TY - JOUR A1 - Kasprzak, J. A1 - Sivalertporn, K. A1 - Albert, F. A1 - Schneider, C. A1 - Höfling, S. A1 - Kamp, M. A1 - Forchel, A. A1 - Muljarov, E. A. A1 - Langbein, W. T1 - Coherence dynamics and quantum-to-classical crossover in an exciton-cavity system in the quantum strong coupling regime JF - New Journal of Physics N2 - Interaction between light and matter generates optical nonlinearities, which are particularly pronounced in the quantum strong coupling regime. When a single bosonic mode couples to a single fermionic mode, a Jaynes-Cummings (JC) ladder is formed, which we realize here using cavity photons and quantum dot excitons. We measure and model the coherent anharmonic response of this strongly coupled exciton-cavity system at resonance. Injecting two photons into the cavity, we demonstrate a \(\sqrt 2\) larger polariton splitting with respect to the vacuum Rabi splitting. This is achieved using coherent nonlinear spectroscopy, specifically four-wave mixing, where the coherence between the ground state and the first (second) rung of the JC ladder can be interrogated for positive (negative) delays. With increasing excitation intensity and thus rising average number of injected photons, we observe spectral signatures of the quantum-to-classical crossover of the strong coupling regime. KW - Jaynes-Cummings ladder KW - spectral interferometry KW - photon KW - dot KW - spectroscopy KW - oscillations KW - microcavity KW - resonance KW - light Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-123005 SN - 1367-2630 VL - 15 IS - 045013 ER - TY - JOUR A1 - Hopfmann, C. A1 - Albert, F. A1 - Schneider, C. A1 - Höfling, S. A1 - Kamp, M. A1 - Forchel, A. A1 - Kanter, I. A1 - Reizenstein, S. T1 - Nonlinear emission characteristics of quantum dot-micropillar lasers in the presence of polarized optical feedback JF - New Journal of Physics N2 - We report on electrically pumped quantum dot-microlasers in the presence of polarized self-feedback. The high-\(\beta\) microlasers show two orthogonal, linearly polarized emission modes which are coupled via the common gain medium. This coupling is explained in terms of gain competition between the two lasing modes and leads to distinct differences in their input-output characteristics. By applying polarized self-feedback via an external mirror, we are able to control the laser characteristics of the emission modes in terms of the output power, the coherence time and the photon statistics. We find that linearly polarized self-feedback stabilizes the lasing of a given mode, while cross-polarized feedback between the two modes reduces strongly the intensity of the other emission mode showing particular high-intensity fluctuations and even super-thermal values of the photon autocorrelation function \(g^{(2)} (\tau)\) at zero delay. Measurements of \(g^{(2)} (\tau)\) under external feedback also allow us to detect revival peaks associated with the round trip time of the external cavity. Analyzing the damping and shape of the \(g^{(2)} (\tau)\) revival peaks by a phenomenological model provides us insight into the underlying physics such as the effective exciton lifetime and gain characteristics of the quantum dots in the active region of these microlasers. KW - semiconductor lasers KW - coherence KW - system KW - gain Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-123127 SN - 1367-2630 VL - 15 IS - 025030 ER - TY - JOUR A1 - Brixner, T. A1 - Aeschlimann, M. A1 - Fischer, A. A1 - Geisler, P. A1 - Goetz, S. A1 - Hecht, B. A1 - Huang, J. S. A1 - Keitzl, T. A1 - Kramer, C. A1 - Melchior, P. A1 - Pfeiffer, W. A1 - Razinskas, G. A1 - Rewitz, C. A1 - Schneider, C. A1 - Strüber, C. A1 - Tuchscherer, P. A1 - Voronine, D. V. T1 - Coherent spectroscopies on ultrashort time and length scales JF - EPJ Web of Conferences N2 - Three spectroscopic techniques are presented that provide simultaneous spatial and temporal resolution: modified confocal microscopy with heterodyne detection, space-time-resolved spectroscopy using coherent control concepts, and coherent two-dimensional nano-spectroscopy. Latest experimental results are discussed. KW - coherent spectroscopy KW - ultrashort time KW - length scale Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-129073 