TY - THES A1 - Stempka, Martin T1 - Expression und Reinigung der SARS-Coronavirus-Mpro und deren Co-Kristallisation mit spezifischen Inhibitoren T1 - Expression and purification of the SARS coronavirus mpro and its co-crystallization with specific inhibitors N2 - Bei SARS („Schweres akutes respiratorisches Syndrom“) handelt es sich um eine Infektionskrankheit des Menschen, welche im November 2002 erstmalig auftrat. Als Erreger dieser Krankheit wurde das SARS-assoziierte Coronavirus identifiziert. Dessen viruseigene Reproduktionsmaschinerie wird vor allem durch die katalytische Aktivität einer Cysteinprotease, der SARS-Coronavirus-Hauptprotease (SARS-CoV-Mpro), und die damit verbundene Prozessierung von viralen Polyproteinen, aufrechterhalten. Diese Schlüsselfunktion der SARS-CoV-Mpro macht sie zu einem vielversprechenden Zielobjekt bei der Entwicklung von spezifischen Inhibitoren für diese Protease, welche somit eine Vermehrung des Virus verhindern. In dieser Arbeit wurde die SARS-CoV-Mpro mit optimierten Methoden exprimiert und gereinigt. Mit der Methode der ESI-MS-Analyse konnte ein kovalentes, irreversibles Bindungsverhalten verschiedener Inhibitoren gezeigt werden und erstmals auch die Bindung von Fragmenten von Inhibitormolekülen an die Protease. So zeigten die SARS-CoV-Mpro-Inhibitoren MH211A und UK-VI-1g eine kovalente Bindung des kompletten Moleküls pro Enzym-Monomer: überraschenderweise hatten bis zu vier Moleküle MH211A bzw. zwei Moleküle UK-VI-1g an ein Proteasemolekül gebunden. Die Bindung von UK-VI-1g an die Protease wurde an zwei Peptiden im Bereich von den Aminosäuren 62 bis 76 bzw. 280 bis 298 nachgewiesen, wobei beide nicht in der Nähe der active site lokalisiert sind. Im Falle des Inhibitors Lit1 bindet der 2,6-Dinitro-4-trifluoromethyl-phenyl-Rest, bei TS48 das Zimtsäure-Thioester-Fragment kovalent an jedes Monomer im dimeren Enzym. Die SARS-CoV-Mpro wurde erstmals ohne Abtrennung des C-terminalen His-tag mit spezifischen Inhibitoren co-kristallisiert. Drei mögliche Orientierungen des Inhibitors TS174 wurden in der active site der Protease identifiziert. Aufgrund der schwachen Elektronendichte des Inhibitors konnten diese nicht weiter untersucht werden. Das Iod-Isatin-Derivat IISBT wurde ebenfalls mit der SARS-CoV-Mpro zusammen co-kristallisiert und es konnte erstmalig eine kovalente Bindung eines Isatin-Derivats an die SARS-CoV-Mpro anhand einer Röntgenstruktur klar gezeigt werden. Diese Struktur zeigte dann, dass früher veröffentlichte molekulare docking-Studien, die eine nicht-kovalente Bindung von IISBT und anderen Isatin-Derivaten veranschaulichen, nochmal überdacht werden sollten. Basierend auf einer ESI-MS-Analyse und früheren Ergebnissen von MALDI- und Dialyse-Experimenten, kann man sicher annehmen, dass IISBT in einer kombinierten kovalent-reversiblen Art und Weise an die SARS-CoV-Mpro bindet. N2 - SARS („severe acute respiratory syndrome”), a respiratory disease in humans, appeared in November 2002 for the first time. The causative agent of this disease is the SARS-associated coronavirus. Its replication machinery is maintained by the catalytic activity of a cysteine protease, named SARS coronavirus main protease (SARS-CoV-Mpro) that processes the virus derived polyproteins. Based on this key role the SARS-CoV-Mpro is an attractive target for the development of specific inhibitors against this protease thereby inhibiting the reproduction of the virus. In this work, the SARS-CoV-Mpro was expressed and purified by optimized methods. Through ESI-MS analysis an irreversible covalent interaction of various inhibitors was detected but also for the first time the binding of fragments of the inhibitors to the protease. Accordingly the SARS-CoV-Mpro inhibitors MH211A and UK-VI-1g displayed a covalent binding of the complete molecule to the enzyme monomer: surprisingly up to four molecules of MH211A and two molecules of UK-VI-1g respectively bound to one protease molecule. The interaction of UK-VI-1g with the protease was detected for two peptides ranging from amino acids 62 to 76 and 280 to 298 both of which are not located near the active site. In case of