invasive cytotrophoblasts, and at the subcellular level its immunoreactivity was associated with secretory vesicles and was found to colocalise with Rab11 GTPase. The new human Spred gene family was investigated in detail. Cloning of the fulllength form of human Spred-2 resulted in an 1254 bp coding sequence, corresponding to a 418 amino-acids protein. Immunoblotting with a set of affinitypurified antibodies confirmed the expression of a 47 kDa protein and suggested the presence of additional differently sized variants. Cloning of various shortened Spred- 2 mRNAs and identification of 2 additional human Spred genes (localised on different chromosomes) with their respective EST (expressed sequence tag) revealed that the new human Spred gene family displays extensive splicing, leading to the generation of short and long Spred proteins. All protein isoforms and splicing variants contain an EVH1-domain located at the N-terminus of the protein. The full-length forms (“a” forms) comprised the SPR, another functional domain localised at the C-terminus whereas the short variants (Spred-1b, 2 c-e, 3 c) lack the entire C-terminal SPR domain or part of it. The existence of short and long splicing variants of Spred-1, -2 and -3 revealed a common principle of organisation and splicing pattern in the Spred family. Functional analyses of the 5 cloned Spred-2 splicing variants revealed differential subcellular localisation and differential regulation of serum- and EGF- mediated ERK activation in HEK-293 cells. Taken together, these results indicate a highly specific expression pattern of Spred-1 and Spred-2 in various tissues suggesting a specific physiological role for the individual Spred isoform in these tissues. For example, Spred-2 appears to be involved in regulating secretory pathways. Furthermore, the human Spred family contains three genes, which are subject to extensive alternative splicing resulting in at least 8 different proteins with differential subcellular localisation and differential regulatory potential of the MAPK pathways during growth factor stimulation. N2 - Gegenstand der vorliegenden Arbeit war die Klonierung, sowie die biochemische und funktionelle Charakterisierung der neuen Spred Proteinfamilie, welche sich durch eine N-terminale EVH1-Domäne und C-terminal eine Sprouty homology Domäne (SPR) auszeichnet (Sprouty-related protein with an EVH-1 domain, Spred). Spred-1, -2, -3 sind membranassoziierte Substrate von Rezeptor-Tyrosin-Kinasen und hemmen den Wachstumsfaktor-stimulierten Ras Signalweg. Während für die drei Mitglieder der Spred-Familie ähnliche biochemische Funktionen beschrieben sind, ist bislang deren spezifische physiologische Funktion unbekannt. Wir haben deshalb zunächst die mRNA- und Protein-Expression von Spred-1 und Spred-2 in verschiedenen Organen der Maus untersucht. Zudem haben wir die zelluläre und subzelluläre Lokalisation bestimmt. Dabei zeigte sich, daß sich die Expression der Spred-Isoformen deutlich voneinander unterscheidet. Während Spred-1 stark im Großhirn, Kleinhirn und in fetalen Geweben exprimiert wird, kommt Spred-2 verstärkt in adulten Geweben vor. Beim Menschen konnte zudem gezeigt werden, daß Spred-2 stark in Drüsenepithelien, in Zytotrophoblasten und auf subzellulärer Ebene mit sekretorischen Vesikeln assoziiert war. Das Expressionsmuster der humanen Spred-Proteine wurde im Detail untersucht. Die Klonierung des humanen Spred-2 ergab eine 1254 bp lange kodierende Sequenz, die für ein Protein mit 418 Aminosäuren kodiert. Durch einen Immunoblot mit affinitätsgereinigten Antikörpern bestätigte sich die Expression eines 47 kD großen Proteins, gleichzeitig zeigten sich zusätzliche Varianten des Proteins mit abweichenden Größen. Daraufhin konnten vier kürzere mRNAs für Spred-2 kloniert werden, die durch alternatives Spleißen entstehen. Zudem konnten zwei neue Spred-Gene identifiziert werden, die auf unterschiedlichen Chromosomen lokalisiert sind und die jeweils für mehrere Proteine unterschiedlicher Größe kodieren. Alle Proteinisoformen und Spleißvarianten enthalten eine N-terminale EVH-1-Domäne, während nur die langen Isoformen (“a-Formen”) zusätzlich eine C-terminale SPRDomäne enthalten. Die Untersuchung der Funktion der 5 klonierten Spleißvarianten von Spred-2 ergab eine differentielle subzelluläre Lokalisation. Zudem zeigte sich eine unterschiedliche Regulation der Serum- und EGF-induzierten ERK-Aktivierung durch die verschiedenen Spred-2 Spleißvarianten. Diese Ergebnisse zeigen, daß Spred-1 und Spred-2 ein hochspezifisches Expressionsmuster in verschiedenen Organen aufweisen, ein Befund, der auf eine spezifische funktionelle Rolle der einzelnen Isoformen