VL - 41 ER - TY - JOUR A1 - Czerniuk, T. A1 - Brüggemann, C. A1 - Tepper, J. A1 - Brodbeck, S. A1 - Schneider, C. A1 - Kamp, M. A1 - Höfling, S. A1 - Glavin, B. A. A1 - Yakovlev, D. R. A1 - Akimov, A. V. A1 - Bayer, M. T1 - Lasing from active optomechanical resonators JF - Nature Communications N2 - Planar microcavities with distributed Bragg reflectors (DBRs) host, besides confined optical modes, also mechanical resonances due to stop bands in the phonon dispersion relation of the DBRs. These resonances have frequencies in the 10- to 100-GHz range, depending on the resonator's optical wavelength, with quality factors exceeding 1,000. The interaction of photons and phonons in such optomechanical systems can be drastically enhanced, opening a new route towards the manipulation of light. Here we implemented active semiconducting layers into the microcavity to obtain a vertical-cavity surface-emitting laser (VCSEL). Thereby, three resonant excitations--photons, phonons and electrons--can interact strongly with each other providing modulation of the VCSEL laser emission: a picosecond strain pulse injected into the VCSEL excites long-living mechanical resonances therein. As a result, modulation of the lasing intensity at frequencies up to 40 GHz is observed. From these findings, prospective applications of active optomechanical resonators integrated into nanophotonic circuits may emerge. KW - physical sciences KW - applied physics KW - optical physics Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-121559 VL - 5 ER - TY - JOUR A1 - Braun, T. A1 - Schneider, C. A1 - Maier, S. A1 - Igusa, R. A1 - Iwamoto, S. A1 - Forchel, A. A1 - Höfling, S. A1 - Arakawa, Y. A1 - Kamp, M. T1 - Temperature dependency of the emission properties from positioned In(Ga)As/GaAs quantum dots JF - AIP Advances N2 - In this letter we study the influence of temperature and excitation power on the emission linewidth from site-controlled InGaAs/GaAs quantum dots grown on nanoholes defined by electron beam lithography and wet chemical etching. We identify thermal electron activation as well as direct exciton loss as the dominant intensity quenching channels. Additionally, we carefully analyze the effects of optical and acoustic phonons as well as close-by defects on the emission linewidth by means of temperature and power dependent micro-photoluminescence on single quantum dots with large pitches. (C) 2014 Author(s). KW - GAAS Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-115448 SN - 2158-3226 VL - 4 IS - 9 ER - TY - JOUR A1 - Laiho, K. A1 - Pressl, B. A1 - Schlager, A. A1 - Suchomel, H. A1 - Kamp, M. A1 - Höfling, S. A1 - Schneider, C. A1 - Weihs, G. T1 - Uncovering dispersion properties in semiconductor waveguides to study photon-pair generation JF - Nanotechnology N2 - We investigate the dispersion properties of ridge Bragg-reflection waveguides to deduce their phasematching characteristics. These are crucial for exploiting them as sources of parametric down-conversion (PDC). In order to estimate the phasematching bandwidth we first determine the group refractive indices of the interacting modes via Fabry-Perot experiments in two distant wavelength regions. Second, by measuring the spectra of the emitted PDC photons, we gain access to their group index dispersion. Our results offer a simple approach for determining the PDC process parameters in the spectral domain, and provide important feedback for designing such sources, especially in the broadband case. KW - Parametric down-conversion KW - Entanglement KW - CHIP KW - PUMP KW - Bragg-reflection waveguide KW - Information KW - phasematching KW - group refractive index Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-187025 VL - 27 IS - 43 ER - TY - JOUR A1 - Estrecho, E. A1 - Gao, T. A1 - Brodbeck, S. A1 - Kamp, M. A1 - Schneider, C. A1 - Höfling, S. A1 - Truscott, A. G. A1 - Ostrovskaya, E. A. T1 - Visualising Berry phase and diabolical points in a quantum exciton-polariton billiard JF - Scientific Reports N2 - Diabolical points (spectral degeneracies) can naturally occur in spectra of two-dimensional quantum systems and classical wave resonators due to simple symmetries. Geometric Berry