TY - THES A1 - Wagner, Martin T1 - Zyto- und Gentoxizität von Zinkoxid-Nanopartikeln in humanen mesenchymalen Stammzellen nach repetitiver Exposition und im Langzeitversuch T1 - Time-Dependent Toxic and Genotoxic Effects of Zinc Oxide Nanoparticles after Long-Term and Repetitive Exposure to Human Mesenchymal Stem Cells N2 - Zinkoxid-Nanopartikel (ZnO-NP) finden in vielen Produkten des täglichen Verbrauchs Verwendung. Daten über die toxikologischen Eigenschaften von ZnO-NP werden kontrovers diskutiert. Die menschliche Haut ist in Bezug auf die ZnO-NP Exposition das wichtigste Kontakt-Organ. Intakte Haut stellt eine suffiziente Barriere gegenüber NP dar. Bei defekter Haut ist ein Kontakt zu den proliferierenden Stammzellen möglich, sodass diese als wichtiges toxikologische Ziel für NP darstellen. Das Ziel dieser Dissertation war die Bewertung der genotoxischen und zytotoxischen Effekte an humanen mesenchymalen Stammzellen (hMSC) durch niedrig dosierte ZnO-NP nach 24 stündiger Exposition, repetitiven Expositionen und im Langzeitversuch bis zu 6 Wochen. Zytotoxische Wirkungen von ZnO-NP wurden mit 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromid-Test (MTT) gemessen. Darüber hinaus wurde die Genotoxizität durch den Comet-Assay bewertet. Zur Langzeitbeobachtung bis zu 6 Wochen wurde die Transmissionselektronenmikroskopie (TEM) verwendet. Zytotoxizität nach 24-stündiger ZnO-NP-Exposition war ab einer Konzentration von 50 µg/ml nachweisbar. Genotoxizität konnten bereits bei Konzentrationen von 1 und 10 µg/ml ZnO-NP beschrieben werden. Wiederholte Exposition verstärkte die Zyto-, aber nicht die Genotoxizität. Eine intrazelluläre NP-Akkumulation mit Penetration der Zellorganelle wurde bei einer Exposition bis zu 6 Wochen beobachtet. Die Ergebnisse deuten auf zytotoxische und genotoxisches Effekte von ZnO-NP hin. Bereits geringe Dosen von ZnO-NP können bei wiederholter Exposition toxische Wirkungen hervorrufen sowie eine langfristige Zellakkumulation. Diese Daten sollten bei der Verwendung von ZnO-NP an geschädigter Haut berücksichtigt werden. N2 - Zinc oxide nanoparticles (ZnO-NP) are widely used in many products of daily consumption. Data on the toxicological properties of the ZnO-NP used are discussed controversially. Human skin is the most important organ in terms of ZnO-NP exposure. Intact skin has been shown to provide an adequate barrier against NPs, while defective skin allows NP contact with proliferating cells. Among proliferating cells, stem cells are the main toxicological target for NPs. Therefore, the aim of this dissertation was to evaluate the genotoxic and cytotoxic effects of human mesenchymal stem cells (hMSC) by low-dose ZnO-NP after 24 hours of exposure, repetitive exposures and in long-term experiments up to 6 weeks. Cytotoxic effects of ZnO-NP were measured with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide test (MTT). In addition, genotoxicity was assessed by the comet assay. Transmission electron microscopy (TEM) was used for long-term observation after 6 exposure periods. The results of the study show that ZnO-NP has a cytotoxic effect starting at high concentrations of 50 µg/mL and could demonstrate genotoxic effects in hMSC exposed to 1 and 10 µg/ml ZnO-NP. Repeated exposure enhanced cytotoxicity but not genotoxicity. Intracellular NP accumulation with penetration of the cell organelles was observed at exposure up to 6 weeks. The results indicate the cytotoxic and genotoxic potential of ZnO-NP. Even small doses of ZnO-NP can cause toxic effects with repeated exposure and long-term cell accumulation. These data should be considered when using ZnO-NP on damaged skin. KW - nanoparticle KW - zinc oxid KW - stem cells KW - nanotoxicology KW - human skin KW - Nanopartikel KW - humane mesenchymale Stammzellen KW - Genotoxizität