inhibitor Lit1 the 2,5-dinitro-4-trifluormethlphenyl-fragment and in TS48 the cinnamic acid-thioester-fragment binds covalently to each monomer in the dimeric enzyme. For the first time the SARS-CoV-Mpro was co-crystallized with specific inhibitors without cleaving the C-terminal His-tag. Three possible orientations of the inhibitor TS174 were identified in the active site of the protease. They could not be further resolved due to the weak electron density for the inhibitor. The iodoisatin derivative IISBT was co-crystallized with SARS-CoV-Mpro as well and a covalent binding mechanism of an isatin derivative to the SARS-CoV-Mpro was clearly shown for the first time in an X-ray structure. This structure then indicates that the previously published molecular docking studies demonstrating a noncovalent binding mode of IISBT and other isatin derivatives should be reconsidered. Based on an ESI-MS analysis and previous results of MALDI and dialysis experiments it is safe to assume that IISBT binds to the SARS-CoV-Mpro in a combined covalent reversible manner. KW - SARS KW - Kristallisation KW - Proteaseinhibitor KW - ESI-MS KW - Coronavirus KW - SARS KW - protease inhibitor KW - crystallization Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-57083 ER - TY - THES A1 - Schneider, Thomas T1 - Synthese von reversiblen und kovalent-reversiblen Cysteinprotease-Inhibitoren T1 - Synthesis of reversible and covalent-reversible inhibitors of cysteine-proteases N2 - Als Vorlage für diese Inhibitoren diente der kovalent gebundene Inhibitor 9IN aus der Kristallstruktur 2AMD. Die Entwicklung der neuen Leitstruktur (Abbildung 7-1) erfolgte dabei durch Fragmentierung mit dem Programm FRED im Arbeitskreis Prof. Knut Baumann (Univ. Braunschweig). Die dargestellten Verbindungen wurden als nicht-kovalent gebundene Inhibitoren entwickelt und sowohl an SARS-CoV-Mpro als auch an SARSCoV-PLpro getestet. Da die Basisverbindung 34j (R = H) in durchgeführten Dockingstudien die Enzym-Bindetaschen S1, S2 und S4 bereits ausreichend besetzt hatte, war das Ziel v.a. die noch freie Bindetasche S1‘ mit eingefügten Resten R zu besetzen. Dazu wurden in der Reihe 34a-t verschiedene Alkylreste eingefügt. Die Verbindungen 37a-cc bzw. 38a-p besitzen hingegen die Reste C(O)NHR, CO2R, CH2C(O)NHR und CH2CO2R. Im Verlauf der Synthese wurde der teure Baustein 4-Methylcyclohexancarbonsäure durch die günstigere Verbindung Cyclohexancarbonsäure ersetzt. Keine der dargestellten Verbindungen wies eine besondere Hemmung auf. Trotz geringer Hemmung konnte Verbindung 34e mit dem Enzym SARS-CoV-Mpro co-kristallisiert werden. Die genaue Lage des Inhibitors in der Bindetasche ist bislang noch nicht eindeutig geklärt. Der zweite Teil der vorliegenden Arbeit beschäftigt sich mit der Entwicklung von kovalent-reversiblen Inhibitoren von Cysteinproteasen auf Grundlage von Vinylsulfonen. Bisherige bekannte Vinylsulfone reagieren wie ein Michaelsystem in einer irreversiblen Addition. Es wurden durch QM-Rechnungen in der Arbeitsgruppe Prof. Bernd Engels substituierte Vinylsulfone vorgeschlagen, die fähig sein sollten, mit Cysteinproteasen eine kovalent-reversible Bindung eingehen zu können. Durch die Wahl sowohl eines geeigneten Substituenten als auch einer geeigneten Abgangsgruppe sollte die Reaktion reversibel sein, wenn sie thermoneutral bis schwach endergon verläuft. Um diese Berechnungen zu bestätigen, wurden die dargestellten Verbindungen mit einem Überschuss 2-Phenylethanthiol umgesetzt und der Reaktionsverlauf durch NMR-Spektroskopie verfolgt. Dabei konnte die Einstellung eines Gleichgewichts und damit auch die Reversibilität der Reaktion beobachtet werden. Aus den berechneten Gleichgewichtskonstanten konnten die freien Reaktionsenergien ΔG berechnet werden. Die Ergebnisse zeigen, dass die Reaktionen nahezu thermoneutral verlaufen und bestätigen damit die QM-Berechnungen. N2 - The covalently bound inhibitor 9IN (pdb-code: 2AMD) was the basis of these new synthesized inhibitors (figure 8-1). The development of this new lead structure was achieved in the group of Knut Baumann (Univ. Braunschweig) by fragmentation using the program