hindeutet. Die vorliegenden Befunde weisen darauf hin, daß Spred-2 an der Regulation sekretorischer Vorgänge beteiligt ist. Die Mitglieder der humanen Spred Proteinfamilie werden von drei Genen kodiert, durch alternatives Spleißen resultieren hieraus mindestens 8 verschiedene mRNAs. Werden die korrespondierenden Proteine überexprimiert, zeigen sie differentielle subzelluläre Lokalisationen und unterschiedliche Regulation der MAPKinase Aktivität. KW - Spred Protein KW - RNS-Spleißen KW - EVH1 Domäne KW - Spred Protein KW - Spleißvarianten KW - EVH1 domain KW - Spred protein KW - splice variant Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-11456 ER - TY - THES A1 - Bundschu, Karin T1 - Generation and characterization of spred-2 knockout mice T1 - Generierung und Charakterisierung von Spred-2 Knockout Mäusen N2 - Spreds are a new Sprouty-related family of membrane-associated proteins inhibiting the MAPK signaling pathway by interacting with Ras and Raf-1. Different studies have already demonstrated the inhibitory function of Spreds in cell culture systems, but the in vivo function of Spreds in the whole organism was still unclear. Therefore, Spred-2 knockout mice were generated using a gene trap approach. The Spred-2 deficiency was verified on RNA and protein levels and the lack of functional Spred-2 protein in mice caused a dwarf phenotype similar to achondroplasia, the most common form of human dwarfism. Spred-2-/- mice showed reduced growth and body weight, they had a shorter tibia length and showed narrower growth plates as compared to wildtype mice. Spred-2 promoter activity and protein expression were detected in chondrocytes, suggesting an important function of Spred-2 in chondrocytes and bone development. Furthermore, stimulation of chondrocytes with different FGF concentrations showed earlier and augmented ERK phosphorylation in Spred-2-/- chondrocytes as compared to Spred-2+/+ chondrocytes. These observations suggest a model, in which loss of Spred-2 inhibits bone growth by inhibiting chondrocyte differentiation through upregulation of the MAPK signaling pathway. An additional observation of Spred-2-/- mice was an increased bleeding phenotype after injuries, whereas the bleeding volume was extremely enlarged and the bleeding time was significantly prolonged. So far, hypertension as cause could be excluded, but to discover the physiological reasons for this phenotype, the different steps of the clotting cascade have to be investigated further. As the Spred-2 promoter activity studies demonstrated a high and specific Spred-2 expression in vascular smooth muscle cells and previous studies showed an interaction of Spreds with RhoA, a key regulator of vascular smooth muscle contraction, the regulation of smooth muscle contractility seems to be a good candidate of this phenomenon. Moreover, Spred-1 and Spred-2 specific antibodies were generated as important tools to study the protein expression patterns in mice. Furthermore, nothing was known about the Spred-2 promoter region and its regulation. Here, a detailed in situ analysis of the physiological promoter activity profile in the gene trapped Spred-2-deficient mouse strain was shown. In these mice, the beta-galactosidase and neomycin fusion gene (β-geo) of the gene trap vector was brought under control of the endogenous Spred-2 promoter, giving the opportunity to monitor Spred-2 promoter activity in practically every organ and their corresponding sub-compartments. X-Gal staining of sections of newborn and adult mice revealed 1) a very high Spred-2 promoter activity in neural tissues and different glands; 2) a high activity in intestinal and uterine smooth muscle cells, and kidney; 3) a low activity in heart, testis, lung, and liver; 4) an almost lacking activity in skeletal muscle and spleen, and 5) very interestingly, a very distinct and strong activity in vascular smooth muscle cells. Moreover, comparison of newborn and adult mouse organs revealed a nearly congruent Spred-2 promoter activity. These detailed data provide valuable information for further studies of the physiological functions of Spred-2 in organs showing strong Spred-2 promoter activity, which are in most of these organs still unclear. Finally, gene targeting vectors for Spred-1 and Spred-2 were cloned, to generate ES cells with a floxed exon 2 of the Spred-1 and Spred-2 gene, respectively. Now, these ES cells are valuable tools to establish conditional knockout mice. This is of major interest to investigate the physiological tissue specific functions of Spred-1 and Spred-2, especially if the double knockout mice are not viable. N2 - Spreds gehören zu einer neuen Sprouty-verwandten