KW - Zytotoxizität KW - Repetitive Exposition KW - Elektronenmikroskopie Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-275726 ER - TY - THES A1 - Raaijmakers, Nadja T1 - Osteoporoseprophylaxe mit pflanzlichen Wirkstoffen T1 - Osteoporosis prevention with plant ingredients N2 - Osteoporose ist einer der häufigsten Knochenerkrankungen im fortschreitenden Alter und zählt, aufgrund der damit verbundenen hohen direkten und indirekten Behandlungskosten, zu einer der zehn wichtigsten volkswirtschaftlichen Krankheiten. Die Behandlung der Osteoporose ist langjährig und umfasst eine medikamentöse Therapie auf der Basis einer „knochengesunden“ Lebensweise hinsichtlich Ernährung und Bewegung. Im Rahmen von Untersuchungen zur Linderung von postmenopausalen Beschwerden, zeigte ein Extrakt der Pflanze Cimicifuga racemosa Potential zu osteoprotektiver Wirksamkeit und rückte somit in den Fokus für eine mögliche Anwendung in der Therapie und Prophylaxe von Osteoporose. Das Ziel der vorliegenden Arbeit war es daher, in enger Zusammenarbeit mit der Bionorica SE, welche für die Aufreinigung und Fraktionierung des Pflanzenextraktes zuständig war, und mit der Arbeitsgruppe um Prof. Wuttke, welche parallele Rattenstudien durchführte, Methoden anzuwenden, mit denen osteoprotektive Wirksamkeiten nachgewiesen und auf einzelne Fraktionen des Extraktes limitiert werden können. ... N2 - Osteoporosis is one of the most common bone diseases in advancing age and is, due to the associated high direct and indirect costs of treatment, one of the ten most important economic diseases. The treatment of osteoporosis lasts for many years and covers a drug therapy based on a "bone-healthy" lifestyle regarding diet and exercise. As part of investigations for the relief of postmenopausal symptoms Cimicifuga racemosa showed potential to osteoprotective effectiveness and thus the focus places special emphasis to the potential application in the treatment and prevention of osteoporosis. The aim of the present study was therefore, in close cooperation with the Bionorica SE, which was responsible for the purification and fractionation of the plant extract and the research group of Professor Wuttke, which conduct parallel rat studies, to investigate methods which demonstrate osteoprotective efficacies and may be limited to individual fractions of the extract. ... KW - Osteoporose KW - Prävention KW - Traubensilberkerze KW - humane mesenchymale Stammzellen KW - Differenzierung KW - osteoprosis KW - prevention KW - black cohosh KW - human mesenchymal stem cells KW - differentiation KW - Arzneimittelforschung KW - Phytopharmakon Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-83341 ER - TY - THES A1 - von der Assen [geb. Weiß], Katrin Barbara T1 - Markierung von humanen mesenchymalen Stammzellen mit für die Magnet-Partikel-Spektroskopie geeigneten Eisenoxidnanopartikeln, Untersuchung des Zellverhaltens in dreidimensionaler Umgebung und nicht-invasive Analyse mittels Raman-Spektroskopie T1 - Labeling of human mesenchymal stem cells using iron oxide nanoparticles which are traceable by magnetic particle spectroscopy, examination of cell behaviour in a 3D environment and non-invasive analysis using raman spectroscopy N2 - Stem cell research has already been challenged for years by the question how to design tissues or even whole organs in vitro. Human mesenchymal stem cells (hMSC) seem to be very promising for this task as they can be extracted in many cases directly from the recipient. Thus potential graft rejections are avoided. For further research on the behaviour of stem cells in vivo it is essential to be able to track them non-invasively. This is for example possible by Magnetic Particle Imaging (MPI). For this purpose stem cells have to be labelled with a suitable substance, for