phase is associated with these spectral degeneracies. Here, we demonstrate a diabolical point and the corresponding Berry phase in the spectrum of hybrid light-matter quasiparticles—exciton-polaritons in semiconductor microcavities. It is well known that sufficiently strong optical pumping can drive exciton-polaritons to quantum degeneracy, whereby they form a macroscopically populated quantum coherent state similar to a Bose-Einstein condensate. By pumping a microcavity with a spatially structured light beam, we create a two-dimensional quantum billiard for the exciton-polariton condensate and demonstrate a diabolical point in the spectrum of the billiard eigenstates. The fully reconfigurable geometry of the potential walls controlled by the optical pump enables a striking experimental visualization of the Berry phase associated with the diabolical point. The Berry phase is observed and measured by direct imaging of the macroscopic exciton-polariton probability densities. KW - Berry phase KW - diabolical points KW - quantum billiard KW - exciton-polariton Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-167496 VL - 6 IS - 37653 ER - TY - JOUR A1 - Suchomel, H. A1 - Brodbeck, S. A1 - Liew, T. C. H. A1 - Amthor, M. A1 - Klaas, M. A1 - Klembt, S. A1 - Kamp, M. A1 - Höfling, S. A1 - Schneider, C. T1 - Prototype of a bistable polariton field-effect transistor switch JF - Scientific Reports N2 - Microcavity exciton polaritons are promising candidates to build a new generation of highly nonlinear and integrated optoelectronic devices. Such devices range from novel coherent light emitters to reconfigurable potential landscapes for electro-optical polariton-lattice based quantum simulators as well as building blocks of optical logic architectures. Especially for the latter, the strongly interacting nature of the light-matter hybrid particles has been used to facilitate fast and efficient switching of light by light, something which is very hard to achieve with weakly interacting photons. We demonstrate here that polariton transistor switches can be fully integrated in electro-optical schemes by implementing a one-dimensional polariton channel which is operated by an electrical gate rather than by a control laser beam. The operation of the device, which is the polariton equivalent to a field-effect transistor, relies on combining electro-optical potential landscape engineering with local exciton ionization to control the scattering dynamics underneath the gate. We furthermore demonstrate that our device has a region of negative differential resistance and features a completely new way to create bistable behavior. KW - materials for optics KW - nanoscience and technology KW - optics and photonics KW - semiconductors Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-158323 VL - 7 IS - 5114 ER - TY - JOUR A1 - Beierlein, J. A1 - Egorov, O. A. A1 - Harder, T. H. A1 - Gagel, P. A1 - Emmerling, M. A1 - Schneider, C. A1 - Höfling, S. A1 - Peschel, U. A1 - Klembt, S. T1 - Bloch Oscillations of Hybrid Light‐Matter Particles in a Waveguide Array JF - Advanced Optical Materials N2 - Bloch oscillations are a phenomenon well known from quantum mechanics where electrons in a lattice experience an oscillatory motion in the presence of an electric field gradient. Here, the authors report on Bloch oscillations of hybrid light−matter particles, called exciton‐polaritons (polaritons), being confined in an array of coupled microcavity waveguides. To this end, the waveguide widths and their mutual couplings are carefully designed such that a constant energy gradient is induced perpendicular to the direction of motion of the propagating polaritons. This technique allows us to directly observe and study Bloch oscillations in real‐ and momentum‐space. Furthermore, the experimental findings are supported by numerical simulations based on a modified Gross–Pitaevskii approach. This work provides an important transfer of basic concepts of quantum mechanics to integrated solid state devices, using quantum fluids of light. KW - Bloch oscillations KW - exciton‐polaritons KW - polariton condensation KW - waveguides Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-239814 VL - 9 IS - 13 ER -