Familie Membran-assoziierter Proteine, welche den MAPK Signalweg hemmen, indem sie mit Ras und Raf-1 interagieren. In Zellkultur-Systemen haben mehrere Studien bereits die hemmende Funktion von Spred gezeigt, aber die in vivo Funktion im Gesamtorganismus blieb bisher noch ungeklärt. In dieser Arbeit wurden deshalb Spred-2 Knockout Mäuse mithilfe eines Gene-trap Ansatzes generiert. Die Spred-2 Eliminierung konnte auf RNA- und Protein-Ebene bestätigt werden, und der Verlust des funktionsfähigen Spred-2 Proteins führte zu einem Achondroplasie-ähnlichen Zwergenwuchs, der häufigsten Form des menschlichen Zwergenwuchses. Die Spred-2-/- Mäuse waren insgesamt kleiner und hatten ein vermindertes Körpergewicht. Im Vergleich zu Wildtyp Mäusen war die Tibia-Länge verkürzt und die Wachstumsfugen verschmälert. In Knorpelzellen wurde sowohl die Aktivität des Spred-2 Promoters, als auch eine Spred-2 Proteinexpression detektiert, was auf eine wichtige Funktion in Knorpelzellen und bei der Knochenentwicklung schließen lässt. Im Vergleich zu Spred-2+/+ Knorpelzellen zeigte die Stimulierung von Spred-2-/- Knorpelzellen mit verschiedenen FGF-Konzentrationen eine frühere und verstärkte ERK-Phosphorylierung. Diese Beobachtungen deuten auf einen Mechanismus hin, bei dem der Verlust von Spred-2 das Knochenwachstum hemmt, indem die Knorpel-Differenzierung durch eine Hochregulation des MAPK Signalweges gehemmt wird. Spred-2-/- Mäuse zeigten nach Verletzungen eine erhöhte Blutungsneigung, wobei das verlorene Blutvolumen extrem vergrößert und die Blutungszeit signifikant verlängert war. Bislang konnte Bluthochdruck als Ursache ausgeschlossen werden, aber die verschiedenen Stufen der Blutstillung und Gerinnungskaskade müssen noch weiter untersucht werden, um die physiologischen Ursachen dieses Phänotyps ausfindig machen zu können. Untersuchungen der Spred-2 Promotoraktivität zeigten eine starke und spezifische Expression von Spred-2 in glatten Gefäßmuskelzellen. Außerdem zeigten vorhergehende Studien eine Interaktion von Spreds mit RhoA, einem Hauptregulator der Kontraktion glatter Gefäßmuskelzellen. Diesen Beobachtungen zufolge scheint die Regulation der Kontraktilität glatter Gefäßmuskelzellen ein guter Kandidat für dieses Phänomen zu sein. Weiterhin wurden Spred-1 und Spred-2 spezifische Antikörper hergestellt, die als elementares Werkzeug zur Untersuchung der Proteinexpression in der Maus notwendig waren. Bisher gab es noch keine Informationen über die Region und Regulation des Spred-2 Promotors. In dieser Arbeit wurde eine detaillierte in situ Analyse des physiologischen Promotoraktivitätsprofils in der Spred-2 defizienten Mauslinie gezeigt, die mit Hilfe des Gene-trap Vektors generiert wurde. In diesen Mäusen wurde das beta-Galaktosidase/Neomycin-Resistenz Fusionsgen (β-geo) des Gene-trap Vektors unter die Kontrolle des endogenen Spred-2 Promotors gebracht, und lieferte damit die Möglichkeit, die Spred-2 Promotoraktivität in praktisch jedem Organ und den zugehörigen Teilstrukturen beobachten zu können. X-Gal Färbungen von Gewebeschnitten neugeborener und erwachsener Mäuse zeigten 1) eine sehr starke Spred-2 Promotoraktivität in Nervengeweben und verschiedenen Drüsen; 2) eine starke Aktivität in glatten Muskelzellen des Uterus und Verdauungstraktes, sowie der Nieren; 3) eine geringe Aktivität in Herz, Hoden, Lunge und Leber; 4) eine fast fehlende Aktivität in Skelettmuskeln und Milz; und 5) interessanterweise eine starke und eindeutige Aktivität in glatten Gefäßmuskelzellen. Außerdem zeigte der Vergleich zwischen Organen von neugeborenen und erwachsenen Mäusen ein fast identisches Aktivitätsmuster. Diese detaillierten Daten liefern hilfreiche Informationen für weitere Untersuchungen der physiologischen Funktionen von Spred-2 vor allem in Organen mit starker Spred-2 Promotoraktivität, die in den meisten dieser Organe bisher noch immer ungeklärt sind. Zuletzt wurden in dieser Arbeit noch Gene-targeting Vektoren für Spred-1 und Spred-2 kloniert, die zur Generierung von embryonalen Stammzellen mit gefloxtem Exon 2 des Spred-1 bzw. Spred-2 Gens genutzt wurden. Diese embryonalen Stammzellen stehen nun als wertvolle Grundlage zur Etablierung von konditionalen Knockout Mäusen zur Verfügung. Dies ist von großem Interesse, um die physiologischen gewebespezifischen Funktionen von Spred-1 und Spred-2 zu untersuchen, vor allem wenn die Doppel-Knockout Mäuse nicht lebensfähig sein sollten. KW - Spred Protein KW - Knockout KW - Maus KW - Spred KW - Knockout Mäuse KW - Zwergenwuchs KW - EVH-1 KW - MAP Kinase KW - Spred KW - knockout mice KW - dwarfism KW - EVH-1 KW - MAP kinase Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-14333 ER -