FRED. The compounds were developed as non-covalent inhibitors and were tested against both SARS-CoV-Mpro and SARS-CoV-PLpro. In the docking studies compound 34j (R=H) occupied the binding pockets S1, S2 and S4 of the enzyme sufficiently. So the aim was to fill the remaining binding pocket S1’ with a side-chain (R). Different alkyl sidechains were attached yielding compounds 34a-t. The compounds 37a-cc and 38a-p are carrying the side-chains C(O)NHR, CO2R, CH2C(O)NHR and CH2CO2R. Furthermore, the expensive building block 4-methylcyclohexanecarboxylic acid was replaced by the cheaper cyclohexanecarboxylic acid. None of the synthesized compounds showed good inhibition. But despite the low inhibition potency compound 34e was successfully co-crystallized with SARS-CoV-Mpro. Up to now the binding mode of the inhibitor in the binding pocket is not clear. Ongoing studies will clarify the exact binding mode of the inhibitor. The second part of this work consists of the development of covalent-reversible inhibitors of cysteineproteases based on vinylsulfones. Known inhibitors with a vinylsulfone-system react via an irreversible addition with the active center similar to a Michael-system. Substituted vinylsulfones were developed by QM-calculations in the group of Prof. Bernd Engels (Univ. Wuerzburg). These systems were postulated to be able to form a covalent-reversible bond with the cysteine sulfur in the active site. The reversible reaction should be possible by choosing a suitable substituent and a suitable leaving group. The reaction energy must be thermoneutral or weakly endergonic. To confirm these calculations the synthesized compounds were reacted with 2-phenylethanethiol and the reaction paths and progress were observed by NMR-spectroscopy. The reaction was found to be reversible. The reaction energies ΔG were calculated from the measured equilibrium constants. The results show that the measured vinylsulfones are reacting nearly thermoneutral. Thus they verify the QM-calculations. KW - Coronaviren KW - SARS KW - Proteaseinhibitor KW - Cysteinproteasen KW - Organische Synthese KW - coronavirus KW - organic synthesis KW - SARS KW - protease inhibitors Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-67491 ER - TY - THES A1 - Herb, Monika T1 - Synthese von Pyridin-, Pyridylessigsäure- und Thiazol-Derivaten als potentielle Inhibitoren der SARS-CoV-Mpro T1 - Synthesis of pyridine-, pyridyl acetic acid- and thiazole-derivates as potential inhibitors of SARS-CoV-Mpro N2 - Einen möglichen Ansatzpunkt für eine antivirale Therapie gegen SARS-Coronaviren bildet die Hemmung der Cysteinproteasen SARS-CoV-Mpro und SARS-CoV-PLpro. Diese übernehmen die Polyprotein-Spaltung während der Virusreplikation und sind damit essentiell für das Überleben und die Verbreitung des Virus. Im Rahmen dieser Arbeit wurden potentielle Inhibitoren der SARS-CoV-Mpro synthetisiert, die Pyridin-, Piperidin-, Pyrrolidin-, Pyridylessigsäure- und Thiazol-Derivate als Grundbausteine enthalten. Durch Strukturmodifikationen wurde eine Serie neuer Verbindungen erhalten, deren inhibitorische Aktivitäten in fluorimetrischen Assays (FRET-Assays) an den Enzymen SARS-CoV-Mpro und SARS-CoV-PLpro untersucht wurden. Weiterhin wurden Testungen an Coronaviren, den Protozoen Leishmania major und Typanosoma brucei brucei und an Makrophagen durchgeführt. Die synthetisierten Verbindungen wurden in sechs Strukturklassen eingeteilt. Strukturklasse 1 enthält Pyridin-, Piperidin-, Pyrrolidin- und Pyridylessigsäure-Derivate ohne Seitenkette in α-Position. Diese bestehen aus einem peptidischen Carbonsäure-Fragment mit N-Heterozyklus. Die Strukturklasse 2 bilden Pyridylessigsäure-Derivate mit einer zusätzlichen aliphatischen Seitenkette in α-Position zur Carboxylfunktion. Die Seitenkette sollte durch Adressierung der S1‘- bzw. S2‘-Bindetasche der SARS-CoV-Mpro die Affinität zum Enzym erhöhen. In den Strukturklassen 3 bis 6 bilden Thiazolamide das bestimmende Strukturelement. In der Strukturklasse 3 kamen dabei unterschiedlich substituierte aromatische Carbonsäuren zum Einsatz, die mit einer Reihe 4,5-substituierter Thiazolamine verknüpft