TY - THES A1 - Adler, Florian Rudolf T1 - Electronic Correlations in Two-dimensional Triangular Adatom Lattices T1 - Elektronische Korrelationen in zweidimensionalen Adatom-Dreiecksgittern N2 - Two-dimensional triangular lattices of group IV adatoms on semiconductor substrates provide a rich playground for the investigation of Mott-Hubbard physics. The possibility to combine various types of adatoms and substrates makes members of this material class versatile model systems to study the influence of correlation strength, band filling and spin-orbit coupling on the electronic structure - both experimentally and with dedicated many-body calculation techniques. The latter predict exotic ground states such as chiral superconductivity or spin liquid behavior for these frustrated lattices, however, experimental confirmation is still lacking. In this work, three different systems, namely the \(\alpha\)-phases of Sn/SiC(0001), Pb/Si(111), and potassium-doped Sn/Si(111) are investigated with scanning tunneling microscopy and photoemission spectroscopy in this regard. The results are potentially relevant for spintronic applications or quantum computing. For the novel group IV triangular lattice Sn/SiC(0001), a combined experimental and theoretical study reveals that the system features surprisingly strong electronic correlations because they are boosted by the substrate through its partly ionic character and weak screening capabilities. Interestingly, the spectral function, measured for the first time via angle-resolved photoemission, does not show any additional superstructure beyond the intrinsic \(\sqrt{3} \times \sqrt{3} R30^{\circ}\) reconstruction, thereby raising curiosity regarding the ground-state spin pattern. For Pb/Si(111), preceding studies have noted a phase transition of the surface reconstruction from \(\sqrt{3} \times \sqrt{3} R30^{\circ}\) to \(3 \times 3\) at 86 K. In this thesis, investigations of the low-temperature phase with high-resolution scanning tunneling microscopy and spectroscopy unveil the formation of a charge-ordered ground state. It is disentangled from a concomitant structural rearrangement which is found to be 2-up/1-down, in contrast to previous predictions. Applying an extended variational cluster approach, a phase diagram of local and nonlocal Coulomb interactions is mapped out. Based on a comparison of theoretical spectral functions with scattering vectors found via quasiparticle interference, Pb/Si(111) is placed in said phase diagram and electronic correlations are found to be the driving force of the charge-ordered state. In order to realize a doped Mott insulator in a frustrated geometry, potassium was evaporated onto the well-known correlated Sn/Si(111) system. Instead of the expected insulator-to-metal transition, scanning tunneling spectroscopy data indicates that the electronic structure of Sn/Si(111) is only affected locally around potassium atoms while a metallization is suppressed. The potassium atoms were found to be adsorbed on empty \(T_4\) sites of the substrate which eventually leads to the formation of two types of K-Sn alloys with a relative potassium content of 1/3 and 1/2, respectively. Complementary measurements of the spectral function via angle-resolved photoemission reveal that the lower Hubbard band of Sn/Si(111) gradually changes its shape upon potassium deposition. Once the tin and potassium portion on the surface are equal, this evolution is complete and the system can be described as a band insulator without the need to include Coulomb interactions. N2 - Zweidimensionale Dreiecksgitter aus Adatomen der vierten Hauptgruppe auf Halbleitersubstraten bieten eine reichhaltige Spielwiese für die Untersuchung von Mott-Hubbard-Physik. Die Möglichkeit, verschiedene Adatomsorten und Substrate zu kombinieren, macht die Mitglieder dieser Materialklasse zu vielseitigen Modellsystemen, um den Einfluss von Korrelationsstärke, Bandfüllung und Spin-Bahn-Kopplung auf die elektronische Struktur zu untersuchen - sowohl im Experiment als auch mit Vielkörper-Rechnungen. Letztere prognostizieren exotische Grundzustände, wie z.B. chirale Supraleitung oder eine Spin-Flüssigkeit, wobei eine