example with superparamagnetic iron oxide nanoparticles (SPION). Presently there are no SPION approved by FDA or EMA that are able to enter hMSC without transfection agent (TA). Therefore the aim of this dissertation was to identify at least one SPION that possesses an optimal interaction with hMSC and can be tracked by MPI as well as by Raman-Spectroscopy. Furthermore the identified SPION should be detectable for a longer period of time and should not have any influence on hMSC. This dissertation was performed within the framework of the EU-wide `IDEA-project´. hMSC have been labelled with the iron oxide nanoparticles M4E, M4F, M4F2 and M3A-PDL in varying concentrations. For M3A-PDL and M4E examinations were done with concentrations of 0.5 mg/ml in standard cell culture as well as in a three-dimensional environment on a matrix of small intestinal submucosae (SIS-ser). Furthermore chondrogenic differentiation of M4E labelled hMSC was examined. Additionally Magnetic Particle Spectroscopy (MPS) and Raman-Spectroscopy were used as non-invasive detection systems. Histologically SPION uptake was proven by Prussian blue staining. Cell viability and proliferation were examined by Trypan blue staining and Ki67 antibody staining. In order to prove that also labelled cells proliferate, a special staining protocol combining Prussian blue and immunohistochemical stainings was established. The success of chondrogenic differentiation was histologically verified by Alcian blue staining, Aggrecan and Collagen II antibody staining. It could be demonstrated, that M4E has a very good cell-particle interaction when used for labelling hMSC. In contrast to M3A, which is only taken up into hMSC when covered by a TA, M4E can be used without TA. Both particles do not influence cell viability or proliferation. M4F and M4F2 are not suitable to lable hMSC. SPION could be detected at least for four weeks after labelling in a three-dimensional environment which is significantly longer than the maximum detection time of two weeks in cell culture. Chondrogenic differentiation is influenced by cell labelling with 0.5 mg/ml M4E. M3A-PDL can be detected by MPS. Raman-Spectroscopy is suitable to differentiate between M3A-PDL labelled and unlabelled hMSC. This dissertation has been able to identify an iron oxide nanoparticle with an excellent cell-particle interaction that allows intense cell labelling without TA and can be detected by MPS. In further studies at the institute it could already be shown that Raman-Spectroscopy can differentiate also between M4E labelled and unlabelled cells. However, chondrogenic differentiation of hMSC was inhibited in this dissertation. In literature several authors came to the conclusion that there is a dose-dependent inhibition of differentiation. Therefore further experiments are necessary to find out whether inhibition of differentiation might be less immanent when using smaller SPION concentrations. Additionally it should be evaluated if smaller SPION concentrations remain detectable by MPS for several weeks. Finally further studies should be done in testing systems that are more similar to the situation in vivo. Such systems are for example the dynamic environment of a BioVaSc-TERM®. This is important to make better predictions of the behaviour of labelled hMSC in vivo. N2 - Die Stammzellforschung beschäftigt sich bereits seit Jahren mit der Frage, wie Gewebe oder sogar Organe im Labor hergestellt werden können. Als besonders vielversprechend erscheinen hierfür humane Mesenchymale Stammzellen (hMSC), da diese in vielen Fällen direkt vom Empfänger gewonnen werden können und so keine Organ- oder Gewebeabstoßung durch Abwehrreaktionen zu erwarten ist. Für die weitere Erforschung des Verhaltens von Stammzellen in vivo ist es notwendig, diese nicht-invasiv