wurden. In den übrigen Stoffklassen, in denen ausschließlich 5-Acetyl-4-methylthiazolamin als Amin-Fragment diente, wurde der Einfluss von Säure-Bausteinen ohne Michael-System (Strukturklasse 4) bzw. mit Michael-System (Strukturklasse 5), sowie die Einführung einer Seitenkette am Benzolring oder am Michael-System (Strukturklasse 6) untersucht. Bei den durchgeführten Enzymassays an der SARS-CoV-Mpro zeigten die synthetisierten Verbindungen insgesamt nur eine geringe Hemmung der Protease (<30 %, 20 µM). Daher lassen sich aus den erhaltenen Ergebnissen keine Struktur-Wirkungsbeziehungen ableiten. Dennoch sind in den Ergebnissen Trends erkennbar. Alle aktiven Verbindungen (Hemmung >10 % bei 20 μM) der Pyridin-, Pyrrolidin-, Piperidin- und Pyridylessigsäure-Derivate enthielten als Strukturmerkmal größere Seitenketten wie n-Pentyl, Cyclopropylmethyl und Crotyl (Strukturklasse 2). Bei den Thiazolamiden der Strukturklassen 3-6 führte die Einführung eines Michael-Systems in der Strukturklasse 5 zu etwas aktiveren Verbindungen. Den größten Einfluss auf die Aktivität zeigte jedoch die Einführung einer Seitenkette in α-Postion zur Carboxylgruppe (Strukturklasse 6). In den Strukturklassen 3 und 4 erwiesen sich nur sehr wenige Verbindungen als aktiv. N2 - Potential targets in antiviral therapy against SARS are the viral cysteine proteases SARS-CoV-Mpro and SARS-CoV-PLpro which are essential enzymes for the viability and the propagation of the virus. These are outstanding targets for the development of new protease inhibitors as antiviral drugs due to the cleavage of the polyprotein encoded by the viral RNA. The main goal of this work was the synthesis of potential inhibitors of SARS-CoV-Mpro which are comprised of pyridine-, piperidine-, pyrrolidine-, pyridyl acetic acid- and thiazole-building blocks. By structural modifications, series of new chemical entities have been synthesized and tested in fluorometric enzyme assays (FRET-assays) for inhibition of SARS-CoV-Mpro and SARS-CoV-PLpro. They were also tested against SARS-coronavirus, the protozoa Leishmania major and Typanosoma brucei brucei and macrophages. These compounds can be subdivided into six structural classes The class 1 contains pyridine-, pyrrolidine-, piperidine- and pyridyl acetic acid-derivatives without a side chain in the α-position. They consist of a carboxylic acid fragment attached to a N-heterocycle. Class 2 compounds are pyridyl acetic acid-derivatives containing an additional aliphatic side chain in α-position to the carboxylic function. Introduction of this side chain was supposed to enhance the affinity of the compound to the enzyme by addressing the S1‘-/S2‘-binding pockets of SARS-CoV-Mpro. In classes 3-6 thiazole amides are the essential structural element. Class 3 comprises thiazole amides with varying aromatic carboxylic acids linked to 4,5-substituted thiazole amines. The classes 4-6 contain 5-acetyl-4-methylthiazolamine as amine fragment with acetic acid building blocks without double bond (class 4), with double bond (class 5) as well as building blocks with an additional side chain attached to the aromatic system or the double bond (class 6). In general, all compounds showed only poor inhibition in enzyme assays with SARS-CoV-Mpro (<30 %, 20 µM). For this reason no clear structure-activity-relationship (SAR) can be deduced, nevertheless the results show some trends. All active compounds (inhibition >10 % at 20 µM) of pyridine-, pyrrolidine-, piperidine- and pyridyl acetic acid-derivatives comprise longer side chains like n-pentyl, cyclopropylmethyl and crotyl (class 2). Examining the thiazole amides of classes 3-6 the introduction of a double bond (class 5) lead to slightly more active compounds. However, the highest influence on protease activity is found with compounds containing a side chain in α-postion to the carboxylic function (class 6). Within classes 3 and 4 only few compounds are active. KW - Coronaviren KW - SARS KW - Proteaseinhibitor KW - Organische Synthese KW - coronavirus KW - organic synthesis KW - SARS KW - protease inhibitors Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-66495 ER -