experimentelle Bestätigung jeweils noch aussteht. In dieser Dissertation werden drei derartige Systeme, nämlich die \(\alpha\)-Phasen von Sn/SiC(0001), Pb/Si(111) und kaliumdotiertem Sn/Si(111) mittels Rastertunnelmikroskopie und Photoemissionsspektroskopie diesbezüglich untersucht. Die Resultate sind potentiell relevant für Anwendungen im Bereich der Spintronik oder Quantencomputer. Für das erst kürzlich realisierte Gruppe-IV-Dreiecksgitter Sn/SiC(0001) zeigt diese Studie, bei der experimentelle und theoretische Methoden kombiniert werden, dass das System unerwartet starke Korrelationen aufweist, weil sie durch den teilweise ionischen Charakter und das geringe Abschirmungsvermögen des Substrats verstärkt werden. Die Spektralfunktion, die erstmals mit winkelaufgelöster Photoemission gemessen wird, zeigt keine überstruktur außer der intrinsischen \(\sqrt{3} \times \sqrt{3} R30^{\circ}\) Rekonstruktion des Gitters, was die Frage nach der Anordnung der Spins im Grundzustand aufwirft. Bei Pb/Si(111) haben bereits frühere Veröffentlichungen einen Phasenübergang bei der Oberflächenrekonstruktion von \(\sqrt{3}\times\sqrt{3}R30^{\circ}\) auf \(3 \times 3\) bei 86 K festgestellt. In dieser Arbeit zeigen Untersuchungen der Niedrigtemperaturphase mit hochaufgelöster Rastertunnelmikroskopie und -spektroskopie die Entstehung eines ladungsgeordneten Zustands. Dieser wird von der begleitend auftretenden strukturellen Neuordnung getrennt, welche entgegen bisheriger Voraussagen eine 2-hoch/1-tief-Anordnung aufweist. Mit Hilfe einer neu entwickelten Cluster-Rechenmethode wird ein Phasendiagramm erstellt, in dem die lokale und nichtlokale Coulomb-Wechselwirkung gegeneinander aufgetragen sind. Durch einen Vergleich zwischen theoretischen Spektralfunktionen mit Streuvektoren, die mittels Quasiteilchen-Interferenz bestimmt werden, kann Pb/Si(111) in besagtem Phasendiagramm platziert werden. Dadurch stellt sich heraus, dass elektronische Korrelationen die treibende Kraft für den ladungsgeordneten Zustand in Pb/Si(111) sind. Um einen dotierten Mott-Isolator in einem frustrierten System zu verwirklichen, wird Kalium auf das bekannte, korrelierte System Sn/Si(111) aufgebracht. Statt des erwarteten Isolator-Metall übergangs zeigen Messungen mit Rastertunnelspektroskopie, dass die elektronische Struktur von Sn/Si(111) nur lokal in der unmittelbaren Umgebung der Kaliumatome beeinflusst wird, ohne dass das System metallisch wird. Die Kaliumatome werden auf freien \(T_4\)-Plätzen des Substrats adsorbiert, was letztendlich zur Ausbildung von zwei unterschiedlichen Kalium-Zinn-Legierungen mit einem Kaliumanteil von 1/3 bzw. 1/2 führt. Komplementäre Messungen der Spektralfunktion mit winkelaufgelöster Photoemission zeigen, dass das untere Hubbardband von Sn/Si(111) durch die Kalium-Deposition allmählich seine Form verändert. Sobald Zinn und Kalium zu gleichen Teilen auf der Oberfläche vorliegen, ist diese Transformation beendet und das System kann als einfacher Bandisolator ohne die Notwendigkeit, elektronische Korrelationen zu berücksichtigen, beschrieben werden. KW - Rastertunnelmikroskopie KW - ARPES KW - Elektronenkorrelation KW - Oberflächenphysik Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-241758 ER - TY - THES A1 - Metzger, Christian Thomas Peter T1 - Development of photoemission spectroscopy techniques for the determination of the electronic and geometric structure of organic adsorbates T1 - Entwicklung von Photoemissionsmethoden zur Bestimmung der elektronischen und geometrischen Struktur von organischen Adsorbaten N2 - The projects presented in this thesis cover the examination of the electronic and structural properties of organic thin films at noble metal-organic interfaces. Angle-resolved photoemission spectroscopy is used as the primary investigative tool due to the connection of the emitted photoelectrons to the electronic structure of the sample. The surveyed materials are of relevance for fundamental research and practical applications on their own, but also serve as archetypes for the photoemission techniques presented throughout the four main chapters of this thesis. The techniques are therefore outlined with their adaptation to other