darstellen zu können. Dies ist zum Beispiel mittels Magnetischer Partikel Bildgebung (MPI) möglich. Hierfür müssen die Stammzellen mit einer geeigneten Substanz markiert werden. Eine solche sind beispielsweise superparamagnetische Eisenoxidnanopartikel (SPION). Derzeit gibt es keine von den medizinischen Zulassungsbehörden zugelassenen SPION die ohne TA in hMSC aufgenommen werden. In der hier vorliegenden Arbeit sollte also im Rahmen des EU-weiten „IDEA-Projekts“ ein geeigneter SPION identifiziert werden, der eine optimale Zell-Partikel-Interaktion aufweist und sowohl mittels MPI als auch mit Raman-Spektroskopie nachweisbar ist. Zudem sollte die Nachweisbarkeit des SPION über einen längeren Zeitraum gegeben und kein Einfluss auf die hMSC feststellbar sein. Es wurden hMSC mit den Eisenoxidnanopartikeln M4E, M4F, M4F2 und M3A-PDL in unterschiedlichen Konzentrationen markiert. Für M3A-PDL und M4E erfolgten bei einer Konzentration von 0,5 mg/ml Untersuchungen in Zellkultur sowie auf SIS-ser als Matrix im 3D-Modell. Desweiteren wurde das Differenzierungsverhalten der mit M4E markierten hMSC bei chondrogener Differenzierung untersucht. Außerdem kamen Magnetische Partikel Spektroskopie (MPS) und Raman-Spektroskopie als nicht-invasive Nachweisverfahren zum Einsatz. Der SPION-Nachweis erfolgte histologisch mittels Berliner Blau Färbung. Untersuchungen zu Zellviabilität und Proliferation erfolgten durch Trypanblau sowie Ki67-Antikörper-Färbung. Um Nachzuweisen ob auch markierte Zellen proliferieren wurde eigens ein kombiniertes Färbeprotokoll zur Kombination von Berliner Blau und immunhistochemischer Färbung etabliert. Der Erfolg der chrondrogenen Differenzierung wurde mittels Alcianblau, Aggrecan- und Kollagen-II-Antikörper Färbung überprüft. Es konnte gezeigt werden, dass M4E bei der Markierung von hMSC eine sehr gute Zell-Partikel-Interaktion aufweist und im Gegensatz zu M3A auch ohne TA in die Zellen aufgenommen wird. Durch beide Partikel werden Zellviabilität und Proliferation nicht beeinflusst. M4F sowie M4F2 ist zur Markierung nicht geeignet. Die Markierung ließ sich im 3D-Modell mit vier Wochen deutlich länger nachweisen als in 2D Zellkultur mit maximal zwei Wochen. Die chondrogene Differenzierung wird durch die Markierung mit 0,5 mg/ml M4E beeinflusst. M3A-PDL sind durch MPS nachweisbar. Die Raman-Spektroskopie eignet sich zur Differenzierung zwischen mit M3A-PDL markierten und unmarkierten hMSC. Es ist im Rahmen dieser Arbeit gelungen, einen Eisenoxidnanopartikel mit hervorragender Zell-Partikel-Interaktion zu identifizieren, der ohne zusätzliches TA eine intensive Markierung der hMSC ermöglicht und mit MPS nachweisbar ist. Für M4E konnte in weiteren Arbeiten am Institut bereits gezeigt werden, dass auch eine Differenzierung zwischen markierten und unmarkierten Zellen mittels Raman-Spektroskopie möglich ist. Die chondrogene Differenzierung der hMSC wurde in der vorliegenden Arbeit allerdings beeinträchtigt. In der Literatur finden sich Hinweise auf eine dosisabhängige Inhibition der Differenzierung. Es sind daher weitere Versuche notwendig, um herauszufinden, ob die Inhibition der Differenzierung möglicherweise bei geringerer SPION-Konzentration weniger ausgeprägt ist. Zudem sollte untersucht werden, ob auch geringere Konzentrationen in den Zellen über mehrere Wochen mittels MPS nachweisbar bleiben. Desweiteren sollten Untersuchungen in, der in vivo Situation ähnlicheren, Systemen, wie dem dynamischen Umfeld einer BioVaSc-TERM® durchgeführt werden um bessere Vorhersagen zum Verhalten markierter hMSC in vivo treffen zu können. KW - Stammzellforschung KW - Eisenoxid-Nanopartikel KW - Magnet-Partikel-Spektroskopie KW - Raman-Spektroskopie KW - 3D-Kultur KW - humane mesenchymale Stammzellen Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-219095 ER -