systems in mind and a special focus on the proper description of the final state. The most basic description of the final state that is still adequate for the evaluation of photoemission data is a plane wave. Its simplicity enables a relatively intuitive interpretation of photoemission data, since the initial and final state are related to one another by a Fourier transform and a geometric factor in this approximation. Moreover, the initial states of some systems can be reconstructed in three dimensions by combining photoemission measurements at various excitation energies. This reconstruction can even be carried out solely based on experimental data by using suitable iterative algorithms. Since the approximation of the final state in the photoemission process by a plane wave is not valid in all instances, knowledge on the limitations of its applicability is indispensable. This can be gained by a comparison to experimental data as well as calculations with a more detailed description of the photoemission final state. One possible appraoch is based on independently emitting atoms where the coherent superposition of partial, atomic final states produces the total final state. This approach can also be used for more intricate studies on organic thin films. To this end, experimental data can be related to theoretical calculations to gain extensive insights into the structural and electronic properties of molecules in organic thin films. N2 - Die in dieser Arbeit vorgestellten Projekte behandeln die Untersuchung der elektronischen und strukturellen Eigenschaften organischer Dünnschichtfilme an Grenzflächen zwischen Edelmetallen und organischen Materialien. Als maßgebliche Messmethode wird die winkelaufgelöste Photoelektronenspektroskopie aufgrund der Verbindung der emittierten Photoelektronen mit der elektronischen Struktur der untersuchten Probe angewandt. Die verwendeten Materialien sind sowohl in der Grundlagenforschung als auch für praktische Anwendungen relevant, und dienen gleichzeitig auch als Beispiele für die Photoemissionstechniken, die in den vier Hauptkapiteln der Arbeit präsentiert werden. Diese Techniken werden daher auch bezüglich ihrer Ubertragbarkeit auf andere Systeme dargestellt, wobei besonders auf die korrekte Beschreibung des Endzustands in der Photoemission eingegangen wird. Die simpelste Beschreibung des Endzustands, die für die Auswertung von Photoemissionsdaten noch sinnvoll verwendet werden kann, stellt eine ebene Welle dar. Ihre Einfachheit ermöglicht eine relativ intuitive Interpretation von Photoemissionsdaten, da Anfangs- und Endzustand in dieser Näherung lediglich durch eine Fourier-Transformation und einen geometrischen Faktor verknüpft sind. Kombiniert man die Photoemissionsmessungen bei unterschiedlichen Anregungsenergien, lassen sich zusätzlich die Anfangszustände bestimmter Systeme in guter Näherung dreidimensional rekonstruieren. Mit Hilfe geeigneter iterativer Algorithmen ist diese Rekonstruktion darüber hinaus mit ausschließlich experimentellen Daten realisierbar. Da die Näherung des Endzustands mit einer ebenen Welle nur unter bestimmten Bedingungen ausreichend präzise das reale System widerspiegelt, ist die Kenntnis über die Grenzen ihrer Anwendbarkeit von Bedeutung. Dies kann über den Vergleich mit experimentellen Daten sowie Rechnungen mit detailierteren Beschreibungen des Endzustands in der Photoemission geschehen. Ein möglicher Ansatz basiert auf unabhängig voneinander emittierenden Atomen, deren kohärent überlagerte, partielle Endzustände den gesamten Endzustand formen. Dieser Ansatz kann des Weiteren für komplexere Untersuchungen an organischen Dünnschichten verwendet werden. So können über den Vergleich von experimentellen Messung mit theoretischen Rechnungen umfangreiche Einblicke auf die strukturellen und elektronischen Eigenschaften der Moleküle in organischen Dünnschichten gewonnen werden. KW - ARPES KW - Molekülphysik KW - Organisches Molekül KW - Photoelektronenspektroskopie KW - LEED KW - Angle-resolved Photoemission Spectroscopy KW - Winkelaufgelöste Photoemissionspektroskopie KW - Molecular Physics KW - Molekülphysik Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-229525 ER -